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Note to the Students

The IIT-JEE is one of the hardest exams to crack for students, for a very simple 

reason – concepts cannot be learned by rote, they have to be absorbed, and IIT 

believes in strong concepts. Each question in the IIT-JEE entrance exam is meant 

to push the analytical ability of the student to its limit. That is why the questions 

are called brainteasers!

Students find Mathematics the most difficult part of IIT-JEE. We understand that 

it is difficult to get students to love mathematics, but one can get students to 

love succeeding at mathematics. In order to accomplish this goal, the book has 

been written in clear, concise, and inviting writing style. It can be used as a self-

study text as theory is well supplemented with examples and solved examples. 

Wherever required, figures have been provided for clear understanding.

If you take full advantage of the unique features and elements of this textbook, 

we believe that your experience will be fulfilling and enjoyable. Let’s walk 

through some of the special book features that will help you in your efforts to 

crack IIT-JEE.

To crack mathematics paper for IIT-JEE the five things to remember are:

1. Understanding the concepts 

2. Proper applications of concepts 

3. Practice 

4. Speed 

5. Accuracy 

About the Cover Picture

The picture on the cover is a Double Spiral Staircase at Saint Peters Basilica, 

Vatican City. It is a classic example of double helix structure. A helix (is a type of 

smooth space curve, i.e. a curve in three-dimensional space. It has the property 

that the tangent line at any point makes a constant angle with a fixed line called 

the axis. Examples of helixes are coil springs and the handrails of spiral staircases. 

The word helix comes from the Greek word         meaning twisted, curved.



Special attention has been paid to present 

an engaging, clear, precise narrative in the 

layout that is easy to use and designed to 

reduce math anxiety students may have.

CLEAR, CONCISE, AND INVITING WRITING

Every new topic or concept starts with 

defining the concept for students. Related 

examples to aid the understanding follow 

the definition.

DEFINITIONS

DEFINITION 3.7 Angular Velocity If a particle P is a moving on a plane curve, the angle mode by P OP (P O be-

ing the origin) with the x-axis at time t is denoted by t (t). The rate at which the angle (t) is 

changing at time t is called the t angular velocity of the particle at time t and is given byt

d
dt

or ( )t

The rate at which the angular velocity is changing at time t is calledt angular acceleration and is

given by

d

dt

2

2
or ( )t

Example 3.5

Consider a particle moving on a straight line. Let s(t) be

the distance traveled by it in time t from a fixed point. t
Then s(t) sin( t), where  and are constants. If v(t)
is the velocity and a(t) is the acceleration of the particle 

at time t, find

(i) v a s2 a
(ii) da/ds

(iii) s
da
dt

Solution: We first find the velocity and the accelera-

tion. Now velocity is given by

v
ds
dt

t( )t cos( )t

The acceleration is given by

a
dv
dt

d s

dt

t

s

( )t

sin( )

( )t

2

2

2

2

2 t
2

and hence

da
dt

d
dt

t

ds
dt

v

( (s ))

( )t

2

2

2

(i) We have

v a s t a s

s s

2 2

2 2 2 2

2 2

a t

s

( (v( (vv )))) ( )t ( )t

cos (2 ) ( ( )tt ( )t )

co

2 2 2t) (

2 2 s (ss ) s ( )2 2( ) 2 2

2 2

)) sin (2sin

2 2

(ii) We have

da
ds

da
dt

ds
dt

v
v

2
2( )t

( )t

(iii) We have

s
da
dt

s t

v t

v a

s

v

( )tt ( (v ))

( )tt ( (s ))

( )t ( )t

2

2

Each chapter starts with an opening vignette, defini-

tion of the topic, and contents of the chapter that give 

you an overview of the chapter to help you see the 

big picture.

CHAPTER OPENER

Contents
 1.1 Functions: Varieties
 1.2  Functions and Their Inverse
 1.3  Even and Odd  Functions, 

 Periodic Functions
 1.4 Graphs of Functions
 1.5  Construction of Graphs and  

Transforming Theorem
 1.6 Limit of a Function
 1.7  Some Useful Inequalities
 1.8 Continuity
 1.9  Properties of Continuous  

Functions
1.10 Infinite Limits
1.11 Sequences and Series
1.12 Infinite Series

Functions, Limits, 
Continuity, Sequences 
and Series 1

A function associates one quantity – 

 argument or input of the function – with 

another quantity – the value or output 
of the function. Limit is used to describe 

the value that a  function or sequence “ap-

proaches” as the input approaches some 

value. A sequence is a list of objects events 

ordered in a sequential fashion such 

that each member either comes before, 

or after, every other  member. A series 

is a sum of a  sequence of terms.F
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  Worked-Out Problems
 Exercises
 Answers

A.    PEDAGOGY 



Examples pose a specific problem 

using concepts already presented 

and then work through the solution. 

These serve to enhance the students’ 

understanding of the subject matter.

EXAMPLESExample 3.6

Consider Fig. 3.4. OAB is a right-angled triangle, right

angled at A. Suppose P is a moving point on P AB with 

uniform velocity v. Find the angular velocity of P withP
respect to O.

BP
A

O

a
r (t )

f

vt

FIGURE 3.4 Example 3.6.

Solution: Since the point P is moving with uniform 

velocity v we have AP vt (since ds vdt andt v is con-

stant, s vt). Let (t) be the angle made by OP with OA
at time t. Let OA a, OP rt andt AOP ( )t . Then

a r t( )t ( ( ))

and [ ( )]t( OP OA a v t2 2OP 2 2AP 2 2v 2OP OA AP2OP 2 2AP (3.1)

Differentiating both sides of Eq. (3.1) with respect to t, 
we get

22 2r
dr
dt

v t2( )t (3.2)

Differentiating both sides of the equation a r(t)cos( (t)),  

w.r.t. t we havet

0
dr
dt

t
d
dt

dr
dt

a
r

r
vt

r

cos( ( )t ) (r )( sin( ( )t )

( )t
( )t

( )t d
dt

dr
dt

a
r

d
dt

a v t d

( )t
( )vt

( )vt [

2))
from Eq. (3.2)]

Therefore

d
dt

a

t
v t
vt

av

t

av

[ (r )]

( (r ))

( )OP

2

2

2

2

Thus the angular velocity of P w.r.t. P O is av/(OP)2.

Relevant theorems are provided along 

with proofs to emphasize conceptual un-

derstanding rather than rote learning.

THEOREMS
THEOREM 1.1   Suppose A, B, C and D are non-empty subsets of �  and f : A  B, g : B  C and h : C  D are 

functions. Then ( ) ( ).h g f h g f� � � �

P R O O F   First of all, observe that both ( )h g f� �  and h g f� �( )  are functions from A to D. Further, for x  A,

(( ) )( ) ( )( ( ))

( ( ( ))

(( )( ))

( ( ))(

h g f x h g f x

h g f x

h g f x

h g f x

� � �

�

� � ))

Note: Theorem 1.1 is given as Theorem 1.27 (Try it out) in Chapter 1 (Vol. 1) on p. 41. The proof also runs on the same 

lines as above.

(ASSOCIATIVE 
LAW FOR  

COMPOSIT ION 
OF FUNCTION)

Some important formulae and con-

cepts that do not require exhaustive 

explanation, but their mention is im-

portant, are presented in this section. 

These are marked with a magnifying 
glass.

QUICK LOOK
If f a b: [ , ] �  has absolute minimum and absolute maximum, then f is bounded on [a, b].

QUICK LOOK 7



Within each chapter the stu-

dents would find problems 

to reinforce and check their 

understanding. This would 

help build confidence as one 

progresses in the chapter. 

These are marked with a 

pointed finger.

TRY IT OUT

At the end of every 

chapter, a summary is 

presented that organ-

izes the key formulae 

and theorems in an 

easy to use layout. The 

related topics are indi-

cated so that one can 

quickly summarize a 

chapter.

SUMMARY

Try it out If

f f
h

f
h

f( )x h ( )x ( )x ( )x hh
1 2

f ( )
2

where 0  1, then for

f ax bx cx d( )x ax cx3 2bx

and a  0, the value of is 1/3.

23. Consider the function f x x( )x , [x , ].4 1xx 2 1x, [x [3

Then

(A) f has local maximum at f x 1

(B) f has local minimum at f x  1

(C)  the image of the interval [ 1, 3] under the func-

tion is [ 8, 72]

(D) f has no extremum value in [f 1, 3]

Solution: Differentiating the given function we get

f x( )x 12 122

Now

f ( )x ,0 1x 1

f
x x

x x
( )x

12 2 2 0 2x

12 2 2 2 3x

2

2

for

for

So

f ( ) 48 4 2 50

and f ( ) 48 4 2 46

Therefore, f is not differentiable at f x  2. Hence 2 is a 

critical point. Now 0 x  2 and f ( )x 0  implies

6 1 0

0

2

( )3 113 ( )2 1x2 1

1 3 1/ ,3

So x  1/3 is a critical point. Now 2 x  3 and f ( )x 0

implies

6x2 x  1  0

But 6x2 x  1  0 has no real roots. Thus, the only critical 

points are 1/3, 2.

(i)  Also, x  1/3  the sign of f ( )x  is ( )( )  0 and 

x x/ (f ) .0  Hence f has local minimum at f x
 1/3.

(ii) f is decreasing for f x  1/3 and increasing for x 1/3. 

2.1 Derivative: Suppose f a b IR: [ , ]  is a function 

and a < c < b. If lim
( ) ( )

x c

f x f c
x c

 exists, then we say 

that f is differentiable at “c” and this limit is denoted 

by f  (c) derivative or differential coefficient at c. 

If we write y  f (x), then f  (c) is also denoted by 

( / ) .dy dx x c  If f is differentiable at each point of (a, 

b) then we say that f is differentiable in (a, b) and 

f  (x) or ( / )dy dx  is called derivative or derived func-

tion of f (x).

lim
( ) ( )

x c

f x f c
x c

 exists and is equivalent to 

lim
( ) ( )

h

f c h f c
h0

QUICK LOOK

2.  The converse of Theorem 2.3 is not true; for ex-

ample, take f x x( ) | |  at c = 0.

3.  The function f :� �  defined by 

f x x
n

n

n

( ) cos( )
1

2
3

0

 

is continuous for all real x, but not differentiable 

at any x �.

2.4 Suppose f and g are differentiable at c, and  and  

be any two real numbers. Then

 (i) f g  is differentiable at c and

( ) ( ) ( ) ( )f g c f c g c

 (ii) fg is differentiable at c and

( ) ( ) ( ) ( ) ( ) ( )fg c f c g c g c f c

 (iii) If g c( ) ,0  then f/g is differentiable at c and

SUMMARY



B.    WORKED-OUT PROBLEMS AND ASSESSMENT – AS PER IIT-JEE PATTERN

In-depth solutions are provided to all worked-out problems for students to understand the logic behind and  

formula used.

WORKED-OUT PROBLEMS

Mere theory is not enough. It is also important to practice and test what has been 

proved theoretically. The worked-out problems and exercise at the end of each 

chapter are in resonance with the IIT-JEE paper pattern. Keeping the IIT-JEE 

pattern in mind, the worked-out problems and exercises have been divided into:

1. Single Correct Choice Type Questions

2. Multiple Correct Choice Type Questions

3. Matrix-Match Type Questions

4. Comprehension-Type Questions

5. Assertion–Reasoning Type Questions

6. Integer Answer Type Questions

Multiple correct choice type 

questions have four choices 

provided, but one or more of 

the choices provided may be 

correct.

MULTIPLE 
CORRECT CHOICE 
TYPE QUESTIONS

Multiple Correct Choice Type Questions

1. Let

f x x
x

( ) [ ] in
[ ]

s
1

where [ ] denotes the greatest integer function. Then

 (A) domain of f is �  [ 1, 0) (B) lim ( )
x

f x
0 0

0

 (C) f is continuous on [0, 1) (D) lim ( )
x

f x
1 0

1

Solution:

(A) f is not defined for all those values of x such that

[x  1]  0  0  x  1  1

  1  x  0

Therefore domain of f is �  [1, 0). This implies (A) 

is true.

(B) We have

lim ( ) lim( ( ))

lim[ ] sin
[ ]

x h
h

h
h

f x f h

h
h

0 0 0
0

0
0

0

0
0 1

 (A) lim ( )
x

f x
0

 does not exist (B)  f is continuous at 

x  0

 (C) lim ( )
x

f x 0  (D) lim ( )
x

f x 1

Solution: Since x  0 and sin /1 x  is a bounded func-

tion, by Corollary 1.4

x
x

xsin
1

0 0as

Therefore

lim ( ) ( )
x

f x f
0

0 0

So (B) is true. Now put x  1/y so that y  0 as x  . 

Therefore

f x
y

y
y

y
y( ) sin( )

sin1
1 0as 

So

lim ( )
x

f x 1

Therefore (D) is also true.

Single Correct Choice Type Questions

1.  
x

x x mx
dx

f x

mx
c

m

m m m m

1

1 21 2

( )
 where f (x) is 

equal to

 (A) 1 2 2x mxm m  (B) 1 2x xm m

 (C) x
x

m
m

1
 (D) x

x
m

m
2

2

1

Solution: Let

I
x

x x mx
dx

m

m m m

1

1 21 2

Dividing numerator and denominator with x2m+1 we get

I x x

x x
m

dx
m m

m m

1 1

1 2

1 2 1

2

Solution: Let

I
dx

x x( )2 4 1

Put x t1  so that dx = 2t dt. Therefore

 

I
t t

t dt

t t
dt

dt

t

1

1 4
2

2

1 2 1 2

2
3

2 2

2 2

2

( )
( )

( )( )

( )(

 

 

tt

t t
dt

2

2 2

1

1

2

1

3

1

1

)

1

2 3

1

2 12 2

dt

t

dt

t

WORKED-OUT PROBLEMS

These are the regular mul-

tiple choice questions with 

four choices provided. Only 

one among the four choices 

will be the correct answer.

SINGLE CORRECT 
CHOICE TYPE 

QUESTIONS



These questions are the 

regular “Match the Follow-

ing” variety. Two columns 

each containing 4 subdivi-

sions or first column with 

four subdivisions and sec-

ond column with more sub-

divisions are given and the 

student should match ele-

ments of column I to that 

of column II. There can be 

one or more matches.

MATRIX-MATCH TYPE QUESTIONS

Matrix-Match Type Questions

Solution:

(A) lim lim
x

x

x

x

x x

x

x0 0

2 1

1 1

2 1

1 1

(C) lim
sin sin

lim
sin cos

lim
sin

x x

x

x x

x

x
x

x

x

x
x

0 3 0 2

0

2 2 2 1

4
2

2

2

sin
x

x

lim
sin

sin

x

x
x

x

x0

2

2

2

1 1 1

Answer: (C)  (q)

(D)  x1  1,  � � �� � �� . Assume that xn  xn  1. 

Therefore

x x

x x x x

n n

n n n n

2 1

2 1 1

2

2 2

which is positive, because xn  xn  1. So {xn} is an 

increasing sequence and bounded above by 2. By 

Theorem 1.42, {xn} converges to a finite limit, say L. 

So

L x x
n

n
n

nlim( ) lim1 2 2 L

Column I Column II

(A) lim
x

x

x0

2 1

1 1
 is (p) 2 log 2

(B)  f x
x x

x x
( )

1 2 3

3 2
. Then 

lim ( )
x

f x
1

 equals

(q) 1

(C) lim
sin sin

x

x x

x0 3

2 2
 is (r) 2

(D)  x1  1 and x xn n1 2 . 

Define �
� � �

��
�� �

Then lim
n

ny  is

(s) 
4

3
3 2( )

(t) 
2

3 3

1. Match the items of Column I with those of Column II.

COMPREHENSION-TYPE QUESTIONS

Comprehension-type questions consist 

of a small passage, followed by three 

multiple choice questions. The ques-

tions are of single correct answer type.

Comprehension-Type Questions

1. Passage: If f is continuous on closed [f a, b], differ-

entiable on (a, b) and f (a) f (b), then there exists

c (a, b) such that f ( )c .0  Answer the following

three questions.

(i) If in the passage, f (a) f (b)  0, then the equa-

tion f f( )x ( )x 0 has

(A) solutions for all real 

(B) no solution for any real

��� �	
��������������������
���
�
��� ���������������� ��

(ii) If

a

n
a
n

a
n

a
an

n
0 1 2a 1

1 1n n 2
01 an

where a a a an0 1a 2,1a , ,  are reals, then the equa-

tion

a x x a x an n n
n0 1x a 1

2
2 0a xna xa 1 n1

has a root in

(A) ( , 1) (B) ( 1, 0)

��� ������ ��� ���� �
(iii) The number of values of c in Rolle’s theorem for 

f (x) 2x3 x2  4x 2 in the interval [ , ]2,

is

(A) 0 (B) 1

��� � ��� �

Solution:

(i) Let ( ) ( )e) f (x so that

(a) is continuous on [a, b],

(b) differentiable in (a, b),

��� ���� ����� ( ( ) ( ) )a( b(b( )b(

Therefore by Rolle’s theorem ( ) 0  for some

c (a, b). Then

e c ccc[ (f ) (f )]f 0

f f( )c ( )cf 0



These questions check the 

analytical and reasoning 

skills of the students. Two 

statements are provided – 

Statement I and Statement 

II. The student is expected 

to verify if (a) both state-

ments are true and if both 

are true, verify if statement 

I follows from statement 

II; (b) both statements are 

true and if both are true, 

verify if statement II is not 

the correct reasoning for 

statement I; (c), (d) which 

of the statements is untrue.

ASSERTION–REASONING TYPE QUESTIONS

Assertion–Reasoning Type Questions
In the following set of questions, a Statement I is given 

and a corresponding Statement II is given just below it. 

Mark the correct answer as:

(A)  Both Statements I and II are true and Statement II 

is a correct explanation Statement I.

(B)  Both Statements I and II are true but Statement II is 

not a correct explanation for Statement I.

(C) Statement I is true and Statement II is false.

(D) Statement I is false and Statement II is true.

1.  Statement I: f : ( , )0 1 �
 
defined by f x

x
( )

1
 is a 

bounded function.

Statement II: Every continuous function defined on a 

closed interval is bounded.

2. Statement I: If 1  x1, than lim .
x

nx
0

0

Statement II: For n  3, x2  xn  x2 where 1  x  1.

3. Statement I: Let f x
x

x
x

x
( )

sin ,

,

1
0

0 0

Then f is continuous at x  0.

Statement II: Let a � . In a neighbourhood of a two 
functions f and g are defined such that lim ( )

x a
f x 0

and g(x) is bounded. Then lim ( ) ( ) .
x a

f x g x 0  

Hint: See Corollary 1.3.

4.  Statement I: If n is a positive integer, then 

k
n n

k

n
( )

.
1

2
1

Statement II:

sin sin sin ... sin

sin sin

sin( / )
2 3

1

2 2

2
n

n n

INTEGER-TYPE QUESTIONS

The questions in this section are 

numerical problems for which no 

choices are provided. The students are 

required to find the exact answers to 

numerical problems and enter the same 

in OMR sheets. Answers can be one-

digit or two-digit numerals.

Integer Answer Type Questions

 1. Let f :� �  be a function and 0    1. If

f x f y x y x y( ) ( ) , �

Then the number of points of x �  such that the 

graph of y  f (x) intersects the line y  x is _______.

Solution: Let x0 �. Now define 

� � � � � � � � �� �� � � � �� �� � �� � � �

Consider the sequence {xn}. By the construction of the 

sequence {xn} and the property that f is satisfying, we get 

that

 x x x xn n
n

1 0 1  (1.82)

Therefore for m  n, we have

x x x x x x

x x

x x

n m n n n n

n m n n m n

n n

1 1 2

1

0 1
1

...
( )

xx x

x xn m n

0 1

1
0 1

... ( )

x y x y( )∵1 0 0and

Answer: 1

2. Let

f x
x x

x
x

k x
( )

tan3 4
0

0

if

if

If f is continuous at x  0, then the value of k is _______.

Solution: We have

lim ( ) lim
tan

x x
f x

x
x0 0

3
4

3 4 7

Therefore k  7.

Answer: 7

3.  Let f : ( 1, 1)  ( 1, 1) be continuous and f (x)  f (x2) 

for all x  ( 1, 1) and f ( ) ,0
1

2
 then the value of 



For self-assessment, each chapter has 

adequate number of exercise prob-

lems where the questions have been 

subdivided into the same categories as 

asked in IIT-JEE.

EXERCISES
Single Correct Choice Type Questions

EXERCISES

 1.  Let f (x)  log10 (3x2  4x  5) where x is real. Then, 

the domain and range of f are, respectively

 (A) � �{0} and

 (B) � and log 11 31[ ( / ), )0

 (C) � � � � � � � �� �� � �
��� �� �� ��

 (D) � �
��

 2. Let � � �
� �

� �  �
� ��  Then the range of f is

 (A) 
1

2

1

2
,  (B) 

1

3

1

3
,

lim
x

nx
x1

1

1

 (A) 6 (B) 7

 (C) 8 (D) 9

 8.  Let A be the set of all non-negative integer and for 

real number t, [t]
 
denotes the greatest integer not 

exceeding t. Define f A: �
 
by

f x

x

x
x

f
xx( ) log

0 0

10 10 10

if

if x 0Multiple Correct Choice Type Questions
 1. Let

f x
x x x

x x
( )

(cot( [ ]))

[ ]

Cos for 

        for 

1

2

1
2

where [x] is the integer part of x. Then

 (A) lim ( )
x

f x

2
0 2

 (B) lim ( )
x

f x

2
0 2

1

 (C) lim ( )
x

f x

2
0 2

1 (D) lim ( )
x

f x

2
0 2

1

 4. Let

f x

x

x

x

( )

1 0

0 0

1 0

 if 

  if 

  if 

Then

 (A) lim ( )
x

f x
0

 does not exist

 (B) lim( ( ))
x

f x
0

2 0

 (C) lim( ( ))
x

f x
0

2 1

 (D) lim( ( ))
x

f x
0

2 does not exist

In each of the following questions, statements are given 

in two columns, which have to be matched. The state-

ments in column I are labeled as (A), (B), (C) and (D), 
while those in column II are labeled as (p), (q), (r), (s) 

and (t). Any given statement in column I can have cor-

rect matching with one or more statements in column II. 

The appropriate bubbles corresponding to the answers 

to these questions have to be darkened as illustrated in 

the following example.

Example: If the correct matches are (A)  (p), (s), 

(B)  (q), (s), (t),(C)  (r), (D)  (r), (t), that is if the 

matches are (A)  (p) and (s); (B)  (q), (s) and (t); 

(C)  (r); and (D)  (r), (t), then the correct darkening 

of bubbles will look as follows:

1.  Match the items of Column I with those of Col-

umn II.

Column I Column II

(A) lim
tan tan

sin cosx

x x
x x

2

2 2
(p) 2

(q) 1

(r) 3 2

(B) lim( sin )tan
x

x x

2

21

(C) f x
ax b x

x x x
( )

 if 

if 

2

5 6 22

If f i b i �

Matrix-Match Type Questions

Comprehension-Type Questions

1.  Passage: f :� �  is a function satisfying the follow-

ing three conditions:

 (a)  f x f x x( ) ( ) �
 (b) f x f x x( ) ( )1 1 �

 (c) f
x

f x

x
x

1
0

2

( )

Answer the following questions.

 (i) lim
( ) ( )

x

f x f x

x2

12 2
 is

 (A) 2 (B) log 2

 (C) 2 log 2 (D) 2/(log 2)

(ii) lim( ( ))
x

f x
1

1  is

 (A) 1 (B) 0

 (C) does not exist (D) e

(iii)  The number of common points of the graph of 

y  f (x) with the line y  (x) is

 (A) 2 (B) 4

 (C) 8 (D) infinite

Hint: f (x)  x   x R.

2.  Passage: Let f (x) be a function defined in a neigh

bourhood of a � . Then lim ( )
x a

f x  exists finitely 

Assertion–Reasoning Type Questions
In the following set of questions, a Statement I is given 

and a corresponding Statement II is given just below it. 

Mark the correct answer as:

(A)  Both Statements I and II are true and Statement II 

is a correct explanation Statement I.

(B)  Both Statements I and II are true but Statement II is 

not a correct explanation for Statement I.

(C) Statement I is true and Statement II is false.

(D) Statement I is false and Statement II is true.

1.  Statement I: f : ( , )0 1 �
 
defined by f x

x
( )

1
 is a 

bounded function.

Statement II: Every continuous function defined on a 

3. Statement I: Let f x
x

x
x

x
( )

sin ,

,

1
0

0 0

Then f is continuous at x  0.

Statement II: Let a � . In a neighbourhood of a two 
functions f and g are defined such that lim ( )

x a
f x 0

and g(x) is bounded. Then lim ( ) ( ) .
x a

f x g x 0  

Hint: See Corollary 1.3.

4.  Statement I: If n is a positive integer, then 

k
n n

k

n
( )

.
1

2
1Integer Answer Type Questions

The answer to each of the questions in this section is a 

non-negative integer. The appropriate bubbles below the 

respective question numbers have to be darkened. For 

example, as shown in the figure, if the correct answer to 

the question number Y is 246, then the bubbles under Y 

labeled as 2, 4, 6 are to be darkened.

0 0 0 0

X Y Z W

1111

222

3333

444

 3.  If f a: ( , ) � is a function such that lim( ( )
x

x f x

, )l l IR , then lim ( )
x

f x is equal to _______.

 4.  Let f (x)  2 x and g(x)  e x for all x IR. Then 

lim( )( )
x

f g x�  equals_______.

 5. lim cos
x

x
x

2 1
12  is equal to _______.

Hint: Put x
1

.

 6.  If a x x
x

xlim(cos sin ) ,/

0

1 then integer part of a is 



The Answer key at the end of each 

chapter contains answers to all exercise 

problems.

ANSWERS

ANSWERS

Single Correct Choice Type Questions
 1. (B)

 2. (D)

 3. (D)

 4. (A)

 5. (D)

 6. (C)

 7. (B)

 8. (A)

 9. (A)

10. (C)

11. (B)

12. (D)

13. (B)

14. (A)

15. (C)

16. (D)

17. (B)

18. (B)

19. (A)

20. (A)

21. (D)

22. (A)

23. (A)

24. (B)

25. (A)

26. (C)

27. (D)

28. (B)

29. (C)

30. (B)

31. (A)

32. (B)

33. (B)

34. (A)

35. (A)

36. (B)

37. (D)

38. (A)

39. (C)

40. (A)

41. (A)

42. (C)

43. (B)

44. (D)

45. (C)

46. (B)

47. (A)

48. (D)

49. (C)

50. (B)

51. (A)

52. (C)

53. (C)

54. (A)

55. (B)

56. (B)

57. (B)

58. (C)

59. (B)

60. (B)

61. (D)

62. (A)

63. (A)

64. (B)

65. (D)

Multiple Correct Choice Type Questions

 1. (A), (D)

 2. (B), (C), (D)

 3. (A), (D)

 4. (A), (C)

 5. (A), (C), (D)

 6. (B), (C), (D)

 7. (A), (B), (C)

 8. (A), (B), (C), (D)

 9. (A), (B), (D)

10. (A), (B), (C), (D)

Since Calculus requires a lot of practice, 

some chapters in addition to providing 

numerous solved examples in IIT-JEE 

pattern,  also give subjective questions 

as exercises.

SUBJECTIVE QUESTIONS
To have a grip over integration, the student has to practice 

problems on various methods. That is why we are supply-

ing the student with a number of problems for evaluation. 

Hence, the exercise contains only subjective problems.

 1. Evaluate 
xe

x
dx

x

1
2

.

 2. Evaluate 
xe

e
dx

x

x1

Hint: Take u x dv
e

e

x

x
,

1
 so that v ex2 1

and use integration by parts.

 3. Show that 

dx

e e

e e e

e e e
c

x x e

x x x

x x x1

1 1

1 12

2

2
log �

 4. Show that

 9. Show that

x xdx
x

x
x x

c3 1
4

1
31

4 12 4
Tan Tan

Hint: Use integration by parts.

10. Evaluate 
Sin 1

1

x

x
dx.

11. Show that

x

x
x x dx

x

x x

e e

e

2

4
2

2 3 2

3 2

1
1 2

1

9
2 3 1

1

[log ( ) log ]

( )
log

/

c

Hint: Put 1
1
2x

t .

12. Compute sin log tan .x xdxe  

EXERCISES
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0.1 Sets

Even though we discussed set theory completely in Chapter 1 of Vol. 1, in this section, we recall some of the concepts, 

symbols and theorems (for the convenience of the reader) which are going to be used throughout this volume. First, 

we begin with some notations.

0.1.1 Notation

Suppose S is a set (i.e., a collection of objects enjoying a certain property).

1. The symbol  stands for “belongs to” or “is a member of”. a  S means a belongs to S or is a member of S.

2. The symbol  stands for “does not belong to”. a  S means a is not a member of S.

3.  The symbols  and  stand for “there exists” and “such that”,  respectively. Generally these two symbols go together, 

for example,  real number x x2 2.
4. The symbol “ ” stands for “for all” or “for every”.  For example, “x2 is a positive integer  non-zero integer x”.

5. If S is the set of all objects satisfying a property P, then S is represented as

S = {x | x has property P}

6. The set having no objects is called the empty set or null set and is denoted by “ ” .

  7. If a set has only a finite number of members x x xn1 2, , , , …  then we write

S x x xn{ , , , }1 2 

0.1.2 Union and Intersection

Suppose A and B are sets. Then

1.  The collection of all objects which either belong to A or belong to B is denoted by A  B and is called union of A 

and B. That is

A  B  {x | x  A or x  B}

2.  The collection of all objects which belong to both A and B is denoted by A  B and is called the intersection of A 

and B. That is

A  B  {x | x  A or x  B}

0.1.3 Disjoint Sets

Two sets A and B are called disjoint sets if A B .

0.1.4 Indexed Family of Sets

A family F of sets is called indexed family of sets if there exists a set I such that for each element i  I, there exists 

unique member Ai  in F associated with i and F { : }A i Ii  or F { } .Ai i I  For example, if h is a house in Delhi and Ah 

is the set of all persons belonging to the house h, then F   {A hh |  is a house in Delhi} is an indexed family of sets, the 

index set being the set of all houses in Delhi.

0.1.5 Subset

We say that set A is a subset of set B and we write A B B A or ,  if every member of A is also a member of B. If 

A B  and A B,  then A is called proper subset of B.
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0.1.6 Power Set

If A is a set, then the set of all subsets of A is called the power set of A and is denoted by P(A).

 0.1  Sets

If A and B are any two subsets of universal set X, then

A B A B A B A Bc

QUICK LOOK 2

The following theorems are easy to prove.

0.1.7 Set Difference

Let A and B be two sets. Then the set A  B is defined as

{ | }x A x B

0.1.8 Universal Set

If { }Ai i I  is a class of sets then the set X
i I
∪ Ai is called universal set of this family of sets { } .Ai i I

0.1.9 Complement

If X is universal set and A  X, then X  A is called complement of A and is denoted by A  or A  or Ac.

THEOREM 0.1 Let A, B, C be sets. Then

1. ( ) ( )A B C A B C
2. ( ) ( )A B C A B C
3. A A
4. A
5. A B C A B A C( ) ( ) ( )
6. A B C A B A C( ) ( ) ( )

THEOREM 0.2 Let A, B be subsets of a universal set X. Then

1. ( )A B A B
2. ( )A B A B

 and A belong to P(A).

QUICK LOOK 1

(DE MORGAN’S 
LAWS)
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THEOREM 0.3 Let { }Ai i I  be an indexed family of subsets of universal set X. Then,

1. A Ai
i I

i
i I

∪ ∩

2. A Ai
i I

i
i I

∩ ∪

0.2 Real Numbers

Real analysis is considered to be the Brain of Mathematics. Real analysis makes us to think, analyze and solve 

problems in mathematics. Knowingly or unknowingly we learned about real analysis and used various tools to 

solve problems in real analysis including certain basic properties. As a process of recalling them from our acquired 

earlier knowledge, let us begin with the binary operations in the real number system and list out some of their 

properties.

0.2.1 Addition and Multiplication

�  stands for the real number set (system). There are two binary relations (operations), namely, addition ( ) and mul-

tiplication ( ) in �.  These relations have the following properties:

A1 : ,a b a b� �  (Closure property of )

A2 : ,a b a b b a�  (Commutative property of )

A3 : ( ) ( ) , ,a b c a b c a b c � (Associative property of )

A4 0: a a a � (Existence of additive identity for  and 0 is the real number zero)

A5 0: ( )a a a �  (Existence of additive inverse, a being the negative of a)

With regards to multiplication, we have the following properties:

M1 : ,a b a b� �  (Closure property of multiplication)

M2 : ,a b a b b a�  (Commutative property of multiplication)

M3 : ( ) ( )a b c a b c  (Associativity property of multiplication)

M4 1: a a a �  (Existence of multiplicative identity, where 1 is the usual one)

M5
1 1 0: ,a
a

a a �  (Existence of multiplicative inverse)

M6 :  If a b c, , ,�  then a b c a b a c( )  (Distributive law)

We observe that 0 is the only real number satisfying A
4
 

(i.e., if �  and a a a �,  then 0) and 

given a �,  then ( a) is the only real number satisfy-

ing A
5
 (i.e., if a � �,  and a 0,  then a).

QUICK LOOK 3

(GENERALIZED 
DE MORGAN’S 

LAWS)
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0.2.2 Properties of �
R1: If x y, ,�  then x y � .

R2: If x �  and x 0,  then either x �  or x �  but not both.

R1: 0 � .

0.2.3 Properties of ( , , , )�
( , , , )�  is an ordered field having the following properties:

1. x y, ,�  then x  y if and only if y x � .
2. x y y x.
3. x y  means either x  y or x  y.

4. If x y, ,�  then exactly one of x  y, x  y, x  y holds.

5. If x y z x y, , , ,�  and y  z, then x  z.

6. Also 1  0.

0.2.4 Inductive Set

�  as well as �  denote the set of positive integers (positive integers are also called natural numbers). �  has the  

following properties:

1. 1 �.
2. If n �,  then n 1 �.

Suppose S is a set of real numbers such that

1. 1 S.
2. s S  implies s S1 .

Then S is called an inductive set.

 0.2  Real Numbers

We observe that 1 is the only real number satisfying M
4
 

(i.e., if �  and a a a �,  then   1) and for 

a 0,  1/a is the only real number satisfying M
5
 (i.e., if 

a a� �, ,0  and a 1,  then 1/ a).

QUICK LOOK 4

CONVENTION: Here afterwards we will write ab for a b.

Note: In view of A
1
 to A

5
 and M

1
 to M

6
, we can call �  a field with respect to the two binary operations  and  we 

write ( , , )�  is a field.

In addition to the properties of + and , �  has another property called ordering which has typical proper-

ties. First, let us start with positive real numbers. The set of all positive real numbers is denoted by � ,  that is 

� �{ | }.a a 0

1. �  is an inductive set. 2.  If S is an inductive set, then � S  and hence �  is 

the smallest inductive set.

QUICK LOOK 5
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0.3 Bounded Set, Least Upper Bound and Greatest Lower Bound

In this section, we introduce the concept of a bounded set of real numbers, least upper bound, and greatest lower 

bound of a set S. Let us begin with the following definition

DEFINITION 0.1  Let S be a non-empty subset of �.  A real number x is said to be a lower bound of S if x y for 

every y S. If S has at least one lower bound, then we say that S is bounded below. If x is a lower 

bound of S and x S ,  then we say that x is the least or minimum member (element) of S.

DEFINITION 0.2  Let S be a set of real numbers. A real number z is called an upper bound of S, if s z  for all 

s S.  If S has at least one upper bound, then we say that S is bounded above. If z is an upper 

bound of S and z S ,  then z is called greatest (maximum) element of S.

DEFINITION 0.3  Bounded Set A set S of real numbers is said to be bounded, if S is both bounded below and 

bounded above.

DEFINITION 0.4  Greatest Lower Bound, g.l.b. Suppose that S is bounded below and x is a lower bound of S. 

If y is a lower bound of S which implies y x,  then x is called greatest lower bound of S and 

x is denoted by g.l.b. S.

Notation: � denotes the set of all integers. That is

� � �{ } ( )0

where � �{ | }.n n

DEFINITION 0.5  Least Upper Bound, l.u.b. Suppose S is bounded above set. A real number z is called least 

upper bound of S (l.u.b. S) if z is an upper bound of S and y is also an upper bound of S then 

y z.

1.  S x x{ | }� 3  is bounded above without greatest 

element (since 3 S).

2.  T n n1/ | �  is bounded above, 1 is the greatest  

element and T has no least element.

 Examples 

QUICK LOOK 6

A real number x is a g.l.b. S if and only if x is a lower bound of S and any real number y  x cannot be a lower 

bound of S.

QUICK LOOK 7

A real number u is l.u.b of a set S if and only if u is an upper bound of S and any number less than u cannot be an 

upper bound of S.

 1.  If S x x{ | },� 0 1  then 0 (zero) is a lower bound 

and it is the least element of S.

2. For the set �, 1  is the least element of �.

3.  If T x x{ | },� 0 1  then 0 is a lower bound but it 

is not least element of T (since 0 T ).

 Examples 
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DEFINITION 0.6  Unbounded Below and Unbounded Above A set S of real numbers is said to be unbounded 

below if it is not bounded below. S is said to be unbounded above, if S is not bounded above.

DEFINITION 0.7  Unbounded Set A set S of real numbers is said to be unbounded set if either S is unbounded 

below or unbounded above.

0.4 Completeness Property of � and Archimedes’ Principle

In this section we state the so-called completeness property of �  and the Archimedes’ principle and discuss how well 

ordering principle in �  leads to the concept of the integral part of a real number. We will also mention some of its 

properties. Let us begin with the completeness of �.

THEOREM 0.4  Every non-empty set of real numbers which is bounded above has a least upper bound (l.u.b)  

in �.

Generally l.u.b of S is called supremum of S and the completeness property of �  is called 

 supremum property of �.  From the completeness property (or supremum property) of �,  we 

can conclude the following.

THEOREM 0.5 1. Every non-empty set S of �  which is bounded below has g.l.b. (also called infimum).

2.  S is bounded below if and only if S x x S{ | } is bounded above and g.l.b. S  l.u.b. 

( S).

3.  If S and T are non-empty subsets of �  and x S y T x y, ,  then S is bounded above,  

T is bounded below and l.u.b. g.l.b.S T .

0.4.1 Archimedes’ Principle

Statement: If x is a real number and y is a positive real number, then there exists a positive integer n such that x  ny.

As a consequence of Archimedes’ principle we have the following theorem.

THEOREM 0.6 1. If x, y are integers, then x + y and xy are also integers.

2.  If x is an integer, then there is no integer between x and x  1. That is, if x  y  x  1, then y 

cannot be an integer.

3.  If S is a non-empty subset of �  (� is the set of all integers) which is bounded above, then 

l.u.b. S is in S. Similarly, if S is bounded below, then S has minimum (least) element.

From part (3) of Theorem 0.6, we have the following property called well ordering principle.

 0.4  Completeness Property of � and Archimedes’ Principle

THEOREM 0.7 
Every non-empty subset of the natural number set �  has minimum (or least) element.

From the well ordering principle, we have the following theorem which is the base for the concept of integral part of 

a real number.

THEOREM 0.8 If x �,  then there exists a unique integer n such that n x n 1.

DEFINITION 0.8  Let x �.  Then the unique integer n (guaranteed by Theorem 0.8) such that n x n 1  is 

called the integral part of x and is denoted by [x]. In other words, [x] is the largest integer not 

exceeding x.

(COMPLETENESS 
PROPERTY  

OF � )

(WELL ORDERING 
PRINCIPLE)
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In the following theorem, we list out some properties of integral part (for proofs, refer the authors Vol. 1 pp. 46 48) for 

quick reference whenever necessary.

THEOREM 0.9 The following hold for any real number x:

1. [ ] [ ]x x x 1
2. x x x1 [ ]

3. [ ] ,x x
i x

1 1

1

 if 

4.  [x] = x if and only if x x� { } 0
5.  {x} = x if and only if [x] = 0

6. [ ] [ ]x x
x
x

0
1

if
if

�
�

THEOREM 0.10 The following hold for any real numbers x and y:

1. [ ]
[ ] [ ] { } { }
[ ] [ ] { } { }

x y
x y x y
x y x y

 if
if

1
1 1

2. [ ] [ ] [ ]x y x y  and equality holds if and only if {x}  {y}  1.

3. If x or y is an integer, then [ ] [ ] [ ].x y x y

THEOREM 0.11 1. If x is any real number and m is any non-zero integer, then

x
m

x
m
[ ]

2. If n and k are positive integers and k 1,  then

n n
k

n
kk

1 2

3. Also

[ ] [ ]
[ ]

[ ]
2 2

0 2

1 2
x x

x

x

if  is even

if  is odd

THEOREM 0.12  If n is a positive integer and p is any prime number, then the highest power p dividing n! (factorial 

n) is

n
pk

k 1

0 1{ }x  for all x �  and x x x[ ] { }

QUICK LOOK 8

DEFINITION 0.9 Fractional Part If x �,  then x x[ ] is called fractional part of x and is denoted by {x}.
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0.5   Rational Numbers, Irrational Numbers and Density Property of  
 Rational Numbers

DEFINITION 0.10  Rational Number A real number x is called rational number, if there exists n � (i.e., n is a 

positive integer) such that nx �. The set of all rational numbers is denoted by 	.

The following theorems enlist some properties of the set Q of rational numbers, especially the density property of Q.

THEOREM 0.13 If x, y 	,  then x 	, x y 	, xy 	 and x y/ 	 whenever y 0.

THEOREM 0.14  Between two distinct real numbers, there lies a rational number. That is, if x, y are real numbers 

and x y, then there exists q 	  such that x q y.

DEFINITION 0.11  Even Integer n �  is said to be even, if there exits m �  such that m m n.  Otherwise we say 

that n is odd.

 0.6  Intervals

Since n is a finite number, on and after a stage pk exceeds n so that the infinite sum is actually a finite sum.

QUICK LOOK 9

1. � 	

2.  There are rational numbers which are not integers. 

For example 1/2, 4/3 are rational numbers but are not 

integers.

3. �  is a proper subset of 	.

QUICK LOOK 10

THEOREM 0.15 There exists a unique real number x 0  such that x2 2 and this unique x is denoted by 2.

DEFINITION 0.12 Irrational Number A real number which is not rational is called irrational number.

THEOREM 0.16 2 is irrational number.

Finally we conclude this section with the following theorem.

THEOREM 0.17 1. 	  is a proper set of �.
2. Between any two distinct real numbers there lies an irrational number.

0.6 Intervals

In this section, we define an interval, its length, bounded and unbounded intervals, and g.l.b., l.u.b. of intervals (consid-

ering interval as a set). For this section we have a, b �  and a  b.

(DENSITY  
PROPERTY OF 	 )
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DEFINITION 0.13  Open Interval The set { | }x a x b�  is called an open interval. It is denoted by (a, b) 

with initial end point a and terminal end point b.

DEFINITION 0.14  Closed Interval The set { | }x a x b�  is called closed interval. It is denoted by [a, b] 

with a and b as initial and terminal end points, respectively.

DEFINITION 0.15 Half Open and Half Closed Intervals

1. The set { | }x a b x�  is denoted by [a, b).

2. The set { | }x a x b�  is denoted by (a, b].

DEFINITION 0.16  Length of the Intervals b  a is called the length of all the four intervals (a, b), [a, b], [a, b) 

and (a, b].

DEFINITION 0.17 All the four intervals (a, b), [a, b], [a, b) and (a, b] are called bounded intervals.

In the next definition we list out unbounded intervals.

DEFINITION 0.18 Unbounded Intervals Let a �.  Then

1. { | }x x a�  is denoted by ( , ).a
2. { | }x x a�  is denoted by ( , ).a
3. { | }x x a�  is denoted by [ , ).a
4. { | }x x a�  is denoted by ( , ].a
5. �  is also denoted by ( , ).

Note:
   (i) ,  are only symbols but not real numbers.

  (ii)  The intervals (a, ), [a, ∞) are bounded below with a as their g.l.b, but these intervals are not bounded above. 

Similarly the intervals ( , a) and ( , a] are bounded above with a as l.u.b. and these intervals are not bounded 

below.

(iii) ( , ) is neither bounded below nor bounded above.

0.6.1 Interesting Features of Intervals

Let I denote any one of the intervals defined above. Then I has the following basic property:

x y I x y x y I, , [ , ]  and conversely, if A �  has the property that x y A x y x y A, , [ , ] ,  then A is an 

interval.

DEFINITION 0.19  Neighbourhood Let a �  and 0.  Then the open interval ( , )a a  is called -neigh-

bourhood of a and ( , ) { }a a a  is called the deleted -neighbourhood of a where {a} is 

the singleton set containing the element a.

1.  If a  b, then [a, b]  {a} (singleton set) so that (a, b)   

[a, b)  (a, b]   (empty set).

2. If a  b, then g.l.b. [a, b]  a and l.u.b. [a, b]  b.

3.  If a  b, then g.l.b. (a, b)  g.l.b. [a, b)  g.l.b. (a, b]  a 

and l.u.b. (a, b)  l.u.b. [a, b)  l.u.b. (a, b] b.

QUICK LOOK 11
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0.7 Absolute Value of a Real Number

In this section, we introduce the concept of absolute value or modulus value of a real number and list some of its prop-

erties which are useful. Let us begin with the following definition.

DEFINITION 0.20 Let x �. We write

| |x
x x

x x
 if

if
0
0

| |x  is called the absolute values of x or modulus value of x.

The following theorem enlists the important properties of | |x .

THEOREM 0.18 1. | 0 |  0 and | | | | .x x x �

2. For x, y �, we have

| | | |x x x

and whenever y 0

(a) | | | || |xy x y

(b) | | | | | |x y x y

(c) || | | || | |x y x y

(d) 
x
y

x
y

| |
| |

3. For a �  and 0,  we have

( , ) { | | }a a x x a�

4. If x a a( , ) ,0  then x  a.

5. Max{ , } | | .x x x

6. (a) Max{ , } ( | |)a b a b a b1
2

(b) Min{ , } ( | |)a b a b a b1
2

Finally we conclude this chapter with the following property of closed intervals.

THEOREM 0.19  Let { | , , , }x nn 1 2 3 …  and { | , , , }y nn 1 2 3 …  be subsets of �  such that [ , ] [ , ]x y x yn n n n1 1  for 

n 1 2 3, , .…  Then ∩
�n

x yn n[ , ] is non-empty. If further g l b.. . ( ) ,
n

y xn n�
0  then ∩

�n
x yn n[ , ] is a 

 singleton set. 

| | | | | |x y x y  if and only if both x and y are of same sign.

QUICK LOOK 12
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A function associates one quantity – 

 argument or input of the function – with 

another quantity – the value or output 
of the function. Limit is used to describe  

the value that a  function or sequence  

“approaches” as the input approaches 

some value. A sequence is a list of ob-

jects/events ordered in a sequential fash-

ion such that each member either comes 

before, or after, every other  member. A 

series is a sum of a  sequence of terms.F
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Calculus is a part of Mathematical Analysis which was developed by Issac Newton (1642–1727), Gottfried Leibniz 

(1646–1716), Leonhard Euler (1707–1783), Augustin–Louis Cauchy (1789–1857) and Karl Weierstrass (1815–1897). 

The world of Mathematics came to know that Calculus was the brain child of both Newton and Leibniz who  developed 

it simultaneously without knowing each other and was improved by Euler, Cauchy and Weierstrass. It was Weierstrass 

who gave the precise definition of limit and more teeth to continuity and differentiability. It was he who constructed a 

function which is continuous for all real values of x but not differentiable at any real value of x.

1.1 Functions: Varieties

Even though the general notion of a function, real-valued functions and operations among real-valued functions were 

exhaustively studied in Chapter 1 of Vol. 1 (Algebra), for completeness sake, we recall some of the basic definitions 

and results (possibly without proofs) here. This process is undertaken to facilitate the reader to have immediate refer-

ence. Let us begin with the definition of a function.

DEFINITION 1.1  Suppose A and B are two non-empty sets A B a b a A b B{( , ) | , }  is the set of ordered 

pairs of A and B and is called the Cartesian product of A and B.

DEFINITION 1.2 Any non-empty subset S of A  B is called a function if

 (i) a  A   b  B such that (a, b)  S
(ii) (a, b1)  S, (a, b2)  S  b1  b2

We also say that S is a map or mapping. If S  A  B is a function, then

 (i) A is called the domain of S and B is called codomain of S.

(ii) { | ( , ) }b B a b S  is called the range of S.

If (a, b)  S, it is customary to denote b by S(a). We observe that S(a) is unique for a given 

a  A and S a S a a A{( , ( )) | }. S(a) is called the value or image of S at a. If S(a)  b, then a 

is called the preimage of b. Generally, we write S: A  B and say that S is a function defined 

on A with values in B.

DEFINITION 1.3  Equal Functions If S : A  B and T : A  B are functions such that S(a)  T(a) for every  

a  A, then we say that S and T are equal and we write S  T.

For convenience sake, we use the symbol f for a function. Thus, f : A  B is taken as a function. For our purpose, 

in general, A is a subset of �  and B �. When this is the case, that is f A: �  where A �, then f is a real-valued 

function from the subset A of �.

1.  A is the set of positive integers, f A: �  where f (n)  

2n for n  1, 2, 3, …. Thus f (1)  2, f (2)  4, f (3)  6, ….

2. A  [0, 1], f A:  where f (x)  x2 for x  A. Thus

f

f

f

( )

...

1 1 1

1

2

1

2

1

4

2

3

2

3

2

9

2

2

2

 

 

3.  A � and f A: �  is defined by f (x)  x2   x  1 for 

x  A. Thus

f (0)  02  0  1  1

f (1)  12  1  1  3

f ( 1)  ( 1)2  ( 1)  1  1

f ( ) ( )2 2 2 1 3 22

4.  A  The set of all non-negative real numbers, and 

f A: �  is defined by f x x( ) .  Thus

f f f f( ) , ( ) , ( ) ,0 0 1 1 2 2
1

4

1

2

 Examples  1.1
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[Here 1/2 should not be taken (why?)]. f ( 1) is not 

defined because 1  A.

5. A � and f A: �  is defined by f x x( ) . Thus

f f f

f f

( ) , ( ) , ( )

,

0 0 1 1 1 1 1

1

2

1

2

1

2

1

2

1

2
  

DEFINITION 1.4  Constant Function If A �  and k �  then f A: �  defined by f (x)  k for every x  A is 

called constant function.

In the following definition we introduce operations on the set of real-valued functions defined on a common domain, 

a subset of real numbers.

DEFINITION 1.5  Suppose A �, f and g are two real-valued functions defined on A with values in �. Then we 

define the sum f  g, the product f g, the quotient f g f/  ,  and [ f ] ([ ] is integral part) as 

 follows:

1. ( f  g)(x)  f (x)  g (x)  x  A.

2. ( )( ) ( ) ( ) .f g x f x g x x A

3.  if
f
g

x
f x
g x

g x x A( )
( )

( )
( ) .0

4. f x f x x A( ) ( ) .

5. [ f ](x)  [f (x)]   x  A.

Also for any positive integer n, we have

6. f n(x)  ( f (x))n  x  A.

7. If � and f (x)  0   x  A, then f  (x)  ( f (x))   x  A.

If f : A  A and g : A  A, then both g f�  and f g�  are defined, but still f g�  and g f�  may not be equal func-

tions.

QUICK LOOK 2

DEFINITION 1.6  Composite Function Suppose A, B and C are non-empty subsets of �, f A B:  and  

g : B  C are functions, then we define the function g f A C� :  as

( )( ) ( ( ))g f x g f x x A�

g f�  is called composite function of g and f. Note that g f�  may be defined but f g�  may not 

be defined.

1. If k is a constant, then (kf )(x)  kf (x)  x  A. 2.
 

1 1
0

f
x

f x
x A f x x A( )

( )
, ( ) .if

QUICK LOOK 1

Let A � and f (x)  x2 and g(x)  2x for all x  A. Then

1. ( f  g)(x)  f (x)  g(x)  x2  2x

2. ( )( ) ( ) ( ) ( )f g x f x g x x x x2 32 2

3.  
f
g

x
f x
g x

x
x( )

( )

( ) 2
� and x  0. Here we take 

A � { }.0

 Examples  1.2

 1.1 Functions: Varieties
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Note: Suppose A � and f A: � is a function. Then the functions f f f n, [ ],  and f  can be realized as composite 

functions by taking g :� �  as g x x g x x g x xn( ) , ( ) [ ], ( )  (where n is a positive integer) and g(x)  x  (  is real), 

respectively.  That is

1. If g x x( ) ,  then

( )( ) ( ( )) ( ) ( )g f x g f x f x f x�

2. If g(x)  [x], then

( )( ) ( ( )) [ ( )] [ ]( )g f x g f x f x f x�

3. If g(x)  xn, then

( )( ) ( ( )) ( ( )) ( )g f x g f x f x f xn n�

4. If g(x)  x , then

( )( ) ( ( )) ( )g f x f x f x�

DEFINITION 1.7  Identity Function Let A � and A be non-empty. The function f : A  A defined by  

f (x)  x  x  A is called the identity function on A. Sometimes, it is denoted by IA.  That is, 

IA(x)  x  x  A.

THEOREM 1.1   Suppose A, B, C and D are non-empty subsets of �  and f : A  B, g : B  C and h : C  D are 

functions. Then ( ) ( ).h g f h g f� � � �

P R O O F   First of all, observe that both ( )h g f� �  and h g f� �( )  are functions from A to D. Further, for x  A,

(( ) )( ) ( )( ( ))

( ( ( ))

(( )( ))

( ( ))(

h g f x h g f x

h g f x

h g f x

h g f x

� � �

�

� � ))

Note: Theorem 1.1 is given as Theorem 1.27 (Try it out) in Chapter 1 (Vol. 1) on p. 41. The proof also runs on the same 

lines as above.

1.2 Functions and Their Inverse

In this section, we once again recall from Vol. 1 (Algebra) the notions of one-one, onto and bijective functions. Further 

we introduce the concept of the inverse of a bijective function and their properties.

DEFINITION 1.8 Let A and B be two non-empty subsets of �.  Let f : A  B be a function. Then

1. f is said to be one-one function if x, y  A, x  y  f (x)  f (y).

4. f x f x x x( ) ( ) 2 2

5. [ f ](x)  [ f (x)]. We can observe that

[ f ](1/2)  [ f (1/2)]  [1/4]  0

In fact

(a) [ f ](x)  0  x  ( 1, 1)

(b) [ f ](2.1)  [ f (2.1)]  [(2.1)2]  4.

6. (a) ( )( ) ( ( )) ( )g f x g f x g x x� 2 22

(b) ( )( ) ( ( )) ( )f g x f g x f x x� 2 4 2

We observe that f g g f� � .

(ASSOCIATIVE 
LAW FOR  

COMPOSIT ION 
OF FUNCTION)



2. f is said to be onto if y  B   x  A  f (x)  y.

3. If f is both one-one and onto, then we say that f is a bijection.

 1.2 Functions and Their Inverse 17

DEFINITION 1.9  Inverse of a Function Suppose f : A  B is a bijection. Define g : B  A by g(b)  a, where 

f (a)  b. Then g is called the inverse function of f and is denoted by f 1.

If f : A  B is a function and range of f  C such that C  B, then f : A  C is onto.

QUICK LOOK 3

Let A B �. Define f : A  B by

f (x)  x  1

Then clearly f is a bijection and also f  1(y)  y  1 is the 

inverse function of f since

f 1 (x  1)  (x  1) 1  x  x  A

 Example  1.4

DEFINITION 1.10  Restriction of a Function Let f : A  B be a function and C be a non-empty subset of A. Define 

g : C  B by g(c)  f (c) for all x  C.  Then g is called restriction of f to C and is denoted by f C .

1.  If f : A  B is a bijection, then f 1: B  A is also a 

bijection and f f I f f IA B
1 1� �, . 

2.  If f : A  A is a bijection, then f f� 1 f f IA�1 .

QUICK LOOK 4

 Examples  1.3

1.  Let A  B  [0, ) (i.e., the set of all non-negative 

 reals). The function f defined by

f x
x

x
( )

1

for every x  A is one-one but not onto [since f (x)  

f (y)  x  y and 1  B, but there is no x  A such that 

f (x)  1].

2.  Let A �  and B  [0, ). Then the function f defined 

by f x x( )  is onto but not one-one, since

y B y y f y( )  

and f x f x y x A( ) ( )

3.  Let A B �. Then the function f defined by f (x)  

2x is a bijection.

4. Let A �  and B �. Define f : A  B by

f x
x

x
( )

0

1

if  is a rational number

if  is an irrational numbeer

Then f is neither one-one nor onto.

1.   Let f :  � [ , )0  be defined by f x x x( ) �  and 

let C  [0, ). Then clearly C � and f CC : [ , )0  

is given by

( )( ) ( ) ( )f x f x x x x C xC ∵ 0

2.   Let f : [ , )� 0  be defined by f (x)  x2. Take C   

[0, ). Then

( )( ) ( )f x f x x x CC
2

Notice that f C is a bijection where f is not one-one 

so that f is not a bijection. Also if C  ( , 0], then f C 

is a bijection.

3.   Let f :� [ , )0  be defined by f x x x( ) | | �. 

If C  [0, ) and D  ( , 0], then

 Examples  1.5
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Note: Even though a function f : A  B may not be a bijection, sometimes f is restricted to a suitable subset of A so 

that f restricted to that subset has inverse function from the range of f to the restricted domain. The following is an 

illustration of this.

1.   Let f B:� [ , )0  be a mapping defined by 

f x x( ) . Clearly f is not a bijection. If A  B  [0, ) 

then f A  is a bijection and the inverse of f A is given 

by

( ) ( ) ( )f x f x x x AA
1 1

2.  Let f :� �  be a function defined by f (x)  sin x so 

that range of f is [ 1, 1]. If A  [ /2, /2], then f A is 

a bijection from A to [ 1, 1] and f A
 has inverse func-

tion from [ 1, 1] to A. This inverse function is denoted 

by Sin 1 (see Chapter 2, Vol. 2).

3.   Let f :  � [ , )0  be defined by f (x)  x2. Taking A  

[0, ), we have f A is a bijection on A and

( ) ( ) ( )f x f x x x AA
1 1

 Examples  1.6

1.3 Even and Odd Functions, Periodic Functions

Let f : � �  defined by f (x)  x2, then we can observe f x f x x( ) ( ) .�  Functions satisfying this property are called 

even functions. Functions satisfying the property f ( x)  f (x), for example f (x)  x3, are called odd functions. Functions 

satisfying the property f (x  T)  f (x) whenever x and x  T are in the domain of f and T  0 are called periodic functions. 
In this section, we give precise definitions of these and state some of their properties. Let us begin with the following.

DEFINITION 1.11  Symmetric Set Let X be a non-empty subset of �. Then X is called symmetric set if

x  X  x  X

1.  �  is a symmetric set.

2.  [ 1, 1] is a symmetric set.

3.  The set 	  of rational numbers and the set �  of all 

integers are symmetric sets.

4.  [0, 1] is not a symmetric set.

5.  { 1, 0, 1} is a symmetric set.

 Examples  1.7

Note: The real number 0 need not belong to a symmetric set. For example, the set { 1, 1} is a symmetric set without 0 

and [ 1, 0)  (0, 1] is a symmetric set not containing the element 0.

DEFINITION 1.12  Even Function Let X be a symmetric set and f X: �  be a function. If f ( x)  f (x)  x  X, 

then f is called an even function.

DEFINITION 1.13  Odd Function If X is a symmetric set, then f X: �  is called an odd function if f ( x)  

f (x) for all x  X.

1.   f :� � defined by f x x( )  is an even function 

because x x x �.

2.   f (x)  x2 is an even function from �  to  �  because 

( ) .x x x2 2 �

3.   f :� �  defined by f (x)  cos x is an even function, 

because cos( x)  cos x.

 Examples  1.8

( )( )f x x x x CC

and ( )( )f x x x DD

Observe that f C and f D are bijections but f is not.
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Note: If X is a symmetric set having the element 0 and f X: �  is an odd function, then f (0) is necessarily zero, 

because

f (0)  f ( 0)  f (0)

In part (3) of the example above, the set X  [ 2, 1]  [1, 2] does not contain 0, so f (0) cannot exist.

The statements stated in the following theorem can be easily verified [see pp. 56, 57 of Chapter 1, Vol. 1  

(Algebra)].

THEOREM 1.2  Let X be a symmetric set and f and g be functions from X into �. Then

1. If both f and g are even (both are odd), then so is f  g.

2. If both f and g are even (both are odd), then fg is even.

3.  If one of f and g is even and the other is odd, then fg is odd.

4.  f is even if and only if  f is even for any non-zero real .

5.  f is odd if and only if  f is odd for any non-zero real .

6.  f is even (odd) if and only if f is even (odd).

7.  If f X: �  is any function, then the function

g x
f x f x

( )
( ) ( )

2
is even

h x
f x f x

( )
( ) ( )

2
is odd

and f (x)  g(x)  h(x)

Here g(x) is called even part of f and h(x) is called odd part of f (x). Further g (x) and h(x) are 

unique.

1.   f :� �  defined by f (x)  x3 is an odd function 

 because ( ) .x x x3 3 �
2.   f :� �  defined by f (x)  sin x is an odd function 

because sin( x)  sin x.

3.   Let X  [ 2, 1]  [1, 2] and define f X: �  as f (x)  

x3 so that f is an odd function.

 Examples  1.9

DEFINITION 1.14  Periodic Function Let A be a non-empty subset of �.  If there exists a positive number p 

such that f (x  p)  f (x) whenever x and x  p belong to A, then f is called a periodic function 

and p is called a period of f. The smallest period (if it exists) is called the period of f.

Note:

1.  A function can be periodic without smallest period. For example, f :� �  defined by f x k x( ) �  is a peri-

odic function, but it has no smallest period.

2. If p is a period of a function f, then np is also a period of f where n is any positive integer.

1.   sin x and cos x are periodic functions with 2  as the 

smallest period. The functions tan x and cot x are peri-

odic functions with smallest period . For proofs refer 

to Chapter 1 of Vol. 2.

2.   Let f :� � be defined by f (x)  x  [x]. Then

f (x  1)  (x  1)  [x  1] 

 (x  1  ([x]  1)

 x x f x x[ ] ( ) �

 Examples  1.10

 1.3 Even and Odd Functions, Periodic Functions
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DEFINITION 1.16  Step Function Suppose f a b:  [ , ] �  is a function. Further suppose that a a a0 1   
a a a bn n2 1 .  If there exist constants k1, k2, …, kn such that ki 1  ki for i  2, 

3, …, n and f (x)  ki for x  [ai 1, ai] for i  1, 2, …, n, then f is called the step function on  

[a, b] with steps k1, k2, …, kn.

We observe that a step function assumes only finite number of values, that is range of a step function is a finite set.

[See (3) of Theorem 0.10] so that 1 is a period of f and 

1 is the smallest period of f (verify).

3.  Define f :� �  by

f n
n

n
( )

1

2

if  is odd

if  is even

If n is even, then n  2 is also even so that f (n  2)  1 

 f (n). If n is odd, then n  2 is also odd and therefore 

f (n  2)  2  f (n). Hence, in either case f (n  2)  f (n) 

for all n �. Therefore, 2 is the period of f.

THEOREM 1.3   Let n  1 be an integer. If m is any integer, there exists an integer K and a non-negative integer r 

such that m  Kn  r, r  {0, 1, 2, …, (n  1)}.(EUCLID’S 
ALGORITHM)

One can observe that when m is divided by n, K is the quotient and r is the remainder. The following is the finest 
 example of a periodic function.

DEFINITION 1.15  Congruence Function Let n  1 be an integer. Define f :� �  by f (m)  r for m � and 

r is the remainder when m is divided by n. Then for any m �,

f m n f Kn r n

f K n r

r r n

f m

( ) (( ) )

(( ) )

( )

( )

1

0 1∵

Thus, f (m  n)  f (m). Therefore, n is the period of f. The function f is denoted by �( )n  so that 

�( )( )n m r, where r is the remainder when m is divided by n. We call this function as congru-
ence function with index n. For example

�( )
( )

m

m

m
2 0

1

if is even

if is odd

is a congruence function with index 2.

Try it out If p1, p2 are periods of f1(x) and f2(x), respectively, and there exist positive integers m and n such that 

mp1  np2  p, then p is a period of af1(x)  bf2(x) for all non-zero constants a and b.

1.  Suppose f : [ , ]0 1 � is such that

f x

x

x

x

( )

/ /

/

1 2 0 1 2

1 1 2 1

0 1

if 

if 

if 

Here a  0, b  1 and a0  0, a1  1/2, a2  1, k1  1/2, 

k2  1.

2.  Suppose f : [ , ]1 1 � is defined by

f x

x

x

x

x

( )

[ , / )

[ / , )

[ , / )

[ /

1 1 1 2

2 1 2 0

0 0 3 4

1 3 4

if 

if 

if 

if ,, )1

3 1if x

 Examples  1.11
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Note: The function f : [ , ]0 1 �  defined by

f x
x

x
( )

1

0

if is rational

if is irrational

is not a step function, even though f assumes finite number of values. There are many functions that are not step  

functions.

1.4 Graphs of Functions

The concept of function is introduced where the domains and codomains may be any sets. However, for calculus we 

consider those functions (real-valued functions) where the domain and codomain both are non-empty subsets of �. 

In the category of real-valued functions, in this section we introduce the idea of graph of a function which is helpful in 

studying some vital clues of the function. In this pursuit, we consider a plane in which we set up x-axis and y-axis; this 

plane is called the xy-plane.

DEFINITION 1.17  Graph of a Function Let S be a non-empty subset of �  and f S: � a function. Then 

f x f x x S{( , ( )) | }  can be regarded as a set of points on the xy-plane, with x as x-coordinate 

and f (x) as y-coordinate. Keeping this in mind, in general, it is possible to plot the set of points 

{( , ( )) | }x f x x S  on the xy-plane. The resultant figure on the xy-plane is called the graph of f.

For almost all functions we have discussed, we can plot their graphs.

Then f is a step function with steps 1, 2, 0, 1. Here  

a  1, b  1, a0  1, a1  1/2, a2  0, a3  3/4, a4  1 with 

k1  1, k2  2, k3  0, k4  1.

3.  Define f : [ , ]2 1 � by

f x
x

( )
[ , )1 1 0

0

if 

otherwise

Then f is a step function with steps 0, 1, 0 and a  2,  

b  1, a0  2, a1  1, a2  0, a3  1 and k1  0, k2  1,  

k3  0. This is so because explicitly

f x

x

x

x

( )

[ , )

[ , )

[ , ]

0 2 1

1 1 0

0 0 1

if 

if

if

Try it out If a  b are integers, then the function f a b: [ , ] �  defined by

f (x)  [x]

where [x] denotes integral part of x, is a step function.

Let f :� �  be defined by f x x x( ) .�  Draw its 

graph.

Solution: The graph of f x x x{( , ) | } �  is shown in 

Fig. 1.1.

x

y

(x, x)

O

45°

y =
 x

FIGURE 1.1 Example 1.1.

 Example  1.1

 1.4 Graphs of Functions
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Let f :� �  be defined by f x x( ) . Draw its graph.

Solution: The graph of f x x x{( , ) | }�  is shown in 

Fig 1.2.

 Example  1.2

FIGURE 1.2 Example 1.2.

x

y

(x, x)
(x, -x)

O

45°

45°
y =

 x

Let f :� �  be defined by f x x x( ) 2 �. Draw its 

graph.

Solution: The graph is shown in Fig. 1.3.

 Example  1.3

FIGURE 1.3 Example 1.3.

x

y

(x, 2x)

O

y 
= 

2x

Define f : [ , ]2 1 �  by

f x

x

x

x

( )

[ , )

[ , )

[ , ]

0 2 1

1 1 0

0 0 1

if 

if 

if 

Draw its graph.

Solution: The graph is shown in Fig. 1.4 by colored line  

segments.

 Example  1.4

FIGURE 1.4 Example 1.4.

xO 1

(0, 1)
(−1, 1)

−2 −1

y

It may be observed that there are functions for which drawing a graph is not possible. The following example shows 

such a function.
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Let the function f : [ , ]0 1 � be defined by

f x
x

x
( )

1

0

if is rational

if is irrational

Draw its graph.

Solution: We know that in between any two real 

numbers, there exist rational numbers as well as irrational 

numbers. This property is called density property (see 

Theorems 0.14 and 0.17). The graph of f, if forcibly 

drawn, will look like two straight line segments as shown 

in Fig. 1.5.

 Example  1.5

FIGURE 1.5 Example 1.5.

y

x

1

1

(1, 1)

O

Note:

1.  Observe that a graph may not give rise to a function. For example, look at the graph of Fig. 1.6 which shows that 

(1/2, a) and (1/2, b) are points on the graph. Since a  b, 1/2 has two images.

FIGURE 1.6

O x

y

a

1
2

b

2.  If f a b: [ , ] � is a function, then for any x  [a, b], the line through x, drawn parallel to y-axis, meets the graph at 

exactly one point as shown in Fig. 1.7.

FIGURE 1.7

xaO b x

y

1.5 Construction of Graphs and Transforming Theorem

In this section, we illustrate the process of drawing graphs of functions of the form y   f (ax  b)  , where , , a 

and b are some real numbers from the graph of the given function y  f (x). Suppose f a b: [ , ] �  is a function. Then 

the set of points on the graph of f are given by

 1.5 Construction of Graphs and Transforming Theorem
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{( , ( )) | [ , ]}x f x x a b

In other words, if we write y  f (x), then the graph of f is the set of points

{( , ) | ( ), [ , ]}x y y f x x a b

1.5.1 Transformation of y-Coordinate by a Constant

Suppose k �  and the function f  is changed or transformed to f (x)  k. That is, now we have a new function g a b: [ , ] � 

defined by

g (x)  f (x)  k  x  [a, b]

By this transformation, the graph of f is transformed to the set of points

{( , ( )) | [ , ]} {( , ( ) ) | [ , ]}

{( , ) | ( ),

x g x x a b x f x k x a b

x y k y f x x [[ , ]}a b 

In other words, the point (x, y) on the graph of y  f (x) is changed to (x, y  k) [see Fig. 1.8(a)]. Hence the graph of f 
and the transformed graph of f (i.e., the graph of g) look like as shown in Fig. 1.8(b). This is a simple transformation 

where the y-coordinate y is changed to y  k.

FIGURE 1.8

(a)

O

y

a x b

(x, y )

(x, y  + k)

x

(b)

O

y

a x b

(x, y )

y = f (x)

y = f (x) + k
(x, y  + k)

x

For the function f (x)  x for 0  x  4 draw the graph 

and the transformed graph. Assume k  3.

Solution: The graph of y  f (x)  x and the trans formed 

graph of f are shown in Fig. 1.9.

 Example  1.6

FIGURE 1.9 Example 1.6.

4

y

3

2

1

1O

45°
2 3 4 x

y = x

y = x  + 3
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1.5.2 Transformation of the x-Coordinate by a Constant

In this subsection we will discuss how to draw the graph of y  f (x  k) from the graph of y  f (x). Here the x-coordinate 

is transformed by a constant k. That is the point (x, f (x)) is transformed to the point (x, f (x  k)). See the graphs of y  

f (x) and y  f (x  k) in general [Fig. 1.11(a)] and in particular y  x2 and y  (x  1)2 [Fig. 1.11(b)].

Let y xx2 , .�  Define y  2x  1. Draw the graph and 

the transformed graph.

Solution: Shift the graph of y  2x by 1 unit parallel to 

the existing graph. This yields the graph of y  2x  1 (see 

Fig. 1.10).

 Example  1.7

2
y = 2x

y = 2x + 1

1

1 x

y

O

FIGURE 1.10 Example 1.7.

FIGURE 1.11 (a) Graph of y = f (x) and y = f (x + k); (b) graph of y = x2 and y = (x + 1)2.

(a) (b)

O

y

xx

(x + k, f (x  + k))

(x, f (x  + k))
y = f (x  + k)

y = f (x )

(x, f (x))

x  + k

y

x

(1, 4)

(1, 1)

1 2O

1

2

3

4

y = (x  + 1)2

y = x 2

FIGURE 1.12 (a), (b), (c) illustrate points (1), (2) and (3) above.

(a) (b) (c)

y = 2 f (x)

y = f (x)

y =     f (x)1
2

O

y

x

y = −f (x)

O

y = f (x)

y

x

y = 2xy = −2x
y = xy = −x

O

y

x

y = x1
2

y = − x1
2

1.5.3 Construction of y  k f (x) from y  f (x) where k ≠ 0 is a Constant

In this we have k  1, 0  k  1 and k  0. The point (x, f (x)) will be transformed to (x, kf (x)).

1. If k  1, the graph of y  kf (x) is an expansion of y  f (x) [Fig. 1.12(a)].

2. If 0  k  1, then the graph is a contraction [Fig. 1.12(b)].

3. If k  0, then the graph of y  kf (x) is the reflection of y  kf (x) [Fig. 1.12(c)].

 1.5 Construction of Graphs and Transforming Theorem
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Note: The essence of the transformation of the graph is the point (x, f (x)) which is transformed to the point (x, g (x)) 

where g (x) is a transformation of f (x) such as

    g(x)  f (x)  k

    g(x)  f (x  k)

g(x)  kf (x)

and g(x)  f (kx)

1.6 Limit of a Function

In this section, we introduce the concept of a function which is the root for the entire development of calculus (in gen-

eral, for Mathematical Analysis), the concepts of left and right limits of a function, graphical meaning of the limit and 

discuss limits of some standard functions. Further, we assume the limits of some functions whose proofs are beyond 

the scope of this book. First, let us begin with the concept of an interior point of an interval and neighbourhood of a 

point on the real line �.

DEFINITION 1.18  Interior Point If [a, b] is a closed interval and a  c  b, then c is called an interior point of 

the interval [a, b].

DEFINITION 1.19  Neighbourhood Let c be an interior point of a closed interval [a, b] and   min{c  a, b  c} so 

that (c  , c   )  (a, b). If 0    , then the interval (c  , c  ) is called - neighbourhood 

of c. The intervals (c  , c) and (c, c  ) are called left and right -neighbourhoods, respec-

tively, of c.

DEFINITION 1.20  Limit Let c be an interior point of [a, b] and f a real-valued function defined on [a, b] (pos-

sibly except at c). Let l be a real number. If to each   0, there corresponds a small positive 

number  such that (c  , c  )  (a, b) and f x l( )  (equivalently l    f (x)  l   ) 

for all x  (c  , c  ) and x  c then we say that f (x) tends to l as x tends c. In this case we 

write

f (x)  l as x  c or lim ( )
x c

f x l or Lt
x c

f x l( )

DEFINITION 1.21  Right Limit Suppose a  c  b and f is a real-valued function defined on (a, b) (possibly 

except at c). Suppose there exists a real number l such that to each   0 there corresponds a 

  0 such that (c, c  )  (a, b) and f x l( )  for all x  (c, c  ). Then we say that limit 

of f as x approaches c from the right side is l. In this case we write

lim ( ) ( )
x c x c

f x l f x l
0 0

or Lt

Draw the graph of y = f (kx).

Solution: The graph of y  f (kx) can be obtained  

from y  f (x) by contraction towards the y-axis when  

k  0 and  expansion from the y-axis when 0  k  1. 

That is, k-fold contraction (k  1) and (1/k)-fold 

expansion (0  k  1) (see Fig. 1.13).

 Example  1.8

FIGURE 1.13 Example 1.8.

y

O
x

y = x2

y = 2x2=

y = 4x2= (2x)2

2x)2)
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DEFINITION 1.22  Left Limit Suppose a  c  b and f is a real-valued function defined on (a, b) (possibly  except 

at c). Suppose there exists a real number l such that to each   0, there corresponds a   0 

such that (c  , c)  (a, b) and f x l x c c( ) ( , ). Then we say that f  approaches l 
from the left of c and we write

lim ( ) ( )
x c x c

f x l f x l
0 0

or Lt

The concept of limit can be explained lucidly using the graph of the function (see Fig. 1.14). Given a neighbour-

hood N (l)  (l  , l  ) of l, there exists a neighbourhood N  (c)  (c  , c  ) such that the rectangle formed 

by the two vertical lines at c  , c   and the horizontal lines drawn at l , l   contain some part of the graph 

of y  f (x).

FIGURE 1.14

There exists Nd (c)

Given Ne (l )

y
y = f (x)

x
c O c + dc − d

l 
l − e

l + e

Suppose

f x
x x

x
( )

[ , ]2 1 1 0

0 0

 and 

 if 

Calculate its limit at O.

Solution: See Fig. 1.16. Suppose   0 and   Min{ , 1}. 

Then (0  , 0  )  ( 1, 1). Take l  2 and c  0. Now, 

 Example  1.10

Let f : [ , ]0 1 �  be defined by f (x)  x  x  [0, 1].  

Take c  1/2 and l  1/2. Calculate its limit.

Solution: See Fig. 1.15. Let   0. Choose   Min{ , 1/2} 

so that

1

2

1

2
0 1, ( , )

Further,

x x
1

2

1

2

1

2
, and

f x x( ) ( )
1

2

1

2
by the choice of

f x( )
1

2

Therefore

f x x( )
1

2

1

2
as

or lim ( )
/x

f x
1 2

1

2

 Example  1.9

FIGURE 1.15 Example 1.9.

1
(1,1)

O

y =
 x

1
2

1
2

1
2 +d 1

2 −d 

(1/2) − e

(1/2) + e

 1.6 Limit of a Function
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x  (0  ,  0  ) and x  0 implies

f x( ) 2 2 2

0

Hence f (x)  2 as x  0.

FIGURE 1.16 Example 1.10.

2(−1, 2)

−1 O−d d

(1, 2)

x 1

Obtain the limit for f (x)  k  x  [a, b].

Solution: Let a  c  b. Let   0 and take   Min{ , 

c  a, b  c}. Then

(c  , c  )  (a, b)

and f x k k k x c c( ) ( , )0

Hence,

lim ( )
x c

f x k

 Example  1.11

Let f : [ , ]1 1 �  be defined by

f x
x x

x
( )

if 

if 

0

1 0

Obtain the left and right limits.

Solution: See Fig. 1.17.

1.   Take c  0 and l  0. Let 0    1/2 and   . Then  

(c  , 0)  ( 1, 1) (since 1  1/2  0) and x  ( ,  0). 

This implies

f x l x x x( ) 0

Therefore, the left limit of f at 0 is 0 or lim ( ) .
x

f x
0 0

0

FIGURE 1.17 Example 1.13.

y

x

(1, 1)(−1, 1)

−1 O

1

45°
1

 Example  1.13

Obtain the limit for f (x)  x2  x  [ 1, 1] as x  0 and 

x  0.

Solution: Take c  0 and l  0. Suppose   0.  Let

Min{ , / }1 2

so that 0    1/2 and 0 .  Then x  (0  , 

0  ) implies

f x x x( ) ( )0 2 2 2 2

Therefore lim ( )
x

f x
0

0  or equivalently x2  0 as x  0.

 Example  1.12 
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The following example illustrates that for a function neither of the left and right limit exist nor the limits exist at a point.

2.  Take c  0 and l  1. Let 0    1/2 and   . Then

(0, c  )  (0, )  ( 1, 1)

and x  (0, c  )

This implies

| ( ) | | |f x l 1 1 0

[since f (x)  1]. Therefore the right limit of f at 0 is 1 or 

lim ( ) .
x

f x
0 0

1

Using the function given in Example 1.13, show that 

lim ( )
x

f x
0

 does not exist.

Solution: Suppose the limit exists and lim ( ) ,
x

f x L
0

 

say. Then by definition, to   1/2, there corresponds   0  

such that

x f x L( , ) | ( ) | /0 0 1 2

Hence

x f x L x L x L( , ) | ( ) | | | | | /0 1 2

 1/2  x  L  1/2

 x  1/2  L

0 0sup { | ( , )}x x

 
1

2

1

2
L L  (1.1)

Again

y f y L( , ) ( ) /0 1 2

 

| | [ ( ) ]1
1

2
1

1

2
1

1

2

1

2

L f y

L

L

∵

   

 

(1.2)

From Eqs. (1.1) and (1.2) we have 1/2  L  1/2 which is a 

contradiction. This contradiction arose due to our suppo-

sition that lim ( )
x

f x
0

 exists. Hence lim ( )
x

f x
0

 does not exist.

 Example  1.14

Let f : [ , ]0 1 �  be defined by

f x
x

x
( )

1

0

if is rational

if is irrational

Show that the limit does not exist.

Solution: If possible, assume that, lim ( )
x

f x
0 0

 exists 

and is equal to L. Then to   1/4, there corresponds   0 

such that (0, )  [0, 1] and

x f x L( , ) ( )0
1

4

According to Theorems 0.14 and 0.17 [part (2)] both 

 rational and irrational numbers exist in the interval  

(0, ). Hence, for rational number x  (0, ) we have

f x L( )
1

4

1
1

4

1

4
1

1

4

L

L

 
3

4
L  (1.3)

Again, irrational number x  (0, ) implies

f x L

L f x

( )

[ ( ) ]

1

4

0
1

4
0∵

1

4

1

4
L

 L
1

4
 (1.4)

From Eqs. (1.3) and (1.4) we have 3/4  L  1/4 which is a 

contradiction. Therefore, lim ( )
x

f x
0 0

 does not exist.

 Example  1.15

 1.6 Limit of a Function
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In a similar way as shown in Example 1.15 we can prove that lim ( )
x

f x
0 0

 and lim ( )
x

f x
0

 do not exist. In fact, lim ( ),
x c

f x
0

 

lim ( )
x c

f x
0

 and lim ( )
x c

f x  do not exist for any c  (0, 1).

THEOREM 1.4   Let c  (a, b) and f be a real-valued function defined on [a, b] (possibly except at c). Suppose 

lim ( )
x c

f x l and lim ( ) .
x c

f x L  Then l L. In other words, at the point c  (a, b), lim ( )
x c

f x  is unique, 

if it exists.

PROOF  Let   0 .  Then by definition, there exist 1  0 and 2  0 such that (c  1, c  1)  (a, b) and  

(c  2, c  2)  (a, b). Therefore

x c c f x l( , ) | ( ) |1 1
2

and x c c f x L( , ) | ( ) |2 2
2

Now, let   Min{ 1, 2} so that x  (c  , c  ).  This implies x  both (c  1, c  1) and (c  2, 

c  2). Therefore x  (c  , c  ) implies

| | | ( ) ( ) |

( ) ( )

l L f x L f x l

f x l f x L

2 2

That is, | |l L  for all   0. Therefore | |l L 0 or l  L.

(U N I Q U E N E S S 
OF THE LIMIT)

Note: In a similar way we can show that

1. lim ( )
x c

f x
0

 is unique (if it exists) where a  c  b.

2. lim ( )
x c

f x
0

 is unique (if it exists) where a  c  b.

The following theorem gives the relation between left limit, right limit and limit of a function at a point.

THEOREM 1.5  Suppose a  c  b and f : [ , ]a b �  is defined except possibly c. Then,

1.  If lim ( )
x c

f x  exists and is equal to l, then both lim ( )
x c

f x
0

 and lim ( )
x c

f x
0

 exist and are equal to l.

2.  Conversely,  if both lim ( )
x c

f x
0

 and lim ( )
x c

f x  exist and are equal to l say, then lim ( )
x c

f x  exists 

and is equal to l.

PROOF 1. Suppose lim ( )
x c

f x  exists and is equal to l. Then, to   0 there exists   0 such that

(c  , c  )  (a, b)

and | ( ) | ( , ),f x l x c c x c

Hence (c  , c)  (a, b) and x  (c  , c) implies

 | ( ) |f x l  (1.5)

and (c, c  )  (a, b) and x  (c, c  ) implies

 | ( ) |f x l  (1.6)
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Equations (1.5) and (1.6) show that lim ( )
x c

f x
0

 exists and is equal to l and also that lim ( )
x c

f x
0

 

 exists and is equal to l.
Conversely,  suppose lim ( )

x c
f x

0
 exists and is equal to l and lim ( )

x c
f x

0
 exists and is equal to l. 

Let   0. Then there exists 1  0 and 2  0 such that

( , ) ( , ) | ( ) | ( , )c c a b f x l x c c1 1

and ( , ) ( , ) | ( ) | ( , )c c a b f x l x c c2 2

Let   Min{ 1, 2}. Hence

c x c c a b

f x l x c c

( , ) ( , )

| ( ) | ( , )

Therefore lim ( )
x c

f x l.

COROLLARY 1.1  Suppose a  c  b and f is a real-valued function defined on [a, b] (except possibly at c). If lim ( )
x c

f x  

exists then f is bounded on some neighbourhood of c.

PROOF  Suppose lim ( )
x c

f x  exists and is equal to l, say. Therefore to each   0, there corresponds a   0 

such that (c  , c  )  (a, b) and | ( ) |f x l  for all x c c( , ) and x  c. In particular, to 

  1, there exists   0 such that x  (c  , c  ) and x  c implies

| ( ) | ( , )f x l x c c1

possibly except at x  c. If f (c) is not defined we take M l(| | )1  and if f (c) is defined, then we 

take

M f c lMax ( ) , 1

In any case x  (c  , c  ) implies

| ( ) | | | | ( ) |

| ( ) | | |

f x l f x l

f x l M

1

1

Therefore, according to Definition 0.3, f is bounded on (c  , c  ).

Note: In Corollary 1.1, [a, b] can replaced by any non-empty subset A of � .

In the following theorems, we discuss about the limits of sum, product and quotient of real-valued functions having 

limits at a point.

THEOREM 1.6   Suppose a  c  b and f a b g a b: [ , ] , : [ , ]� �  are defined (except possibly at c). Let lim ( )
x c

f x L 

and lim ( )
x c

g x M . Then lim( )( )
x c

f g x  exists and is equal to L M. Converse need not be true.

PROOF  Let   0. Then by hypothesis, 1  0  (c  1, c  1)  (a, b), x  (c  , c  1) and x  c. This 

implies

 | ( ) |f x L
2

 (1.7)

where   |L|  |M|  1. Also 2  0  (c  2, c  2)  (a, b) and x  (c  2, c  2), x  c. This 

 implies

 | ( ) |f x M
2

 (1.8)

 1.6 Limit of a Function



32 Chapter 1   Functions, Limits, Continuity, Sequences and Series

Let   Min{ 1, 2}. Then from Eqs. (1.7) and (1.8), (c  , c  )  (a, b), x  (c  , c  ) and x  c. 

These imply

| ( )( ) ( ) | | ( ) ( ) |

| ( ) | | ( ) |

f g x L M f x g x L M

f x L g x M

2 2

Therefore

lim( )( )
x c

f g x L M

We now show that the converse is not true. Consider the functions f g, : [ , ]0 1 �  defined by

and

 

f x
x

x

g x
x

( )

( )

1

1

1

1

if is rational

if is irrational

if rational

iif is irrationalx

so that ( f  g)(x)  0  x [0, 1] and hence for c (0, 1),

lim( )( )
x c

f g x 0

However, neither lim ( )
x c

f x  nor lim ( )
x c

g x exist.

Note: Replacing g by g, we have that lim( )( ) .
x c

f g x L M

THEOREM 1.7   Suppose a  c  b and f a b: [ , ] �, g a b: [ , ] �  are defined except possibly at c. If lim ( )
x c

f x L 

and lim ( ) ,
x c

g x M  then lim( )( )
x c

f g x  exists and is equal to LM.

PROOF  Let   0. Then there correspond 1  0 and 2  0 such that (c  1, c  1)  (a, b), x  (c  1,  

c  1) and x  c. This implies

 | ( ) |f x L
2

 (1.9)

where | | | |L M 1. Also x  (c  2, c  2) and x  c implies

 | ( ) |g x M
2

 (1.10)

Now x  (c  , c  ) and x  c implies [using Eqs. (1.9) and (1.10)]

 

| ( )( ) | | ( ) ( ) |

| ( ( ) ) ( ) ( ( ) ) |

| ( )

f g x LM f x g x LM

f x L g x L g x M

f x L g x L g x M

g x L

|| ( ) | | || ( ) |

| ( ) | | |
2 2

 

(1.11)

Therefore, for x  (c  , c  ),  x  c and from Eq. (1.10) we have

| ( ) | | | | ( ) |g x M g x M
2
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so that

| ( ) | | | | |g x M M
2

1

Now, from Eq. (1.11) we have x  (c  , c  ), x   c which implies

| ( )( ) | | ( ) | | |

(| | | |)

( | |

f g x LM g x L

M L

L

2 2

2
1

2
∵ || | )M 1

Thus, given a positive number , there exists   0 such that x  (c  , c  )  (a, b) and x   

(c  , c  ), x  c which implies

| ( )( ) |f g x LM

Hence, lim( )( )
x c

f g x  exists and is equal to LM.

THEOREM 1.8   Suppose a  c  b and g a b: [ , ] �  is defined except possibly at c. Let lim ( )
x c

g x  exists and be non-

zero. Then, there exists   0 such that (c  , c  )  (a, b) and

x  (c  , c  ), x  c  g(x)  0

PROOF  Let M g x
x c
lim ( )  so that by hypothesis M  0. Without loss of generality, we may suppose that 

M  0. Let 0    M (if M  0, then we consider M ). Then by hypothesis, there exists   0 such 

that (c  , c  )  (a, b) and x  (c  , c  ), x  c which implies

| ( ) |g x M

   g(x) M  

 M   g(x)  M  

0 M g x M( ) ( )∵

0  g(x)

g(x)  0  x  (c  , c  )

THEOREM 1.9   Suppose a  c  b and g a b: [ , ] �  is defined except possibly at c. If lim ( )
x c

g x  exists and is not 

equal to zero, then lim( / )( )
x c

g x1  exists and is equal to (lim ( ))
x c

g x 1.

PROOF  Let lim ( )
x c

g x M 0  (by hypothesis). We may suppose that M  0. Let   0. Choose   0 such 

that

0
1

2

Min ,
M

M

Corresponding to   0, there exists   0 such that (c  , c  )  (a, b) and

 x c c x c g x M( , ), | ( ) |  (1.12)

 0  M    g(x)  M   (1.13)

 1.6 Limit of a Function
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Now, x  (c , c  ) implies [using Eqs. (1.12) and (1.13)]

 

1 1 1 1

g
x

M g x M

M g x
M g x

M M

( )
( )

| ( ) |

| ( ) |

( )

 

(1.14)

By the choice of , we have

M
M

M M
2

2

1
1( )

  M2  M   M(M  ) 

 
M M( )

 (1.15)

From Eqs. (1.14) and (1.15), we have

x c c
g

x
M

( , ) ( )
1 1

Thus

lim ( ) lim ( )
x c x cg

x
M

g x
1 1 1

THEOREM 1.10   Suppose a  c  b, and f a b g a b: [ , ] , : [ , ]� �  are defined except possibly at c and 

g x x a b( ) [ , ].0  If lim ( )
x c

f x L and lim ( ) ,
x c

g x M 0  then

lim ( )
x c

f
g

x
L
M

PROOF Define h a b: [ , ] �  by

h x
g

x
g x

x a b( ) ( )
( )

[ , ]
1 1

By Theorem 1.9,

lim ( ) lim ( )
x c x c

h x
g

x
M

1 1

Now by Theorem 1.7, we have 

lim ( ) lim( )( )
x c x c

f
g

x f h x L
M

L
M

1

COROLLARY 1.2   Suppose a  c  b and f a b: [ , ] �  is defined except possibly at c. If lim ( )
x c

f x L and �, thus 

lim( )( )
x c

f x  exists and is equal to L.

PROOF  Write g x x a b( ) [ , ] so that by Example 1.11 we have lim ( )
x c

g x . Now, by Theorem 1.7, we 

have

lim( )( )
x c

f g x L
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COROLLARY 1.3   Suppose a  c  b, f a b: [ , ] ,�  g a b: [ , ] �  are defined except possibly at c and g(x)  0  

x  [a, b]. If lim ( )/ ( )
x c

f x g x  exists finitely and lim ( ) ,
x c

g x 0  then lim ( ) .
x c

f x 0

PROOF Since

f x
f x
g x

g x
f
g

x g x( )
( )

( )
( ) ( ) ( )

for all x  [a, b], by Theorem 1.7 we have

lim ( ) lim ( ) lim ( )

(

x c x c x c
f x

f
g

x g x

Finite numbber)( )0

0

COROLLARY 1.4   Suppose a  c  b, f a b: [ , ] ,�  g a b: [ , ] �  are defined except possibly at c and g(x) is not a 

zero function. If lim ( )
x c

f x 0 and g(x) is bounded on [a, b], then lim( )( ) .
x c

f g x 0

PROOF  Since g(x) is bounded, suppose g x M x a b( ) [ , ]. Let   0. Since lim ( ) ,
x c

f x 0  there corre-

sponds   0 such that for all x  (c  , c  ),  x  c,

( , ) ( , ) ( )c c a b f x
M 1

( )( ) ( ) ( )

( ) ( )

f g x f x g x

f x g x

M
M

1

for all x  ( c  , c  ), x  c. Thus, lim( )( ) .
x c

f g x 0

Note:

1.  In practice, we write “lim ( )
x c

f x l” or “f (x)  l as x  c” , a  c  b for some a b, �  to mean that f is defined on  

[a, b] except possibly at c and lim ( ) .
x c

f x l

2.  In the definition of lim ( ) ,
x c

f x l  the value of f at c is not playing any role; in fact, f may not be defined at c.

The above results stated for limits are equally valid for left limits as well as right limits, with obvious modifications. 

We state them briefly for right limits as follows.

THEOREM 1.11   Suppose a  c  b and f and g are two real-valued functions defined on (a, b) except possibly at c. 

Suppose lim ( )
x c

f x L
0

 and lim ( ) .
x c

g x M
0

 Then

1.  lim ( )
x c

f x
0

 is unique when exists.

2.  lim ( )( )
x c

f g x
0

 exists and is equal to lim ( ) lim ( ) .
x c x c

f x g x L M
0 0

3.  lim ( )( )
x c

f g x
0

 exists and is equal to ( lim ( ))( lim ( )) .
x c x c

f x g x L M
0 0

4.   If lim ( )
x c

g x M
0

0, then there exists   0 such that g(x)  0 in (c, c  ) and lim ( / )( )
x c

g x
0

1  

exits and is equal to 1/M.

5.  If lim ( ) ,
x c

g x M
0

0  then lim ( / )( )
x c

f g x
0

 exists and is equal to

 1.6 Limit of a Function
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lim ( )

lim ( )
x c

x c

f x

g x
L
M

0

0

6.  If lim ( )
x c

f x L
0

 and K �,  then lim ( )( )
x c

Kf x
0

 exists and is equal to K L.

7.  If lim ( )
x c

f x L
0

 and lim ( ) ,
x c

g x M
0

 then lim ( )( )
x c

f g x
0

 exists and is equal to L  M.

THEOREM 1.12   Suppose a  c  b, f1, f2, …, fn are real-valued functions defined on [a, b] except positively at c and 

lim ( )
x c

if x  exists for i  1,2,3, …, n. Then

1.  lim( ... ) ( )
x c

nf f f x1 2  exists and is equal to lim ( ) lim ( ) ... lim ( ).
x c x c x c

nf x f x f x1 2

2.  lim( ... )( )
x c

nf f f f x1 2 3  exists and is equal to lim ( ) lim ( ) ... lim ( ) .
x c x c x c

nf x f x f x1 2

PROOF 1. Follows from Theorem 1.6 by induction.

2.  Follows from Theorem 1.7 by induction.

Note: Theorem 1.12 is valid when limit is replaced by left limit or right limit.

THEOREM 1.13  Suppose a  c  b and f (x)  0 x  [a, b], x  c. If lim ( )
x c

f x  exists and is equal to L, then L  0.

PROOF  Suppose L  0. Take   L/2  0. Since lim ( )
x c

f x L corresponds to   L/2, there exists  

  0 such that

f x L x c c x c( ) ( , ),

That is

L f x L L
L L

x c c x c( ) ( , ),
2 2

0

which is a contradiction. Hence L  0.

The following theorem has useful applications in evaluation of limits.

THEOREM 1.14  Suppose

1.  a  c  b.
2.  f, g, h are real-valued functions defined on [a, b] except possibly at c.

3.  f (x)  g(x)  h(x) for all x  [a, b], x  c.

4.  lim ( )
x c

f x  and lim ( )
x c

h x  exist and are equal.

Then lim ( )
x c

g x  exists and

lim ( ) lim ( ) lim ( )
x c x c x c

f x g x h x

PROOF Write lim ( ) lim ( )
x c x c

f x h x L. Given   0, there exists   0 such that

L   f (x)  L 

and L   h(x)  L 

for all x  (c  , c  ), x  c. Now, by hypotheses

L   f (x)  g(x)  h(x)  L 

( S Q U E E Z I N G 
T H E O R E M  O R 

S A N D W I C H 
T H E O R E M )
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and hence

L   g(x)  L 

for all x  (c  , c  ), x  c. Thus

| ( ) | ( , ),g x L x c c x c

Hence lim ( )
x c

g x  exists and is equal to L.

THEOREM 1.15  Suppose

1.  f (x)  g(x)  x  [a, b], x  c.

2.  lim ( )
x c

f x  and lim ( )
x c

g x  exist.

Then lim ( ) lim ( )
x c x c

f x g x .

PROOF  Write h(x)  f (x) g (x)  x  [a, b], x  c. Then h x x a b x c( ) [ , ],0  and hence by Theorem 

1.13, lim ( ) .
x c

h x 0  Therefore

lim ( ) lim ( ) lim( )( ) lim ( )
x c x c x c x c

f x g x f g x h x 0

This gives

lim ( ) lim ( )
x c x c

f x g x

Note: Theorems 1.13 1.15 are also valid when the limit is replaced by left limit or right limit with relevant modifications.

The following examples will enhance the understanding of the concepts and results discussed so far.

Let c � , n be a positive integer and f (x)  xn for all 

x �,  x  c. Then lim .
x c

n nx c

Solution: If n  1, then f (x)  x. Given   0, take    

so that x  (c  , c  ), x  c. This implies

f x c x c( )

Hence f (x)  c as x  c. Assume that the result is true 

for n K  1.  Then xK  cK as x  c. Now (by Theorem 

1.7) as x  c

x x x c cK K K1

That is, xK  1  cK  1 as x  c. Thus, the result is true for 

K  1. Hence by induction, the result is true for every 

positive integer n.

 Example  1.16

Let c  0 and n be a positive integer. Then x1/n  c1/n as 

x  c.

Solution: Let   0. Choose 0    min{c, c(n  1)/n, }. 

Suppose x  (c  , c  ), x  c.
 
Then

x c x c

x c x x c x

n n n n

n n n n n n n n

( ) ( )

( ) [

/ /

/ / ( )/ ( )/ / (

1 1

1 1 1 2 1 3 2

1 2 1

)/ /

/ ( )/ ( )/... ]

n n

n n n n n

c

x cn c

We know that

y a y a y y a y a an n n n n n( )( ... )1 2 3 2 1

where n is a positive integer. Take y  x1/n and a  c1/n. 

Therefore

x c x c x x c c

x c

n n n n n n n n n

n

1 1 1 2 1 1

1 1

/ / ( )/ ( )/ / ( )/

/

( ... )

// ( )/n n nc 1

so that

x c
x c

c c
n n

n n n n
1 1

1 1

/ /

( )/ ( )/

(by the choice of ). Consequently x1/n  c1/n as x  c.

 Example  1.17

 1.6 Limit of a Function
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Let c � and p x a a x a x a xn
n( ) ...

0 1 2
2  be a 

 polynomial where a0, a1, a2, ..., an are real numbers and 

an  0. Then lim ( ) ( )
x c

p x p c .

Solution: By Example 1.16,  xi  ci as x  c. Hence 

by Corollary 1.3 and Theorem 1.12, we get

lim( ... )

...

( )

x c
n

n

n
n

a a x a x a x

a a c a c a c

p c

0 1 2
2

0 1 2
2

 Example  1.18

Find the limit of 1 2/( x ) as x  1.

Solution: It is known that x x1 2 1/  as x  1. 
Therefore

( )x x2 1 2 1 1as

Hence by Theorem 1.9,

1

2

1

1
1 1

x
xas

 Example  1.19

Find the limit of x 1/2  1 as x  1.

Solution: We have

x
x

x

x

f x
g x

1 2

1 2

1 2

1 2
1

1
1

1/

/

/

/

( )

( )

where

f (x)  1  x1/2 and g(x)  x1/2

Also

lim ( )
x

f x
1

1 1 2

and lim ( ) /

x
g x

1

1 21 1 0

Therefore, by Theorem 1.10

lim( ) lim
( )

( )

lim ( )

lim ( )

/

x x

x

x

x
f x
g x

f x

g x1

1 2

1

1

1

1
2

1
2

 Example  1.20

Find lim /

x c

m nx  where m and n are positive integers and c 

is a positive real number.

Solution: Write f (x)  x1/n. Then

x f x f x f x m f xm n m/ ( ) ( )... ( ) ( ) ( ( )) times

Then by part (2) of Theorem 1.12,

lim( ) (lim )

(lim ( ))

( )

/ /

/ /

x c

m n

x c

n m

x c

m

n m m n

x x

f x

c c

1

1

 Example  1.21

Find lim ( )/

x

nx
0 0

1  for x  0.

Solution: Let f (x)  x1/n. We have to find lim f (x) as  

x  0  0. Let   0. Take   n. Then for x  (0, ),

0  x    0  x1/n   1/n  ( n)1/n  

Therefore

0 0

0

1

0 0

1

x x

x

n

x
n

/

/lim

 Example  1.22
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Evaluate lim ( ) ./

x
x

4 0

3 24

Solution: Write

f (x)  ( 4  x)3/2 for x  4 

If x  4, then 4  x  0 and consequently (4  x)3/2 is not 

defined. Now, let

g(x)  (4  x)1/2 for x  4

Here c  4  0. Therefore

lim ( ) ( ) ( )/ /

x
g x c

4 0

1 2 1 24 4 4 0

Hence

lim ( ) lim ( ( )) ( lim ( ))
x x x

f x g x g x
4 0 4 0

3

4 0

3 30 0

 Example  1.23

Find the limit of

1. (2  x  x2)1/2 as x  2  0.

2. (2  x  x2)1/2 as x  ( 1)  0.

3. (2  x  x2)1/2 as x  0.

Solution: Write

f    (x)  2  x  x2

We observe that

f (x)  2  x  x2  (x  1)(2  x)

so that f (x)  0 for x   1 or x  2 and f (x)  0 if 

x  ( 1, 2).

1. Now

lim ( ) lim ( )
x x

f x x x
2 0 2 0

22 0

so that

lim ( ) lim [ ( )]/ / /

x x
x x f x

2 0

2 1 2

2 0

1 2 1 22 0 0

2. Similarly, lim ( )
x

f x
1 0

0  so that

lim ( ) lim [ ( )]/ / /

x x
x x f x

1 0

2 1 2

1 0

1 2 1 22 0 0

3. Again

lim ( ) lim( )

lim( ) lim lim( )

x x

x x x

f x x x

x x

0 0

2

0 0 0

2

2

2

2

Hence

lim( ) [lim ( )]/ / /

x x
x x f x

0

2 1 2

0

1 2 1 22 2 2

 Example  1.24

If n is a positive integer and a �, then find

lim
x a

n nx a
x a

Solution: Write

f x
x a

x a

n n

( )

We observe that f is not defined at x  a and in fact it 

need not be defined at all. Now, for x  a,

 Example  1.26

Suppose f (x)  l as x  c, l  0 and n is a positive integer. 

Show that (f (x))1/n  l1/n as x  c.

Solution: Let 0    l and 0     l (n  1)/n. Then 

there exists   0 such that x  (c  , c  ), x  c which 

implies

 0  l    f (x)  l  

 f (x)  0 and (l  )n  [ f (x)]1/n  (l  )1/n

[ ( )] ( ) ( . )/ /

( )/
f x l f x l

l
n n

n n
1 1

1

1
as in Example 1 15

l n n( )/
( )

1
by the choice of

Therefore

[f (x)]1/n  l1/n as x  c

 Example  1.25

 1.6 Limit of a Function



40 Chapter 1   Functions, Limits, Continuity, Sequences and Series

1.7 Some Useful Inequalities

Students at the 10 2 level need the limit of (xn  an)/(x  a) as x  a where 0  a and n is a rational number. In fact 

this limit is nan  1. For completeness sake, here we want to prove that (xn  an)/(x  a)  nan  1 as x  a for any real 

number n. For this, we have to use certain basic inequalities which we discuss in this section.

THEOREM 1.16 Suppose k and n are positive integers, n  1 and 0  c  1. Then

(n  k) (cn  1)  n(cn k  1)

PROOF  Case I: Suppose c  1. Then

k c c ck k1 2 1...

and c c c c c c ncn n n n n

n

n1 2 11... ...

( times)

 ��� ��

Therefore

k c c c c c c ncn n k k n( ... ) ( ... )1 2 1 21 1

On multiplying both sides with c  1, we get

k(cn  1)  (ck  1)ncn

Adding n(cn  1) to both sides we get

(n  k)(cn  1)  (ck  1)ncn  n(cn  1)  n(cn k  1)

Therefore

 (n  k)(cn  1)  n(cn k  1) (1.16)

Case II: Let 0  c  1. Then

c c c kk k1 2 1...

and c c c ncn n n1 2 1...

Therefore

nc c c c k c c cn k k n n( ... ) ( ... )1 2 1 21 1

Multiplying both sides with (1  c)  0, we get that

ncn(1  ck)  k(1  cn)

or ncn(ck  1)  k(cn  1)

Now, adding n(cn  1) to both sides we get

 (n  k)(cn  1)  n(cn k  1) (1.17)

From Eqs. (1.16) and (1.17), we obtain the desired inequality.

Note: From Theorem 1.16, we have the following theorem.

f x x a x a x a x x a

x a a

n n n n

n n

( )( ) ( )(

... )

1 2

3 2 1

so that

f x
x a

x a
x x a x a a

n n
n n n n( ) ...1 2 3 2 1

Hence using Example 1.18, we have

lim ( ) ...

...
x a

n n n n

n n

f x a a a a a a

a a

1 2 3 2 1

1 1 + uptoo  timesn

nan 1
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THEOREM 1.17 Suppose m, n are positive integers, 1  n  m and c  0. Then

c
n

c
m

n m1 1

with equality holding if and only if c  1.

PROOF In Theorem 1.16, take k  m  n so that we have

m(cn  1)  n(cm  1)

and hence

c
n

c
m

n m1 1

Obviously equality holds if and only if c  1.

COROLLARY 1.5 Suppose 0  p  1 is a rational number and 0  a  1. Then ap  1  p(a  1).

PROOF Write p  n/m where m, n are positive integers such that 1  n  m. Take b  a1/m so that

0  b  1, bn  an/m  ap  0 and bm  a 

From Theorem 1.17, we get that

b
n

b
m

n m1 1

and hence

bn  1  (n/m)(bm  1)  p(bm  1)

Therefore

a p a b a b ap n p m1 1( ) ( )∵ and

COROLLARY 1.6 Suppose  is a real number, 0    1 and 0  a  1. Then a   1  (a  1).

PROOF  Case I: Suppose a  1. Take any rational number p such that   p  1 (this choice is possible by 

Theorem 0.14). Therefore, by Corollary 1.5

a   1  ap  1  p(a  1)

Hence

a
a

p
1

1

This is true for all rational numbers p such that   p  1. Hence

a
a

p p p
1

1
1inf { | }is rational and

Therefore

 a   1  (a  1) (1.18)

Case II: Suppose 0  a  1. Take any rational number p such that 0  p  . Then, since 0    1 

and p  ,

a   1  ap  1 < p(a 1) (by Corollary 1.5)

 1.7 Some Useful Inequalities
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Therefore

a
a

p a
1

1
1 0( )∵

Since this is true for all rational numbers p such that 0  p  ,  it follows that

a
a

p p p
1

1
0sup is rational and{ | }

Therefore

 a a a1 1 1 0( ) ( )∵  (1.19)

From Eqs. (1.18) and (1.19) we have a   1  (a  1).

THEOREM 1.18  If 0  a  1 and  is a positive real number, then

a   1   (a  1) if   1

a   1   (a  1) if   1

PROOF  If 0    1, then the result follows from Corollary 1.6. Suppose   1 so that 0  1/   1. Write 

b  a  so that b1/   a. Again by Corollary 1.6,

b b

a a

a a a

a a

1 1
1

1

1
1

1

1 1

1 1

/ ( )

( )

( )

( )

Thus, a   1   (a  1) when   1.

THEOREM 1.19  If 0  a  1 and  is real, then

1.  a   1(a  1)  a   1   (a  1) if 0    1

2.  a   1(a  1)  a   1   (a  1) if   0 or   1

PROOF 1. Suppose 0    1 and let b 1/a. Then by Theorem 1.18

b b

a a

a a
a

a
a a

a

1 1

1
1

1
1

1
1

11

( )

( )
( )

1 1 1( )a a

2. Suppose   1. Then 0  1/   1. Hence from (1)

1
1 1

1
11 1 1b b b b[( / ) ] /( ) ( )

1
1 1

1
1

1
1b

b
b b b

/
/( ) ( )
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Using b  a  we get

a
b

a a a( ) ( ) ( )1 1 1

 a1   (a   1)   (a  1)  (a   1)

a

a
a a

1
1 1

1
( ) ( )

a   1   (a  1)a   1  a   1(a   1)

 (a  1)a   1  a   1   (a  1)

Thus (2) is proved when   1. 

Now, suppose   0 so that   0. Write   1    1. Now by (2) (i.e.,   1)

 a   1 (a  1)  a   1  (a  1)

(1  )a  (a  1)  a1   1  (1  )(a  1)

( )( )
( ) ( )

1 1
1 1

a

a

a a

a
a a

 (1  )(a  1)  a  a   a  [(a  1)  (a  1)] (1.20)

From the inequality in Eq. (1.20) we have

(1  )(a  1)  a  a

(a  1)  (a  1)  a  a

 a   1   (a  1) (1.21)

Again from the second inequality in Eq. (1.20), we have

a  a   a  [(a  1)  (a  1)]

a  a   a (a  1)   a (a  1)

 a  a   1   a (a  1)

 1  a    a    1(a  1)

  a   1   a   1(a  1) (1.22)

Thus (2) follows from Eqs. (1.21) and (1.22) when   0.

THEOREM 1.20  Suppose a  0 and  is real. Then

1. a   1(a  1)  a   1   (a  1) if 0    1

2. a   1(a  1)  a   1   (a  1) if   0 or   1

Equality holds if and only if a  1 or   0.

PROOF  Suppose 0  a  1. Then strict inequality holds in (1) and (2) as according to 0    1,   0 or   1, 

respectively (by Theorem 1.19). If a  1 or   0 or   1, clearly equality holds in (1) and (2).

THEOREM 1.21  Suppose a and x are distinct positive real numbers and  is real. Then

1. a   1(a  x)  a   x   x   1(a  x) if 0    1

2. a   1(a  x)  a   x   x   1(a  x) if   0 or   1

PROOF In Theorem 1.19, if we replace a by a/x we get the above result.

Note: The inequalities in (1) and (2) of Theorem 1.21 become equality if a  x.

 1.7 Some Useful Inequalities
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THEOREM 1.22  If a  0 and  is real, then lim .
x a

x a

PROOF Suppose   1. Then by part (2) of Theorem 1.21, whenever x  (a/2, 3a/2), x  a, we have

x a a x a a x a a x0
3

2

1
1

( ) ( )

and x a x a x x a a x a0
3

2

1
1

( ) ( )

Hence, x  (a/2, 3a/2), x  a, implies

x a a x a x a
3

2
0

1

as

Therefore, if   1, x   a  as x  a. In a similar way, using parts (1) and (2) of Theorem 1.21 

we can show that x   a  as x  a, if 0    1 or   0. Clearly x   a  if   0 or 1. Hence 

lim
x a

x a  if a  0 and   is real.

THEOREM 1.23 Suppose 0  a  1 and  is real. Define

f x
x a

x a
( )

for all real numbers x  a. Then lim ( ) .
x a

f x a 1

PROOF Suppose   1. Then, for x  a, we have from Theorem 1.21 that

a
a x

a x
x < x a1 1 if 0

That is,

 a 1  f (x)   x 1 if 0  x  a

Hence,

 

f x a a f x

a x

a x

x a

( ) ( )

( )

1 1

1 1

1 1

1 1

 

(1.23)

Also

a
a x

a x
x x a1 1 if

That is,

a 1  f (x)  x 1

This implies

 

f x a f x a

x a

x a

x a

( ) ( )

( )

1 1

1 1

1 1

1 1

 

(1.24)
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From Eqs. (1.23) and (1.24), we get (using Theorem 1.22), whenever 0  x  a, 

f x a x a x a( ) 1 1 1 0 as

Hence f (x)   a   1 as x  a when   1. Now suppose 0    1 or   0. Then by parts (1) and 

(2) of Theorem 1.21 it follows that f (x) lies between  x   1 and a   1. Hence by Theorem 1.22, as 

x  a

f x a a x x a( ) 1 1 1 1 1 0

Here we used the fact p q p r  where p  q  r. Therefore f (x)   a   1 as x  a.

1.8 Continuity

In this section, we give a precise definition of the most important concept of continuity of a real-valued function at 

a point of its domain and extend it to its domain. The notion of continuity of a function has occupied central stage in 

mathematical analysis and it will be used extensively in the coming sections of this volume. The term “continuous” is 

in practice since the time of Newton, but was not defined precisely until the 19th century.

Bernhard Bolzano in 1817 and Augustin–Louis Cauchy in 1821 came to know that continuity of a function is an 

important property and gave the definition. Since the concept of continuity of a function at a point is linked with the 

concept of limit, Karl Weierstrass carefully proposed proper definition of continuity in 1870s. In this section we will 

first explain the concepts of continuity at a point and continuous function and then discuss the properties of continu-

ous functions. Linguistically, continuous means no break. Loosely speaking, a continuous function means, a function 

whose graph can be drawn on a paper without lifting the hand from the plane of the paper.

DEFINITION 1.23 Continuity at a Point Let f a b: [ , ] �  be a function and a  c  b.

1. We say that f is continuous at the point c if

lim ( ) ( )
x c

f x f c

2.  f is continuous at the left end point a if lim ( ) ( ).
x a

f x f a
0

 In such case we say that f is right 
continuous at a.

3.  f is said to be continuous at the right end point b if lim ( ) ( ).
x b

f x f b
0

 In such case we say 

that f is left continuous at b.

DEFINITION 1.24  Continuous Function A function f a b: [ , ] �  is said to be a continuous function if f is 

continuous at every point of [a, b] (including a and b). We say that f is discontinuous at c if f 
is not continuous at c.

THEOREM 1.24  Suppose a  c  b and f a b: [ , ] �  is a function. If lim ( ) ( )
x c

f x f c
0

 and lim ( ) ( ),
x c

f x f c
0

 then f 

is continuous at c. Conversely, if f is continuous at c, then both lim ( )
x c

f x
0

 and lim ( )
x c

f x
0

 exist and 

are equal to f (c).

PROOF  Directly follows from Theorem 1.4.

f is continuous at c implies

1. The function f must be defined at the point c.

2. lim ( )
x c

f x  must exist and is equal to f (c).

QUICK LOOK 5

 1.8 Continuity
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To prove that f is continuous at c, it is enough if we 

show that

lim ( ) lim ( ) ( )
h
h

h
h

f c h f c h f c
0

0
0

0

 

QUICK LOOK 6

Note: f :� �  defined by f (x)  x is continuous at every c �.

Define f a b: [ , ] �  by f (x)  k (constant) for all x  [a, b]. 

Then show that f is continuous at every c  [a, b].

Solution: Let a  c  b. Then

lim ( ) lim ( )
x c x c

f x k k f c

Also

lim ( ) lim ( )
x a x a

f x k k f a
0 0

and lim ( ) lim ( )
x b x b

f x k k f b
0 0

 Example  1.28

Let f :� �  defined by

f x
x

x
( )

1 0

0 0

if

if

Then show that f is discontinuous at 0.

Solution: We have

lim ( ) lim ( )
x x

f x f
0 0 0 0

0 0 0

lim ( ) lim ( )
x x

f x f
0 0 0 0

1 1 0

Therefore f is discontinuous at x  0, but continuous at 

all other points (Fig. 1.18).

 Example  1.29

FIGURE 1.18 Example 1.29.

1

O x

y

If P x a x a x a x an n n
n( ) 0 1

1
2

2  is a polynomial 

where a0, a1, …, an are real, a0  0 and n is a positive inte-

ger, then show that P(x) is continuous at every c � .

Solution: By Example 1.16, lim
x c

n nx c . Hence, the 

result follows from Corollary 1.2 and Theorem 1.6.

 Example  1.27

Let f :� �  be defined by f (x)  n if x  [n, n  1] 

where n  0, 1, 2, …. Then show that f is disconti-

nuous at every n  0, 1, 2, … and continuous at all 

other points.

Solution: See Fig. 1.19. Let n be a positive integer. Then

 lim ( )
x n

f x n
0

1 and lim ( )
x n

f x n
0

 

Therefore

lim ( ) lim ( )
x n x n

f x f x
0 0

and so f is not continuous at n. Similarly, if n is a negative 
integer say n  m where m is a positive integer, then

lim ( ) lim ( ) ( )
( )x n x m

f x f x m n
0 0

1 1

and lim ( ) lim ( )
( )x n x m

f x f x m n
0 0

Therefore,  f is discontinuous at n. Clearly lim ( )
x

f x
0 0

1 

and lim ( ) .
x

f x
0 0

0  Hence f is discontinuous at all integer 

values.

 Example  1.30
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Note: The graph of this function cannot be drawn.

Now suppose x0 is not an integer and let x n n0 1[ , ]  

where n is an integer. Then clearly f (x0)  n and

lim ( ) lim ( ) ( )
x x x x

f x f x n f x
0 00 0

0

FIGURE 1.19 Example 1.30.

1

−3

−3 −2

−2

−1
−1

1

3

3

2

2

Try it out Show that the function

f x
x x x

x
( )

cos ( / )1 0

0 0

if

if

is continuous at x  0.

Hint: Work on the same lines as Example 1.32.

Let f :� �  defined by

f x
x x

x
( )

if is rational

if is irrational0

Then show that f is discontinuous at all real values of x ≠ 0.

Solution: Let c �.  In every neighbourhood of c there 

are infinite rationals and irrationals, and so lim ( )
x c

f x  

cannot exist.

 Example  1.31

Let c  0 and x be real. Define f (x)  x  for x  0. Then 

show that f is continuous at c.

Solution: By Theorem 1.22,

lim ( ) lim( ) ( )
x c x c

f x x c f c

Hence f is continuous at x  c  0. Note that f is continuous 

when c  0 also (check).

 Example  1.33

Let f :� �  be defined by

f x
x x x

x
( )

sin( / )1 0

0 0

if

if

Then show that f is continuous at x  0.

Solution: When x  0, f (x) is a product of two functions, 

viz., g(x)  x and h(x)  sin 1/x. Here lim ( )
x

g x
0

0 and  

h(x) is a bounded function because 1  sin 1/x  1 for all 

real x  0. Therefore, by Corollary 1.4

lim ( ) lim( ( ) ( )) ( )
x x

f x g x h x f
0 0

0 0

Therefore, f is continuous at x  0.

 Example  1.32

 1.8 Continuity
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THEOREM 1.25  Let c  0 and  be real. Define

f x
x c

x c
x

c c
x c

c x c

( )
, ,if

if

2

3

2

1

Then f is continuous at c.

PROOF By Theorem 1.23

lim ( ) lim ( )
x c x c

f x
x c

x c
c f c1

Hence f is continuous at x  c.

SPECIAL NOTE: Generally the students at 10 2 level have to evaluate lim ( )
x a

n nx a x a)/(  when n is a rational num-

ber and a is positive real number for which the proof does not require all the inequality theorems proved before Theo-

rem 1.26. As mentioned in the introduction of this section, the proof given for Theorem 1.25 is to cover when n is any 

real number. The following theorem evaluated the same when n is rational. We state and prove the result as follows.

THEOREM 1.26  If n is a rational number, define

f x
x a

x a
x a

na x a

n n

n

( )
if

if1

where a  0. Then f is continuous at a.

PROOF Case I: n is a positive integer. Then

x a x a x x a x a xa an n n n n n n( )[ ... ]1 2 3 2 2 1

Therefore

lim lim [ ...
x a

n n

x a

n n n n nx a
x a

x x a x a xa a1 2 3 2 2 1]

a a a nn n n1 1 1... .( times)(by Example 1 27)

 nan 1  f (a)

Case II: Suppose n is a negative integer say n  m, where m is a positive integer. Then

x a
x a

x a
x a

x a

x a x a

n n m m m m

m m

( / ) ( / ) ( )

( )

1 1

Therefore

lim lim lim
x a

n n

x a

m m

x a m m

x a
x a

x a
x a x a

1

( ) (

( ) ( )

ma
a

m a na f a

m
m m

m n

1

1 1

1

a
By Case I)

Case III: Suppose n  p/q where p and q are integers and q  0, p  0. Now write y  x1/q and 

b  a1/q so that x  yq and a  bq and y  b as x  a. Therefore

(PARTICULAR 
 CASE)
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lim lim

lim

x

n n

y b

p p

q q

y b

p p

x a
x a

y b

y b

y b
y b

yy b

y b

y b
y b

y b
y b

q q

y b

p p

y b

q q

lim lim

( ) ( ) (pb qb

p
q

b

p q

p q

1 1 By Cases I and II)

p
q

b

na f a

q p q

n

( )

( )

[( / ) ]1

1

When n  0, then clearly f (x)   x so that lim ( ) ( ).
x a

f x f a0  Hence, lim ( ) ( ),
x a

nf x na f a1  

where n is rational.

The following is another basic theorem on limit of the function (sinx)/x which is not defined when x is equal to 0. We 

establish lim (sin )
x

x x
0

/  exists and is equal to 1.

THEOREM 1.27 Define f : ,
2 2

�  by

f x
x

x
x

x
( )

sin
if

if

0

1 0

Then f is continuous at x  0.

PROOF Suppose 0  x   /2. Draw the circle with centre at the origin O and radius equal to 1. Suppose it 

cuts the x-axis at A. Suppose the line “l” through O making angle x with the positive direction of 

the x-axis meets the circle in B and the tangent to the circled drawn at A in C. Draw BD perpen-

dicular to the x-axis (Fig. 1.20). Now

Area of OAB  Area of the sector OAB  Area of OAC

FIGURE 1.20 Theorem 1.27.

B

A

1

p /2
1D

O

x1

x

C

l

 1.8 Continuity
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Hence

 OA BD x OA AC  (1.25)

Now

 

sin

tan

x
BD
OB

BD

x
AC
OA

AC
 (1.26)

Therefore from Eqs. (1.25) and (1.26), 0  sin x  x  tan x, so that

 

0 1

1
1

sin tan

sin cos

x
x

x
x

x
x x

 
(1.27)

Equation (1.27) holds good when  /2  x  0, since in this case

0 1
sin sin( ) tan( ) tanx

x
x

x
x

x
x

x

Also from Eq. (1.27),

cos
sin

x
x

x
1

Therefore

0 1 1 2
2 2

0 0
2 2sin

cos
sinx

x
x

x x
xas

By squeezing theorem (Theorem 1.14)

lim
sin

lim( cos )
x x

x
x

x
0 0

1 0 1

Therefore

lim
sin

lim(cos )
x x

x
x

x
0 0

1 1and

The graph of this function is shown in Fig. 1.21.

FIGURE 1.21 Graph of Theorem 1.27.

1
y = f (x)

−2p 2p 3p−p pO

y

x

Note: lim cos
x

x
0

1  the function cos x is continuous at x  0.

We shall now prove certain theorems on continuity of sum, product and quotient of continuous functions which are 

parallel to their counterparts on limits (Section 1.5).
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THEOREM 1.28 Let a  c  b, f a b: [ , ] ,� g a b: [ , ] �  be continuous at c, then

1. f  g is continuous at c.

2.  f g  is continuous at c.

3.  If g(c)  0, then f/g is continuous at c.

4.  If f (x) and g(x) are polynomials and

f (x)  (x  a)k P(x)

g(x)  (x  a)k Q(x)

then

lim ( )
( )

( )x a

f
g

x
P a
Q a

 if Q(a) 0

PROOF Since f and g are continuous at c, we have

lim ( ) ( ) lim ( ) ( )
x c x c

f x f c g x g cand

1. By Theorem 1.6

lim( )( ) lim ( ) lim ( )
x c x c x c

f g x f x g x

 f (c)  g(c)

 ( f  g)(c)

Therefore f  g is continuous at c.

2. Using Theorem 1.7

lim( )( ) lim( ( ) ( ))
x c x c

f g x f x g x

lim ( ) lim ( )
x c x c

f x g x

f c g c

f g c

( ) ( )

( )( )

Hence f g is continuous.

3.  Since lim ( ) ( ) ,
x c

g x g c 0  by Theorem 1.8, g(x)  0 for all x in a neighbourhood of c, and 

hence by Theorem 1.9,

lim ( ) lim
( )

( )

lim ( )

lim ( )

( )

x c x c

x c

x c

f
g

x
f x
g x

f x

g x
f c
gg c

f
g

c
( )

( )

Hence f/g is continuous at c.

4. Follows from (3).

COROLLARY 1.7 1. A constant function is continuous.

2.  If �  and f is continuous at c, then f is continuous at c.

3.  If f and g are continuous at c, then f  g is continuous at c.

PROOF 1.  Suppose f x k x( ) .�  Therefore for any c �  (see Example 1.11),

lim ( ) lim( ) ( )
x c x c

f x k k f c

Hence f is continuous at c. This being true for every c �, it follows that f is continuous on �.

 1.8 Continuity
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2.   Define g x x( ) .�  Since f is continuous at c and g is continuous at c, by part (3) of 

Theorem 1.28, f g f  is continuous at c.

3.   By taking   1 in (2), we get g  ( 1)g is continuous at c and hence f  g  f  ( g) is 

continuous at c.

The following two theorems are about the continuity of composite function.

THEOREM 1.29  Suppose a  c  b, f a b: [ , ] � is a function and lim ( )
x c

f x l. Further suppose that g :� �  is 

continuous at l. Then lim( )( )
x c

g f x�  exists and is equal to g(l).

PROOF  Write p  g(l) and   0. Then there exists   0 such that y l l g y p( , ) ( )  (since g is 

continuous at l). Since f (x)  l as x  c, corresponding to this   0, there exists   0 such that

x c c f x l( , ) ( )

 l    f (x)  l  

g f x p( ( ))

( )( )g f x p�

Hence

lim( )( ) ( )
x c

g f x p g l�

THEOREM 1.30   Suppose a  c  b and f a b: [ , ] �  and g :� �  are, respectively, continuous at c and f (c). Then 

g f a b� �: [ , ]  is continuous c.

PROOF By Theorem 1.29

lim( )( ) ( ( )) ( )( )
x c

g f x g f c g f c� �

Hence g f�  is continuous at c.

Note: If c  a or b, in a similar way as Theorem 1.30 we can show that g f�  is continuous at a or b.

COROLLARY 1.8   Suppose f a b: [ , ] �  is continuous, f ([a, b])  [p, q] and g p q: [ , ] �  is continuous. Then 

g f a b� �: [ , ]  is continuous.

PROOF   Suppose c  [a, b]. Since f is continuous on [a, b] and g is continuous on [p, q] it follows that g f�  

is continuous at c (by Theorem 1.30 and the note). Hence g f�  is continuous on [a, b].

COROLLARY 1.9 Suppose �,  a  c  b, f a b: [ , ] [ , )0  and lim ( ) ,
x c

f x l  then lim ( ) .
x c

f x l

PROOF  Since f (x)  0 on [a, b], by Theorem 1.12 it follows that lim ( ) .
x c

f x l 0  Write g(x)  x  x  0. By 

Example 1.33 we get g is continuous at l. Therefore, by Theorem 1.30 it follows that

lim ( ) lim( ( )) lim ( ( )) ( )
x c x c x c

f x f x g f x g l l
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 Example  1.34

Consider

f x
x x

x
x x

x

( )

( ) ( )
,

/ /1 1
1 1 0

1 0

1 2 1 2

if

if

then f (x) is continuous at x  0.

Solution: It is enough if we show that the lim ( ) .
x

f x
0

1  

Now

f x
x x

x x

x x

( )
( ) ( )

( ) ( )

( ) ( )

/ /

/ /

2
1 1

1 1

2
1 1

1 2 1 2

1 2 1 22

1 2 1 2 1 2 1 2

1 2

1 1 1 1

2

1

[( ) ( ) ][( ) ( ) ]

( )

/ / / /

/

x x x x

x (( ) /1 1 2x

Therefore

lim ( ) ( )
x

f x f
0

2

1 1
1 0

Aliter:

f x
x x

x

x
x

x
x

x

( )
( ) ( )

( ) ( )

( )

/ /

/ /

1 1 1 1

1 1 1 1

1

1 2 1 2

1 2 1 2

1// /

( )

( )

( )

2 1 21

1 1

1 1

1x
x
x x

y

y

z

z

1

1

1

12 2

where

y  (1  x)1/2  1 as x  0

and z x x x a x a (1 ) 1 as as1 2/ ( )0 ∵

Therefore

lim ( ) lim lim

lim

x y z

y

f x
y

y

z

z

y

0 1 2 1 2

1

1

1

1

1

22 1

1

2 1
1

1

1

1

1

2

1

2

y
z
zz

lim

(By Theorem 1.266)

1

 Example  1.35

Show that the function f (x)  sin x is continuous on �.

Solution: Since sin sin( )x x x  for x  (  /2,  /2) 

(by Theorem 1.27), it follows that f (x)  0
 
as x  0. 

Consequently f (x) is continuous at x  0. Now, let a �.  

Then

f x f a x a

x a x a

x a

( ) ( ) sin sin

cos sin

sin

2
2 2

2
2

0

as x  a. Therefore f (x)  f (a) as x  a. Thus f (x) is 

continuous at x  a.

 Example  1.36

Show that g(x)  cos x is continuous on �.

Solution: Define h(x)  ( /2) x and f (x) sin x. Then

( )( ) ( ( )) sin(( / ) ) cos ( )f h x f h x x x g x� 2

Since both f (x) and h(x) are continuous, it follows from 

Theorem 1.30 that g(x) is continuous.

 1.8 Continuity
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Since xn  an
 as x  a (see Example 1.16)  and lim ( )

x a

n n nx a x a na)/( 1 (see Theorem 1.25 or 1.26), the following 

limits can be easily checked.

1.9 Properties of Continuous Functions

In this section we will explore the properties of continuous function defined on a closed interval [a, b] where a and b 

are real numbers and a  b.

DEFINITION 1.25   A function f a b: [ , ] �  is said to be bounded on [a, b] if the range of f in �  is bounded 

subset of �  (for bounded subset, see Definition 0.3).

Thus f a b: [ , ] �  is bounded if the range set f ([a, b]) is bounded in �. That is, if there exist constants  and  such 

that   f (x)    x [a, b]. In fact, if f is bounded, then both l.u.b.
x a b

f x
[ , ]

( ) and g.l.b.
x a b

f x
[ , ]

( ) exist and they are finite real 

numbers. Also f is bounded if and only if f  is bound on [a, b], because

f x f x

f x x a b

f

( ) ( )

( ) { , } [ , ]Max

 is bounded

Try it out Show that cot x and cosec x are continuous on �  except at multiples of  and sec x is continuous 

on �  except at odd multiples of /2.

Hint: See Example 1.37.

Try it out

1.  lim( )
x

x x
2

2 2 3 11

2.  lim ( ) ( )
x

x x x x
0

0 0

3.  lim
x

x

x x1 2

2 1

3 4 5

1

4

4.  lim
x

x
x2

2 4

2
4

5.  lim
x x x1

2

1

3
2

6.  lim
/ /

x

x
x8

4 3 4 38

8

8

3

Show that the function tan x  sin x/cos x is continuous 

on �  except at odd multiples of  /2. 

Solution: We know that cos x  0 if and only if x 

is an odd multiple of /2. Hence if  is not an odd 

multiple of /2, then cos   0 and cos x  cos   0 

so that [by part (3) of Theorem 1.28]

tan
sin

cos

sin

cos
tanx

x
x

xas

 Example  1.37
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THEOREM 1.31  Suppose a and b are real numbers and a  b. If f a b: [ , ] �  is a continuous function, then f is 

bounded.

PROOF   Suppose f is not bounded. Then either f is not bounded below or f is not bounded above. Since f 
is continuous at a, to the positive number 1 there corresponds a   0 such that a    b and

f x f a x a a( ) ( ) [ , ]1

so that

f x f a x a a( ) ( ) [ , ]1

Thus f  and hence f is bounded in [a, a  ]. Let

S c a b f a c{ ( , ) ( , )}is bounded in

Then clearly S is non-empty because a    S and also S is bounded above. Let  be the l.u.b. S. 

We observe that c  (a, )  c  S. Suppose   b. Since f is continuous at , corresponding to 1, 

there exists a 1  0 such that

a    1    1  b

and f x f x( ) ( ) ,1 1 1

Therefore, f is bounded on [ 1,   1] and hence it is bounded on [a,   1]. Thus   1  S such 

that   1  , a contradiction (because  is the l.u.b. S). Therefore b and hence   b.

Again since f is continuous at b, to 1 there corresponds a 2  0 such that a  b  2  b and

f x f b x b b( ) ( ) [ , ]1 2

so that f is bounded on [b  2, b]. Clearly b  2  S because b   is the l.u.b. S. Hence b  S. Thus 

f is bounded on [a, b].

Note: The following examples illustrate that a continuous function defined on an open interval (a, b) or semi-open 

interval (a, b] or [a, b) need not be bounded.

DEFINITION 1.26  Suppose f a b: [ , ] �  is a function. If there exists x   [a, b] such that

f (x )  f (x) x  [a, b]

then x  is called a point of absolute minimum of f on [a, b] and f (x ) is called the absolute 
minimum of f on [a, b]. Similarly, if x   [a, b]

 
is such that

f (x)  f (x )  x [a, b]

then x  is called a point of absolute maximum of f in [a, b] and f (x ) is called the absolute 
maximum of f on [a, b].

If f a b: [ , ] �  has absolute minimum and absolute maximum, then f is bounded on [a, b].

QUICK LOOK 7

1.  Define f f x x: ( , ] ( ) / .0 1 1� by

2.  Define g g x x: [ , ) ( ) / .0 1 11� by

3.  Define h h x x x: ( , ) ( ) / ( ).0 1 1 1� by

One can see that f, g, h are continuous functions but not 

bounded.

 Examples  1.49

We now state and prove that a continuous function on a closed interval [a, b] (a and b are real) is bounded and we 

show that the continuity of f on closed interval is essential.

 1.9 Properties of Continuous Functions
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THEOREM 1.32  Suppose f a b: [ , ] �  is a continuous function and f (a)  f (b). Then f assumes every value 

 between f (a) and f (b).

PROOF  Without loss of generality we may assume that f (a)  f (b). Suppose f (a)    f (b). We now show 

that, there exists x0  (a, b) such that f (x0)  . Let

f a( )

2
0

Since f is continuous at a, there exists 1  0 such that

x a a f x f a[ , ] ( ) ( )1

f x f a
f a

( ) ( )
( )

2

f x f a
f a f a

( ) ( )
( ) ( )

2 2

Now, let

S t a b f x x a t{ [ , ] ( ) [ , ]}

Clearly, from what we have established above, it follows that

 a  1  S and hence S   (1.28)

Further,

 t  S, a  s  t  s  S (1.29)

Clearly S is bounded above by b. Let   l.u.b. S so that by Eq. (1.29)

 [a , )  S (1.30)

From Eq. (1.28),

 a  a  1   (1.31)

Since f is continuous at b, corresponding to the positive number [ f (b) ]/2, there exists 2  0 

such that a  b  2  b and x  [b  2, b]. This implies

f x f b
f b

( ) ( )
( )

2

f b f x
f b

( ) ( )
( )

2

f b
f x

( )
( )

2

This shows that t  [b  2, b]  t  S. Hence

   b  2  b (1.32)

Thus a    b and further

a  t    t  S  f (t)    f ( )  

Now, f ( )   as in Eq. (1.28), there exists 3  0 such that

f x
f

x( )
( )

[ , ]
2

3

so that by Eq. (1.30),   3  S, which is a contradiction. Hence f ( )  . Thus f assumes the 

value .

( INTERMEDIATE 
VALUE  

THEOREM)



57

THEOREM 1.33  Suppose f a b: [ , ] �  is a continuous function, M f x
x a b
l.u.b.

[ , ]

( ) and m f x
x a b
g.l.b.

[ , ]

( ). Then there 

exists c, d in [a, b] such that f (c)  M and f (d)  m.

PROOF  Suppose f (x)  M  x  [a, b]. Then M  f (x)  0 for all x  [a, b]. Write g(x)  M  f (x). Then  

g(x) is continuous on [a, b], and does not vanish on [a, b]. Hence 1/g is continuous on [a, b] [see 

part (3) of Theorem 1.28] and hence 1/g is bounded on [a, b]. If  is a bound of 1/g on [a, b], then 

1/   0. Now,

1 1 1

M f x g
M f x x a b

( )
( ) [ , ]

f x M x a b( ) [ , ]
1

M M M f x
x a b

1 ∵ l.u.b.
[ , ]

( )

1
0,  which is a contradiction

Hence M  f (x)  0 for some x  [a, b]. That is, there exists c  [a, b] such that f (c)  M. Similarly, 

we can show that, there exists d  [a, b], such that f (d)  m.

1.   From Theorems 1.31, 1.32 and 1.33 we have that 

every real-valued continuous function on a closed 

interval [a, b], where a and b are finite real numbers, 

is bounded, attains its bounds and assumes every 

value between g.l.b.
x a b

f x
[ , ]

( ) and l.u.b.
x a b

f x
[ , ]

( ).

2.   Theorem 1.33 may not be true if the interval is not 

a closed interval. For example, the function f (x)  x  

 x  (0, 1) is clearly continuous and g.l.b.
x

f x
( , )

( )
0 1

0 

and l.u.b.
x

f x
( , )

( )
0 1

1 which cannot be attained by f (x).

QUICK LOOK 8

COROLLARY 1.10  Suppose f a b: [ , ] � is continuous and f (a) f (b)  0. Then, there exists x  (a, b) such that 

f (x)  0.

PROOF  Since f (a) f (b)  0, m f x
x a b
g.l.b.

[ , ]

( ) 0 and M f x
x a b
l.u.b.

[ , ]
( ) ,0  hence 0  [m, M]. Now the result 

follows from Quick Look 8.

Note: Graphically f (a) f (b)  0 means that the graph of y  f (x) (see Fig. 1.19) must cross the 

x-axis in between a and b.

FIGURE 1.22 Corollary 1.10.

y = f (x)

a

(b, f (b))

(a, f (a))

b

y

The following theorem provides useful information.

THEOREM 1.34  If f : [0, 1]  [0, 1] is continuous, then for some x0 in [0, 1] f (x0)  x0.

[Generally, for any function f (x), a point x0 such that f (x0)  x0 
is called a fixed point of f.]

PROOF  Define g(x)  f (x)  x  x  [0, 1] which is also continuous on [0, 1] with g(0) f  0 and g(1)  

f (1) 1  0. Hence by the intermediate value theorem (Theorem 1.32), g(x) must assume the value 0.  

 1.9 Properties of Continuous Functions



58 Chapter 1   Functions, Limits, Continuity, Sequences and Series

Thus g(x0)  x0 for some x0  [0, 1]. Graphically, the graph of y  f (x) (see Fig. 1.23) lies in the unit 

square for which the line y  x is a diagonal so that the curve must intersect the diagonal y  x.

FIGURE 1.23 Theorem 1.34.

1

(1,1)

O

y = f (x)

y

y =
 x

x

THEOREM 1.35   Let f and g be continuous functions on [a, b] such that f (a)  g(a) and f (b)  g(b). Then f (x1)  

g(x1) for some x1  [a, b].

PROOF Define h(x)  f (x) g(x) for x  [a, b] so that h is continuous on [a, b] and

h(a)  f (a)  g(a)  0

and h(b)  f (b) g(b)  0

If either h(a)  0 or h(b)  0, then the theorem is proved. If h(a)  0 h and h(b)  0, then by 

Corollary 1.10, there exists x1  (a, b)
 
such that h(x1)  0. Hence f (x1)  g(x1).

1.10 Infinite Limits

So far we considered the limit of a function at a point, keeping in mind that the limit is a real number, so that the 

function is bound in a deleted neighbourhood of that point (Corollary 1.1). We now consider cases where (i) f is not 

bounded or (ii) f is bounded, but the neighbourhood is infinite.

DEFINITION 1.27 Suppose a  c  b and f is a function defined on [a, b] except possibly at c.

1.  Suppose to a positive number  (however large), there corresponds   0 such that (c  , 

c   )  [a, b]
 
and x  (c  , c   ), x  c  f (x)  . Then we say that f (x) tends to infinity 

as x  c and write lim ( )
x c

f x  or f (x)   as x  c.

2.  Suppose to a positive number  (however large), there corresponds   0 such that (c  ,  

c  )  [a, b]
 
and x  (c  , c  ), x  c  f (x)  . Then we say that f (x)

 
tends to minus 

infinity as x  c and we write lim ( )
x c

f x  or f (x)   as x  c.

3.  If to   0, there corresponds   0 such that (c  , c)  [a, b] and x  (c  , c)  f (x)  , 

then we say that f (x) tends to  as x tends c from the left side and write lim ( )
x c

f x
0

 or 

f (x)   as x  c  0. In a similar way, we define the right limit at c.

4.  If to   0, there corresponds a   0 such that (c  , c)  [a, b] and x  (c  , c)  f (x)  

 , then we say that f (x) tends to  as x  c  0 and write lim ( ) .
x c

f x
0

5. The notions of left infinite limit can be extended to the right infinite limit as follows:

(a)  If to each   0 there corresponds a   0 such that (c, c   )  [a, b] and x  (c, c  ) 

 f (x)  , then we write lim ( )
x c

f x
0

 or f (x)   as x  c  0.

(b)  If to each   0, there corresponds a   0, such that (c, c   )  [a, b] and x  (c, c  ) 

 f (x)  , then we write lim ( )
x c

f x
0

 or f (x)   as x  c  0.

Note:  and  are only symbols, but not real numbers.
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DEFINITION 1.29  Suppose a  c  b and f is defined on [a, b] except possibly at c. If f does not tend to either a 

finite limit or an infinite limit as x  c, then we say that f oscillates at c. The function

f x
x

x
( )

1

0

if is rational

if is irrational

oscillates at every real number, because in any neighbourhood of a real number, there are 

infinitely many rationals and infinitely many irrationals.

1.11 Sequences and Series

In this section we define a sequence, limit of a sequence, obtain tests for convergence of a sequence and Cauchy’s gen-

eral principle of convergence. We see a sequence as a function from the set � �( )or  of positive integers (sometimes 

from the set W of non-negative integers) into the set �  of real numbers.

As a sequel, we define series as a sum of elements of a sequence, attach a meaning to the sum and obtain some tests 

for convergence of series.

In this process, we also find a link between the convergence of a function to a limit at a point and convergence of 

a sequence of functional values to that limit at that point. Finally, we end this with a condition for a function to be 

continuous at a point of its domain with the aid of sequence.

DEFINITION 1.28  Suppose f is defined on the infinite interval [a, ) and l �. If to each   0, there corresponds 

a   0 (large enough) such that x a f x l( )  then we say that f (x) tends to l 
as x tends to  and we write lim ( ) .

x
f x l  If f is defined on ( , a], we can similarly define 

lim ( ) .
x

f x l

 Example  1.38

1.  Define f x x( ) /1  for x  [ 1, 1] and x  0. Show that 

lim ( ) .
x

f x
0

Solution: Let   0 be a large number, we may suppose 

that   1. Take   1/2 . Then   1, (0  , 0  )  

[ 1, 1] and

x x x

x

f x
x

( , ),

( )

0 0 0

1 1
2

1

Therefore lim ( ) .
x

f x
0

2.  Define f x x( ) /1  for x  [ 1, 1], x  0. Then as in 

(1), lim ( ) .
x

f x
0

3.  Define f (x)  1/x for x  [ 1, 1] x  0. Then it can be 

seen that lim ( )
x

f x
0 0

 and lim ( )
x

f x
0 0

.

4.  Define f (x)  1/(1  x) for x  [0, 2], x  1. By the subs-

titution y  1  x so that y  [ 1, 1], y  0 we have by 

(3), lim ( )
x

f x
1 0

 at lim ( ) .
x

f x
1 0

  1.11 Sequences and Series

 Examples 

1.  Define f (x)  1/x for x  1. Then to   0, there cor-

responds   1/  such that

x x f x x

f x

, ( ) / /

( )

1 1 1

0

Hence lim ( )
x

f x 0

2.  Define f (x)  1/x for x  1. Then as above, we can see 

that lim ( ) .
x

f x 0

3.  If f (x)  1/(1  x) for x  1, then it can be verified that 

lim ( )
x

f x 0  and lim ( ) .
x

f x 0
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DEFINITION 1.30  Let � { , , , }1 2 3  be the set of all positive integers. Suppose f :� �  is a function. Then the 

functional values f (1), f (2), f (3), …, denoted by {f (n)} is called a sequence. f (n) is called the nth 
term of the sequence.

It is customary to denote the functional value f (n) by xn 
(x may be replaced by any other letter). Thus {xn} is a  sequence 

in �.

DEFINITION 1.31  Limit of a Sequence Let {xn} be a sequence is �  and l �. Suppose to each   0, there cor-

responds a positive integer N such that n N x ln . Then we say that {xn} converges 

to l as n    or xn  l as n   and write lim .
x

nx l

THEOREM 1.36 Suppose xn  l and xn  l  as n  . Then l  l .

PROOF  Suppose l  l . Let l l /2 0. Then to this , there corresponds a positive integer N1 such that

n N x l x ln
x

n1 ( lim )∵

Similarly, there exists positive integer N2 such that

x l x ln
x

n( lim )∵

Let N  Max {N1, N2}. Then n N x ln  and x ln . Now,

l l l x x l l x x l l l n Nn n n n 2 for

which is a contradiction. Hence l  l .

(UNIQUENESS 
OF LIMIT)

THEOREM 1.37   Every convergent sequence is bounded. That is, if xn  l as n  , the {xn} is bounded. In other 

words, if xn  l as n  , then there exists k  0 such that x kn  for n  1, 2, 3, .

PROOF  Since xn  l as n  , to the positive number 1, there corresponds a positive integer N such that 

x ln 1 for n  N so that

 x x l l x l l l n Nn n n 1 for  (1.33)

Let

 M x x xNMax 1 2 1, , ,  (1.34)

Take k l MMax{ , }1  so that from Eqs. (1.33) and (1.34), we have x kn  for n  1, 2, 3,  

Thus {xn} is bounded.

 Examples 

1.  If f :� �  is defined by f (n)  n2 or xn  n2, then  

{12, 22, 32, …}  { f (1), f (2), f (3), …}  {x1, x2, x3, …} is 

a  sequence.

2.  Define f :� � by f (n)  n  1. Then {f (1), f (2),  

f (3), …}  {2, 3, 4, 5, …} is a sequence.

3.  Define f :� �  by f (n)  1/n.  Then {1, 1/2, 1/3, 1/4, …} 

is a sequence.

4.  Define x n nn
2 3 , n  1, 2, 3, …. Then { },n n2 3  

, , ,n 1 2 3  is a sequence.

5. Define

x
n

nn

1

1

if is odd

if is even

Then {1, 1, 1, 1, …} is a sequence in �.

6.  Let a �. Then the sequence a, a, 0, a, a, 0, … is 

 given by

x

a n

a nn

if is divisible by

if is divisible by

otherwise

1 3

1 3

0
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THEOREM 1.38  If {xn} converges to a limit l and l  0, then there exists a positive number K and a positive integer 

N such that x Kn  for n  N.

PROOF Take l / .2 0  Then there exists a positive integer N such that x ln  for n  N so that

l x l x n Nn n for

Therefore

l x l n Nn for

That is,

0
2

3

2 2

l
x l n N

l
n for ∵

Hence x ln /2  for n  N. Take k l / .2

Note: If xn  1/n for n  1, 2, 3, …, then one can see that xn  0  n  1, 2, 3 …
 
and xn  0 as n   which shows that 

the converse of the above theorem is not true.

If a sequence is not bounded, then it is not convergent. For example, the sequence {xn} where xn  n  1, n  1, 2,  

3, …, is not bounded and hence it is not convergent.

QUICK LOOK 9

THEOREM 1.39  If {xn} converges to l, then { }xn converges to l .

PROOF  Since xn  l as n  , to   0, there corresponds a positive integer N such that x ln  for  

n  N. Hence

x l x l n Nn n for

Thus x ln  as n  .

Note: The converse of the above theorem is not true. Example 1.39 illustrates the same.

Show that the converse of Theorem 1.39 does not hold.

Solution: Take xn  ( 1)n

 
so that {xn}  { 1, 1, 1,  

1, …}. 
 
Suppose xn  l as n   Then to   1/2, there 

corresponds a positive integer N such that x ln 1 2/  

for n  N so that

1 1 2l /  if n is even and n  N

and 1 1 2l /  if n is odd and n  N

Hence

2 1 1 1 1 1 2 1 2 1l l l l( ) / /

which is a contradiction. However xn 1 for all n  1, 2, 

3, …
 
converges to 1 as n  .

Thus a sequence may not be convergent, but the 

 sequence of its absolute values may converge.

 Example  1.39

DEFINITION 1.32 Suppose {xn}
 
and {yn} are two sequences.

1. If zn  xn  yn, then {zn} is called sum of the sequences {xn} and {yn}.

2. If tn  xn yn, then {tn} is called the product of {xn} and {yn}.

3.  If yn  0 for large n, and wn  xn/yn then {wn} is called the quotient of {xn} and {yn}.

  1.11 Sequences and Series
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The following results are analogues to the results on functions and hence we state them without giving proofs.

THEOREM 1.40   Suppose {xn} and {yn} are two sequences such that {xn} converges to l and {yn} converges to m as  

n  . Then

1. {xn  yn} converges to l  m.

2. { }x yn n  converges to l m.

3. If m  0, then {1/yn} converges to 1/m.

4. If m  0, then {xn/yn} converges to l/m.

5. If �, then { xn}
 
converges to l.

DEFINITION 1.33  Cauchy Sequence A sequence {xn} in � is said to be a Cauchy sequence, if to each   0, there 

corresponds a positive integer N such that x xn m  for all n, m  N.

THEOREM 1.41  1. Every convergent sequence in � is a Cauchy sequence.

2. Every Cauchy sequence in �  is convergent.

PROOF  We prove (1) and assume the validity of (2) because its proof needs a little bit mechanism involv-

ing l.u.b. and g.l.b. of sets of real numbers.

(CAUCHY’S 
GENERAL  

PRINCIPLE OF 
CONVERGENCE)

1.  Suppose {xn}
 
is a convergent in � and let lim .

n nx l  Then to   0, there corresponds a positive 

integer N such that x ln /2 for n  N. Now,

m n N x x x l l x

x l l x

n m n m

n m

,

/ /2 2

Thus {xn} is a sequence.

Note: To prove that a sequence in � is not convergent, we can use Cauchy’s general principle of convergence. See the 

following example.

DEFINITION 1.34 Increasing  and Decreasing Sequences

1.  A sequence {xn}
 
in � is said to be monotonic increasing (or simply increasing) if xn  xn 1 

for n  1, 2, 3, ….

2. A sequence {xn} is said to be strictly increasing if xn  xn  1 for n  1, 2, 3, ….

Let xn  ( 1)n for n  1, 2, 3, …. Show that the sequence 

is not convergent.

Solution: This sequence is bounded. We show that 

this is not convergent. If this sequence is convergent 

then by part (1) of Theorem 1.41, corresponding to 1, 

there exists a positive integer N such that

x x n m Nn m 1 for ,

Taking m  n  1, we have

x xn n 1 1

( ) ( )1 1 11n n

( ) ( ( ))1 1 1 1n

 2  1, a contradiction

Thus {( 1)n} is not convergent.

 Example  1.40
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 The following theorem on convergence of a monotonic sequence (i.e., either increasing or decreasing) is useful.

3.  A sequence {xn}
 
is said to be monotonic decreasing (or simply decreasing) if xn  xn  1 for 

n  1, 2, 3, ….

4. A sequence {xn} is said to be strictly decreasing if xn  xn  1 
for n  1, 2, 3, ….

THEOREM 1.42  1. Every increasing sequence, which is bounded above, is convergent and converges to its l.u.b.

2. Every decreasing sequence, which is bounded below, is convergent and converges to its g.l.b.

PROOF 1.  Let {xn}
 
be an increasing sequence so that x1  x2  x3 ….

 
Thus {xn}

 
is bounded below. 

Now, suppose {xn} is bounded above and let  be the l.u.b. {xn}. Let   0. Then     

and   is not an upper bound of {xn}. Hence there exists a positive integer N such that  

   xN 
 so that    xN    . Since {xn} is increasing with l.u.b. , xN  xn   

for n   N. Hence

x x x n Nn n N

Therefore lim .
n

nx

2.  Suppose {xn} is a decreasing sequence which is bounded below. Then one can see that { xn}

is an increasing sequence bounded above and l.u.b. { xn}  g.l.b. {xn}. Let   g.l.b. {xn}. 

Therefore by (1) xn  
 
as n   and hence xn   as n  . Thus lim

n
nx  which is 

g.l.b. {xn}.

Notation: If {xn} is an increasing sequence, we write {xn}  and if it is decreasing, then we write {xn} .

DEFINITION 1.35  Subsequence Let {nk}
 
be a strictly increasing sequence of positive integers so that n1  n2  

 n3 
….

 
Let {xn} be a sequence in �. Then { }, , ,x knk

1 2 3,  is called a subsequence of {xn}.

1.  Let x2n  x2n 1  1/n
 

for n  1, 2, 3, …. Then 

{ } , , , , , ,xn 1 1
1

2

1

2

1

3 3  

is decreasing but not 

strictly decreasing.

2.  Let x2n  x2n  1  n
 
for n  1, 2, 3, ….

 
Then {xn}  {1, 1, 

2, 2, 3, 3, …} is increasing but not strictly increasing.

3.  Let xn  1  (1/n) for n  1, 2, 3, …. Then 

{ } , , , ,xn 0
1

2

2

3

3

4  

is strictly increasing.

4.  If xn  1/n, then { } , , ,xn 1
1

2

1

3
 is strictly decreasing.

 Examples  

Let xn  n2, n  1, 2, 3…. Then {xn}
 
is a sequence in �. Let 

n1  2 · 1, n2  2 · 2, n3  2 · 3, … , nk  2 · k, so that n1  n2  

 n3 
…  nk …. Then

{ } { } {( ) , , , , }x x k kn kk 2
22 1 2 3

is a subsequence of {xn}.

 Example  1.56

THEOREM 1.43  Every subsequence of a convergent sequence converges to the same limit.

P ROOF  Let {xn} be a convergent sequence, xn  l as n   and let { }xnk  
be a subsequence of {xn}. To   0, 

there corresponds a positive integer N such that x ln  
for all n  N. Since {nk} is an increasing 

sequence of integers, there exists a positive integer k such that nk  N
 
so that np  nk  N  p  k. 

Hence

p k x lnp

Thus x lnk
 as k  .

  1.11 Sequences and Series
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THEOREM 1.44   If a subsequence of a monotonically increasing sequence converges to a limit, then the 

 sequence itself converges to the same limit.

P ROOF  Let {xn}
 
be a monotonically increasing sequence and { }xnk  

a subsequence of {xn}. Suppose x lnk  
as k  . Since { }xnk  

is also increasing and lim ,
k

nx l
k

 we have l xnk
l.u.b. 

 
(Theorem 1.42) so 

that x lnk  
for k  1, 2, 3, …. Therefore to   0, there corresponds k1 such that

x l k knk
for 1

Let N nk1
. Then n N n nk1

 and n  np for some p  k1. Therefore

x x x l x l x ln n n n nk p k

for n  N. Hence xn  l
 
as n  .

Note: In Theorem 1.44, the increasing nature of the sequence is essential.

The following is an example of a sequence which is neither increasing nor decreasing, but contains convergent 

 subsequences.

DEFINITION 1.36  1.  A sequence {xn}
 
in � is said to diverge to , if to each  0, there corresponds a positive 

integer N such that xn   for all n  N, We write xn   as n   or lim .
n

nx

2.  A sequence {xn} is � is said to diverge to , if to each   0, there corresponds a positive 

integer N such that xn   for all n  N. We write xn   as n   or lim .
n

nx

Let x
n

nn

0

1

if is odd

if is even

Then {xn}  {0, 1, 0, 1, 0, …}
 
which contains two subse-

quences

{x2n  1}  {0, 0, 0, …} and {x2n}  {1, 1, 1, …} 

which converge to 0 and 1, respectively. Hence {xn} does 

not converge according to Theorem 1.43.

1.  Let xn  n2 for n  1, 2, 3, …. That is {xn}  {12, 22,  

32, …}. Then, given   0, take N [ ] 1, where [ ] 

denotes the integral part of . Then

n N n N2 2 2( )

Hence xn   as n  .

We now introduce the notion of divergence of a sequence and discuss few tests for the convergence of a sequence.

 Example  1.57

 Examples  1.58

xn   if and only if xn   as n  .

Note:
1.  xn   as n    {xn}

 
is bounded below but not 

bounded above.

2.  xn   as n    {xn}
 
is bounded above but not 

bounded below.

3.  If {xn} is an increasing sequence and not bounded 

above, then xn  
 
as n  .

4.  If {xn} is a decreasing sequence and not bounded 

below, then xn   as n  .

5.  A sequence may neither be bounded below nor 

bounded above. For example

x
n n

n nn

if is odd

if is even

QUICK LOOK 10
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THEOREM 1.45  Suppose {xn} is a sequence in � and xn  l as n  x. Then the sequence { yn} given by

y
x x x

nn
n1 2

...

also converges to l as n  

PROOF It is enough if we prove the theorem for the case l  0. Suppose xn  0 as n   and

y
x x x

nn
n1 2

...

 We now show that yn  0 as n  . Let   0. Since xn  0 as n  , to   0, there corresponds 

a positive integer N such that

x n Nn
2

for

 By  Theorem  1.39  since {xn}
 
converges so does { }xn . Hence by Theorem 1.37 both {xn} and { }xn  

are bounded. Let k be a bound of { }xn . Take

M N
kN

Max ,
2

1

Then for n  M we have

y
x x x

n

x x x
n

x x x

n

x x

n
n

M M M n

1 2

1 2 1 2

1 2

...

... ...

... x

n

x x x

n
KM

n
n M

n

M M M n1 2

2

2 2

...

  (by choice  of )M

Therefore yn  0 as n  .

To prove the main result, suppose xn  l
 
as n   Let

y
x x x

nn
n1 2

...

Write

an  xn  l

and b
x l x l x l

nn
n( ) ( ) ... ( )1 2

Now an  0 as n    bn  0 as n  . But bn  yn  l. Therefore

bn  0 as n    yn  l as n  

The following theorem is called Cauchy’s first theorem on limits.

2.  Let xn  n
 
 for n  1, 2, 3, …. Here, given   0, take  

n  [ ]  1 so that

n N n N ([ ] ) ( [ ] )1 1∵

Thus xn   as n   Also according to Quick Look 

10, n2   as n  .

(CAUCHY’S  
FIRST THEOREM 

ON LIMITS)

  1.11 Sequences and Series
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The following two theorems are tests for convergence of a sequence.

THEOREM 1.46  Suppose {xn} and { yn}
 
are two sequences of non-negative real numbers and xn  yn n. Then

1. yn  0 as n    xn  0 as n  .

2. xn   as n    yn   as n  .

P ROOF  1.  Suppose yn  0 as n  . Let   0. Since yn  0 as n  , there exists a positive integer N 

such that yn  for n  N. That is, 0  yn   from n N yn( ).∵ 0  Hence (by hypothesis)

0  xn  yn    n  N

Therefore xn  0 as n  .

2.  Suppose xn   as n  . Let   0. Therefore there exists a positive integer N such that  

xn    n  N. Now

yn  xn    n  N  yn   as n  

(COMPARISON  
TEST FOR  

SEQUENCES)

COROLLARY 1.11   If {xn} and { yn} are two sequences in � such that x yn n  for all n, then yn 0 as n    xn  0 

as n  .

PROOF  Using Theorem 1.39, we have yn  0 as n yn 0 as n  . Therefore x yn n 0 as 

n xn 0
 
as n  . Hence

lim
n

nx 0

To prove the Ratio Test for sequences we need some simple results which are stated below as examples.

Show that if x  1, then the sequence {xn}, n  1, 2, 3, …, 

diverges to  as n  .

Solution: Write x  1  h where h  0. Using either part 

(2) of Theorem 1.20 or Binomial theorem (Vol. 1) for 

positive integral index, we have

xn  (1  h)n  1  nh   as n  

Hence from part (2) of Theorem 1.46, xn   as n  .

The converse can be provid similarly.

 Example  1.41

If 0  x  1, then show that xn  0 as n  .

Solution: We have

0 1
1

1x
x

1

x
n

n

as by Example 1 41( . )

xn  0 as n   (by Example 1.42)

 Example  1.43

If an > 0 for n  1, 2, 3, …, then show that an  0 as n   

if and only if 1/an   as n .

Solution: Suppose an  0 as n   and let   0. 

Therefore there exists a positive integer N such that

a n N
a

n Nn
n

1 1
for for  

Hence an   as n  .

The converse can be proved similarly.

 Example  1.42
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If 1 1 i ex x( . ., ),1  then xn  0 as n  .

QUICK LOOK 11

THEOREM 1.47 Suppose {xn} is a sequence of non-zero real numbers such that

x
x

l nn

n

1 as

Then,

1. xn  0 as n  , if l 1.

2. xn  as n  , if l 1.

P ROOF 1. Suppose l 1. Let

k
l1

2

so that 0  k  1. Write

1

2

l

so that k l . Then there exists N such that

x

x
l n Nn

n

1 for

x

x
l k n Nn

n

1 for

x k x n Nn n1 for

x k x k x k x n kn n n
n N

n1
2 1 1 0 1... ( )for ∵

k
x

k
n n

N
1

 Since 0  k  1, kn  0 as n   (by Example 1.43). Therefore by part (1) of Theorem 1.46,  

xn  0 as n  .

2. Suppose l 1. Write yn  1/xn so that

y

y

x

x l
n

l
n

n

n

n

1

1

1 1
1as and

 Hence from (1), yn  0 as n   so that yn 0 as n   Consequently x yn n1/  as  

n   (by Example 1.42).

We assume the validity of the following without the proof.

THEOREM 1.48  Suppose {xn} is a sequence of positive terms such that

x

x
l nn

n

1 as

where l is a finite number  Then the sequence (xn)1/n  l as n  .

(RATIO TEST 
FOR  

SEQUENCES)

(CAUCHY’S 
SECOND  

THEOREM ON 
LIMITS)

  1.11 Sequences and Series
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The following theorem is a major consequence of the density property of Q (Theorem 0.14).

THEOREM 1.49  Let �. Then, there exists strictly decreasing sequence {xn} of rational numbers such that  

xn   as n  .

P ROOF  We already know (pre-requisites, Theorem 0.14) that between any two real numbers, there is a 

rational number. Let x1 be a rational number such that   x1    1. Let

y x1 1

1

2
Min ,

 There exists a rational number x2 such that   x2  y1. In general, suppose we have defined ratio-

nal numbers x1, x2, …, xn such that x x x xn1 2 3
...  and

y x
i

i nc iMin , , , , ...,
1

1
1 2

Then, there exists a rational number xn  1 such that   xn  1  yn, so that

x
n

x xn n n1 1

1

1
and

Thus, we have constructed a sequence {xn} of rational numbers such that

 x
n

x x x xn n n
1

1 2 1and ...  (1.35)

Now,

x x x

n

n
n

n n n( )

(

∵
1

1
0

by construction)

as

 Consequently xn   as n   Hence by Eq. (1.35), {xn} is a strictly decreasing sequence of 

 rational numbers such that xn   as n  .

Note: In a similar way, given �, we can show the existence of strictly increasing sequence { yn} of rational numbers 
such that yn   as n  . In fact by Theorem 1.49, there exists strictly increasing sequence {un} of rational numbers 
such that un   as n  .

We now turn our discussion to establish a link connecting the limit of a sequence and limit of a function for which 

we assume that “Every sequence of real numbers contains a monotonic subsequence” (i.e., either increasing or de-

creasing).

THEOREM 1.50   Suppose a c b f a b, : [ , ] �  is a function and f (x)  l as x  c. Further suppose that {xn} is a 

sequence in [a, b] such that xn  c n and xn  c as n  . Then f (xn)  l as n  .

P ROOF Let   0. Then there exists   0 such that (c  , c  )  [a, b] and

x c c x c f x l( , ), ( )

To this   0, there corresponds a positive integer N such that x cn  for n  N. Now,

n N x c

x c c x c

f x l

n

n n

n

( , ),

( )

Hence f (xn)  l as n  .
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COROLLARY 1.12  Suppose a  c  b, f a b: [ , ] � is a function and f is continuous at c. If {xn} is a sequence in [a, b] 

and xn  c as n  , then f (xn)  f (c) as n  .

PROOF In Theorem 1.50 take l  f (c). Then the result follows even if xn  c for some n s.

TH E O R E M 1.51   Suppose a  c  b, f a b: , �  is a function and l �. Further suppose that whenever a 

 sequence {xn}  [a, b], xn  c, is such that xn  c as n   implies that f (xn)  l as x  c, then  

f (x)  l as x  c.

P ROOF  Suppose that f (x) does not tend to l as x  c. Then there exists a positive real number  such that 

for any   0 with (c  , c )  [a, b], there exists x   (c  , c ), x   c such that

 f x l( )  (1.36)

Now take   1/n and write x   xn. Then

x c
n

c
n

x cn n
1 1

, ,

Let   0. Take

N
1

1
1

where [1/ ] denote the integral part of 1/  so that

n N
n N
1 1

Hence

n N x c
nn
1

 so that xn  c as n  . Since, by hypothesis f (xn)  l as n  , there exists a positive integer N 

such that f x ln( )  for n  N. According to Eq. (1.36), this contradicts the choice of xn. Hence 

f (x)  l as x  c.

COROLLARY 1.13  Suppose a  c  b, f a b: [ , ] �  is a function such that f (xn)  f (c) whenever {xn} is a sequence 

in [a, b] with xn  c as n  . Then f is continuous at c.

PROOF In Theorem 1.51 take l  f (c).

Combining Corollaries 1.12 and 1.13, we have the following theorem which gives an equivalent definition for the con-

tinuity of a function at a point of its domain.

THEOREM 1.52   Suppose a  c  b, f a b: [ , ] �  is a function. Then f is continuous at c if and only if f (xn)  f (c) 

as n   whenever {xn} is a sequence in [a, b] with xn  c as n  .

P ROOF  Suppose f is continuous at c and xn  c as n  . Then by Corollary 1.12, f (xn)  f (c) as n  . 

Now, suppose that f (xn)  f (c) as n   whenever {xn} is a sequence in [a, b] with xn  c as  

n  . We may suppose that xn  c  n. Then by Corollary 1.13, f is continuous at c.

1.12 Infinite Series

In this section, we introduce the concept of an infinite series, its sum, convergent and divergent series with the aid of 

the sequences. Also we give few tests to determine convergence or divergence of a series.

  1.12 Infinite Series
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DEFINITION 1.37  Infinite Series Suppose {xn} is a sequence of real numbers. Then the series x x x1 2 3
...  is 

called an infinite series. xn
n 1

 stands for the infinite series x x x1 2 3
....  Here n is only a 

variable and we may equally write xm
m 1

.

Note: x x x xi
i

n

n
1

1 2
...  is a finite sum. As it is, the symbol xn

n 1

 has no meaning, but we attach a meaning to 

this symbol in certain situation as follows.

DEFINITION 1.38 Let xn
n 1

 be an infinite series. Write

s x x x xn i
i

n

n
1

1 2
...

 which is the sum of the first n terms x x xn1 2
... .  This sequence {sn} is called the sequence 

of partial sums of the series xn
n 1

.

1.  If the sequence {sn} converges, say to s, then we say that the infinite series converges to s and 

has the sum s. In this case we write xn  s.

2. If sn diverges to  (or ) then we say that xn diverges to  (or ).

Notation: Suppose {xn}, {yn} are two sequences of real numbers. Then ( ), ,x y xn n n �  are the series associated 

with the sequences {xn  yn} and { xn}.

Note: It can be shown, as we did in the case of sequences, that if xn  s and yn  t, then (xn  yn)  s  t and  xn   s.

Consider the geometric series a ar ar2 ... where 

1  r  1. Under what conditions the series converges 

and diverges.

Solution: For the given series

s a ar ar ar a
r
rn

n
n

2 1 1

1
... ( )

 

Now

lim lim

lim

x
n

x

n

x

n

s a
r
r

a
r

ar
r

1

1

1 1

a
r

a
r

1
0

1

(Example 1.43 and Quick Look 11)

In particular the series 1 1 2 1 22( / ) ( / ) ... (here xn  1/2n 

for n  0, 1, 2, ... is convergent and its sum is

1

1 1 2
2

( / )

Similarly if r  1, then the

s
a

r
ar

rn

n

1 1

diverges because rn diverges and hence ar n diverges if 

r  1.

 Example  1.44

Let

x
n

n
n

n( )1

0

1 if is odd

if is even

Does this series converge or diverge?

Solution: The series xn  1  0  1  0 ... diverges 

because if s x x xn n1 2
... , then s2n  1  s2n  n for  

n  1, 2, 3, ....

 Example  1.45
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Let xn  ( 1)n 1 for n  1, 2, 3, …. Find the sum of this 

series.

Solution: For the given series, we have xn 1 1 1  

1 ...  so that

s
n

nn

0

1

if is even

if is odd

Then sn does not converge and hence the series xn has 

no sum.

 Example  1.46

Let

x
n nn

1

1( )

for n  1, 2, 3, ... . Find its sum.

Solution: We have

s
n nn

1

1 2

1

2 3

1

3 4

1

1
...

( )

1
1

2

1

2

1

3

1

3

1

4
... 1 1

1

1
1

1

n n

n

Now 
1

1
0

n
 as n    sn  1 as n  . Hence

1

1
1

n n( )

Show that the series 1 1 2 2 3 3 ...  diverges.

Solution: The series 1 1 2 2 3 3 ...  diverges because

x n n n n n nn ( )1 1 1

and hence

s x x x

n n

n n1 2

2 1 3 2 4 3

1 1

...

...

as

Hence, the series n n  diverges.

 Example  1.48

 Example  1.47

THEOREM 1.53   Let xn be the series. Then a necessary and sufficient condition for xn to converge is that to  

  0, there corresponds a positive integer N( ) such that for any positive integers m, n with  

m  n  N( ), x x xn n m1 2
... . (In other words, the sequence {sn} of partial sums is a 

Cauchy sequence.)

P ROOF  Let s x x xn n1 2
... . Then xn converges if and only if sn converges and {sn} converges; that 

is, by Theorem 1.48, if and only if to   0, there corresponds a positive integer N( ) such that 
s sm n  whenever m  n  N( ). This implies

x x x s s m n Nn n m m n1 2
... ( )for

Thus the result follows.

The following theorem is a necessary but not sufficient condition for the convergence of a series.

THEOREM 1.54  If xn converges, then xn  0 as n  .

P ROOF  Suppose xn converges. Let   0. Then there exists a positive integer N( ) such that s sm n  

for m  n  N( ). Now, take m  n  1, n  N( ). Then

x s s n Nn n n1 1 for ( )

Hence xn  0 as n  .

(CAUCHY’S 
GENERAL 

PRINCIPLE OF 
CONVERGENCE 

FOR SERIES)
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DEFINITION 1.39  If xn  0 n, then xn is called series of non-negative terms and if xn  0  n then xn is called 

series of positive terms.

Note: If xn is a series of non-negative terms, then the sequence {sn} of partial sums is an increasing sequence of 

non-negative terms so that either {sn} converges in which case xn converges or {sn} diverges to  in which case xn 

diverges to .

The following theorem is called comparison test for the convergence or divergence of series.

THEOREM 1.55  Let xn and yn be two series of non-negative terms such that x y nn n �. Then

1. yn converges xn converges.

2. xn diverges to   yn diverges to  .

PROOF Let

s x x x t y y yn n n n1 2 1 2
... ...and

Then xn  yn  n  sn  tn and {sn}, {tn} are increasing sequences. Therefore by Theorem 1.47

  {tn} converges  {sn} converges

  {sn} diverges to   {tn} diverges to 

THEOREM 1.56  Let xn be a series of non-negative terms and yn a series of positive terms. If

x
y

l nn

n
0 as

then either both xn and yn are both convergent or both divergent.

P ROOF We have l  0  l  0. Then there exists a positive integer N such that

x

y
l

l
n Nn

n 2
for

That is

l
l x

y
l

l
n Nn

n2 2
for

l
y x y n Nn n n

2

3

2

(COMPARISON 
TEST)

Show that the series (1/n) is not convergent while the 

nth term (1/n)  0 as n  .

Solution: Let

s
nn 1

1

2

1

3

1...

Then

s s s s

n n n

n n n

n
n

n n n n2 2

1

1

1

2

1

2

1

2

1

2

1

2

1

2

...

...

1

2

Consequently by Theorem 1.53, ( / )1 n  is not convergent.

 Example  1.49

The following example shows that the converse of Theorem 1.54 is not true.



73

(CAUCHY’S 
ROOT TEST)

Show that the series 1/np is convergent if p  1 and 

divergent if p  1.

Solution:

1. The given series is

 

1

1

1

2

1

3

1

1

1

2

1

3

1

4

1

5

1

6

1

7

p p p p p p

p p p p  (1.37)

where p  1. We observe that

1

2

1

3

1

2

1

2

2

2

1

2 1p p p p p p

1

4

1

5

1

6

1

7

4

4

1

22 1p p p p p p( )

1

8

1

9

1

10

1

15

8

8

1

23 1p p p p p p
...

( )

 Thus the nth group of Eq. (1.37) 1/2n(p  1) and 

because p  1, 1/2n(p  1)  1. Hence 1/2n(p  1) is 

convergent (since it is a geometric series with 

common ratio 1/2p  1  1). Therefore, by comparison 

test (Theorem 1.55), the given series is also 

convergent.

 Example  1.50

Hence

xn converges 
l

yn
2

 converges yn converges

Also,

xn diverges 
3

2
yn  also diverges yn diverges

Thus xn and yn either both converge or both diverge simultaneously.

THEOREM 1.57  Suppose xn is a series of non-negative terms.

1.  Let 0    1. If there exists a positive integer N such that xn
n1/  for n  N, then xn 

converges.

2. If there exists a positive integer N such that xn
n1 1/  for n  N, then xn diverges.

PROOF  1.  Suppose xn
n1 0 1/ ( , )  for n  N. Then xn  n for n  N and n is convergent (Example  

1.44 taking a  1). Therefore by Theorem 1.55, xn is convergent.

2.  Suppose xn
n1 1/  for n  N so that xn  1 for n  N. Hence, xn does not tend to zero. Consequently, 

xn diverges (by Theorem 1.54).

THEOREM 1.58  Suppose xn is a series of positive terms.

1.  Let 0    1. Suppose N is a positive integer such that xn 1/xn   for n  N. Then xn 

converges.

2. Suppose xn 1/xn  1 for n  N. Then xn diverges.

PROOF 1. By hypothesis

x x x x n Nn n n
n N

N1
2

1 1
... for

so that xn 1  n  N xN 1. Therefore xn converges since 
n N

N N
n Nx x1 1  converges.

2.  By hypothesis x x x xn n n N1 1 1 0...  for n  N. So xN 1  xn 1 and xn 1 diverges. 

Hence xn 1 diverges and consequently xn diverges.

(D’ALEMBERT’S 
TEST)

  1.12 Infinite Series
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Show that the series 
1

1n n
 is divergent.

Solution: Let

x
n n

y
n

n n
1

1

1

2
and

Therefore

x

y
n

n n n n
nn

n

2

1

2

1 1
1

( )/
as

By Example 1.50,

1 1

2
1

n
p is divergent

Hence by Theorem 1.56, xn is also divergent.

 Example  1.52

Show that the series 
2

1

3

2

4

3

1
p p p p

n

n
... ...  is  

convergent if p  2 and divergent if p  2.

Solution: We have

x
n

n
n p

1

Let

y
n

n n
n p p

1
1

Clearly

x

y n
nn

n

1
1

1 as

1.  If p  1  1 (i.e., p  2), then yn is convergent and 

hence xn is also convergent.

2.  If p  1  1 (i.e., p  2), then yn is divergent and hence 

xn is also divergent.

 Example  1.53

Show that the series 
1

2 2n a
 is convergent.

Solution: Let

x
n a

y
n

n n
1 1

2 2 2
and

So xn  yn and yn is convergent (by Example 1.50). 

Hence by comparison test xn is also convergent or

x

y
n

n a a n
nn

n

2

2 2 2 2

1

1
1

( / )
as

Using Theorem 1.56 and the convergence of the series 

yn, we have that xn is also convergent.

 Example  1.51

Note: In the case p  1, we have assumed that the convergence of a series does not change by grouping the terms of 

the series.

2.  When p  1. In this case the given series becomes 

1 1
2 3

1
4

... which is divergent (Example 1.67).

3.  When p  1. In this case 1/np  1/n and (1/n) is 

 divergent. Hence again by the comparison test the 

given series is divergent.

Note: IMPORTANT FORMULAE The following 

limits are frequently used and are to be assumed.

1. lim lim( ) /

x

x

y

y

x
e y1

1
1

0

1  where e  2.71828

2.
 

lim
log ( )

log
x

a
a

x

x
e

0

1  
where a  0 and a  1

In particular 
log ( )e x

x

1
  loge e  1 as x  0

WORKED-OUT PROBLEMS
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3. lim log ,
x

x

e
a

x
a

0

1
 where a  0. In particular,

lim log
x

x

e
e

x
e

0

1
1

4.  For all elementary standard functions (i.e., functions  

that are continuous at a point of their domains, see 

Definition 1.23)

lim ( ) ( )
x a

f x f a

5. If a  0, then 
a

a1
  log (1  a)  a will be assumed.

Note that using this inequality and the squeezing 

 theorem (Theorem 1.14) we can show that 

lim
log ( )

x

e x

x0

1
1

6. In (1) if we replace x with n N, we have

lim
n

n

n
e1

1

7. If lim ( )
x a

f x 0 and lim ( )
x a

g x  (finite number), 

then lim( ( )) .( )

x a

g xf x

Single Correct Choice Type Questions

Functions and Limits

1. The domain of the function 

f x x x
x x

( ) 2
2

3 2 1

3 2

is

 (A) [ 1, 1]  [2, 3] (B) (  1, 1]  [2, 3)

 (C) ( , 1] (D) [2, )

Solution: We have

x x2 3 2  is real  x2  3x  2  0

(x  1) (x  2)  0

  x  1 or x  2 (1.38)

Again

1

3 2 2x x
is defined  3  2x  x2  0

 (x 1) (x  3)  0

(x 1) (x  3)  0

 1  x  3 (1.39)

From Eqs. (1.38) and (1.39), it follows that f (x) is defined 

for x  ( 1, 1]  [2, 3).

Answer: (B)

2.  The graph in Fig. 1.24 represents a function whose 

 domain is

 (A) ( , 1)  (1, 2) (B) ( , 1]  [1, 2)

 (C) ( , 1)  [1, 2] (D) ( , 1]  [1, 2]

Solution: The given graph is represented by the function

f x x
x

x x
( )

1

1
1 1

1 2

for

for

FIGURE 1.24 Single correct choice type question 2.

1O

(1,1)

(2, 2)

2

2

x

y

1

−1

Answer: (A)

3.  If f (x)  x2   x  1 for all real x and f is an even func-

tion, then the value of  is

 (A) 1 (B) 1

 (C) any real number (D) 0

Solution: Since f is even, we have f (1)  f ( 1). 

Therefore 2    2  , which implies that   0.

Answer: (D)

4.  Let C1 be the graph of the curve represented by the 

equation x2  13x  4y  1. If C2 is the new curve 

obtained when C1 is reflected in the origin, then the 

equation of C2 is

 Worked-Out Problems
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 (A) x2  13x  4y  1 (B) x2  13x  4y  1

 (C) x2  13x  4y  1 (D) x2  13x  4y  1

Solution: Since C2 is the reflection of C1 in the origin, 

we have

(x, y) C1  ( x, y)  C2

( x)2  13( x)  4( y)  1

x2  13x  4y  1

Answer: (D)

5. Let f (x)  x  3 and

g x
x
x

x

k x

( )

2 9

3
3

3

if

if

If f (x)  g(x) for all real x, then the value of k is

 (A) 0 (B) 3

 (C) 6 (D) no real value exists

Solution: Clearly

g x
x
x

x f x( ) ( )
2 9

3
3

for x  3 and f ( 3)  6. Hence k  6.

Answer: (C)

6.  The domain of the function f x x( ) 1 1  is

 (A) ( , 1]  [2, ) (B) ( , 0]  [2, )

 (C) ( , 0]  [1, ) (D) [0, 1]

Solution: We have

x x x1 1 1 1 1 1or

x  0 or x  2

Answer: (B)

7.  If [ ]  denotes the greatest integer function, then the 

domain of the function 

f x
x

( )
[ ]

1

1 5

is

 (A) ( , 7] (B) ( , 7]  [7, )

 (C) ( 7, 7) (D) ( , )

Solution: We have that

f (x) is defined [ ]x 1 5 0

[ ] [ ]x x1 5 1 5or

x x1 5 1 6or

x x4 7or

x  7 or x  7

x ( , 7]  [7, )

Answer: (B)

 8. The domain of the function 

1

10

3 1
Cos

2 log (4 )

x

x

is 

 (A) [ 5, 1]  [1, 3)  (3, 4) (B) [ 5, 5]

 (C) [1, 3]  (3, 4) (D) [1, 3]  [3, 4]

Solution: Cos 1 3 2[( )/ ]x  is defined for

1
3

2
1

x

2 3 2

1 5

x

x

Therefore

 x  [ 5, 1]  [1, 5] (1.40)

Again 1/log10(4  x) is defined for x  4 and x  3. That is

 x  ( , 3)  (3, 4) (1.41)

Therefore, from Eqs. (1.40) and (1.41), the domain of the 

given function is 

[ 5, 1]  [1, 3)  (3, 4)

Answer: (A)

9. The domain of the function

e
x x

xSin 1 1 1

1[ ]

is

 (A) ( 1, 0)  (0, 1] (B) [ 1, 1]  {0}

 (C) ( 1, 0)  {1} (D)  (0, 1], where [x] is 

the integral part 

of x

Solution: We have

 Sin 1x is defined for 1  x  1 (1.42)

Now 1/[x] is defined when [x]  0, that is

 x  [0, 1) (1.43)

Also 1 1/ x  is defined only when x  1  0, that is

 x  1 (1.44)

From Eqs. (1.42)  (1.44), the domain of the given func-

tion is ( 1, 0)  {1}.

Answer: (C)
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10. The domain of the function

e
x

x xx Sin 1

2
1 log( [ ])

where [x] is the integral part of x is

 (A) [0, 4] (B) [0, 3]  {1}

 (C) (0, 4) (D) (0, 4)  {1, 2, 3}

Solution: 

 1.  ex is defined for all x (real or complex). In this context 

x is real.

 2.  sin 1 [(x/2) 1] is defined for 1  (x/2)  1  1, that is, 

0  x  4.

 3.  x x x x[ ] [ ]  is defined for all real x. Therefore, 

log( [ ])x x  is defined when x is not an integer, 

 because x  [x] when x is an integer.

Therefore from the above, the domain of the given 

function is (0, 4)  {1, 2, 3}.

Answer: (D)

11. The domain of the function

f x
x x

( ) log
( )

10

23

2

is

 (A) (0, 3) (B) (0, 1)  [2, )

 (C) (1, 2) (D) [1, 2]

Solution: log10[(3x  x2)/2] is defined only when

3

2
0

2x x

 x2  3x  0

  0  x  3 (1.45)

Now log [( )/ ]10
23 2x x  is defined when

3
2

1
2x x

 x2  3x  2  0

 (x 1)(x 2)  0

  1  x  2 (1.46)

From Eqs. (1.45) and (1.46), the domain of f (x) is [1, 2].

Answer: (D)

12.  Let f :� �  be a function such that f (x  y)  

f (x)  f (y) for all x, y belonging to �. If m and n 

are integers, then f (m/n) is equal to

 (A) 
f m
f n
( )

( )
 (B) 

m
n

 (C) 
m
n

f ( )1  (D) f (m)  f (n)

Solution: Clearly f (0)  f (0  0)  f (0)  f (0) implies 

f (0)  0. Also

0  f (0)  f (x  x)  f (x  ( x))  f (x)  f ( x)

Therefore

 f ( x)   f (x) (1.47)

Case I:  Suppose x is a positive integer. Now

f (2)  f (1  1)  f (1)  f (1)  2f (1)

f (3)  f (2  1)  f (2)  f (1)  2f (1)  f (1)  3f (1)

Therefore, by induction,

 f (x)  xf (1) (1.48)

Case II: Suppose x is a negative integer, say x  y where 

y is a positive integer. Now from Eqs. (1.47) and (1.48) 

we have

f (x)  f ( y)  f (y)   yf (1)  xf (1)

Case III:  Suppose m and n are integers and x  m/n and 

n is positive. Now

mf (1)  f (m) [By cases (1) and (2)]

f (nx)

f x x n( ... )  times

f x f x n( ) ( ) upto times...

 n f (x)

Therefore

f x
m
n

f( ) ( )1

Hence, f (x)  xf (1) for all rational numbers x.

Answer: (C)

Note: In the above problem, if f is also continuous, then  

f (x)  xf (1) for all real x which we discuss later.

13.  If [x] denotes the integer part of x, then the domain 

of the function f x
e

x

x

( )
[ ]1

 is

 (A) � [ 1, 0)  (B) �
 (C) � [0, 1]  (D) (1, )

Solution: f (x) is defined when 1  [x]  0.

1  [x]  0  [x]  1

 1  x  0

 x [ 1, 0)

Answer: (A)

 Worked-Out Problems
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14. The domain of the function

f x
x x

x x x
x( )

( )
,

3

62
�

is

 (A) �  (B)  � { }3

 (C)  � {2, 3}  (D) � { 2 3}, ,0

Solution: The given function can be written as

f x
x x

x x x
( )

( )( )

3

3 2

Therefore, f is defined for x  2, 0, 3.

Answer: (D)

15.  Domain of the function

 f x x x x( ) [ ( )]2 1 2 11 1Sin Sin  

is

 (A) 0  x  1 (B) 0  x  1/2

 (C) 
1

2

1

2
x  (D) 

1

2
1x

Solution: 1  x  0 and x(1 x)  0 when 0  x  1. In 

this case, 0 2 1 1( )x x .

Answer: (A)

16.  Let f : { }� � 3  be a function such that for some  

p  0,

f x p
f x
f x

( )
( )

( )

5

3

for all x �.  Then, period of f is

 (A) 2p (B) 3p

 (C) 4p (D) 5p

Solution: 3 does not belong to the range of f implies 2 

also cannot belong to range of f because, if f (x)  2 for 

some x �.  Then

f x p( )
2 5

2 3
3

which is not in the range of f. Hence 2 and 3 are not in the 

range of f. If f (x  2p)  f (x), this implies

f x f x p p

f x p
f x p

f x
f x
f x
f x

( ) ( )

( )

( )

( )

( )

( )

( )

5

3

5

3
5

5

3
33

4 10

2 4

2 5

2

f x
f x

f x
f x

( )

( )

( )

( )

so that [f (x) 2]2  1 which is absurd. Therefore, 2p is 

not a period. Again 

f x p
f x p

f x p

f x
f x

f x

( )
( )

( )

( )

( )
( )

3
2 5

2

3 5

1

Now

f x p f x p p

f x p
f x p

f x
f x
f x

( ) ( )

( )

( )

( )

( )

( )

4 3

3 5

3 3

3 5

1
5

3 55

1
3

2

2

f x

f x
f x

( )

( )
( )

Therefore 4p is a period.

Answer: (C)

17. Let f :� �  be a function such that

f (x  y)  f (x  y)  2f (x) f (y)

for all x y, �  and f ( )  1 for some �.  Then 

 period of f is

 (A) 2  (B) 3

 (C) 5  (D) 7

Solution: Given that 

f x y f x y f x f y x y( ) ( ) ( ) ( ) ,2 �

Substituting x  0 and y  0, we have

f (0)  ( f (0))2  f (0)  0 or 1 

If f (0)  0, then 

f (x  0)  f (x  0)  2 f (x)f (0)

and hence f (x)  0 for all x �  which contradicts the 

fact that f ( )  1. Therefore 

f (0)  1

Now, replacing x with x  2  and y with x  2   in the  

given relation, we have

 f (2x)  f (4 )  2f (x  2 )f (x  2 ) (1.49)

Also in the given relation, if we put y  x, then we have

f (2x)  f (0)  2f (x) f (x)
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Therefore

 f (2x)  2[ f (x)]2  1 (1.50)

In Eq. (1.50), if we replace x with 2 , then

 f (4 )  2[ f (2 )]2  1 (1.51)

But

x  y    f (2 )  f (0)  2[f ( )]2

f (2 )  2[ f ( )]2  1

2 1 1 1( ) [ ( ) ]∵ f

1 (1.52)

From Eqs. (1.51) and (1.52) we have 

 f (4 )  1 (1.53)

From Eqs. (1.49), (1.50) and (1.53), we get that

 f (x  2 ) f (x  2 )  (f (x))2 (1.54)

Similarly if we put y  2  in the given relation, we have

 f (x  2 )  f (x  2 )  2f (x) (1.55)

From Eqs. (1.54) and (1.55), we have 

f (x  2 )  f (x  2 )  f (x)

Therefore 2   is a period of f (x).

Answer: (A)

18. Let f :� �  be a function satisfying the relation

f x f x f x( ) ( ) ( ( ))1
1

2

2

for all x �.  Then period of f (x) is 

 (A) 2 (B) 3

 (C) 3

2
 (D) 5

Solution: Observe that f (x)  1/2 for all x �.  Now

f (x  2)  f (x  1 1)

1

2
1 1 2f x f x( ) ( ( ))

1

2

1

2

1

4

2 2

2

f x f x f x f x

f x f x

( ) ( ( )) ( ) ( ( ))

[ ( ) ( ( )) ]

1

2

1

4

2f x f x( ) [ ( )]

1

2

1

2
f x( )

 
1

2

1

2

1

2
f x f x x( ) ( )∵

 f (x)

Therefore, 2 is period of f (x).

Answer: (A)

Try it out In Question 18, replace 1 with a  0 

and prove that 2a is period of f. (See Worked-Out 

Problem 24, page 63, Vol. 1.)

19. The period of the function f (x)  Tan 1 (tan x) is

 (A)  (B) 
2

 (C) 
3

2
 (D) 

3

4

Solution: f (x  )  Tan 1 (tan (   x))  Tan 1 (tan x)  f (x)

This implies   is the least period of f (x). 

Answer: (A)

20. The period of 

f x
x

( ) cos2
3

is

 (A) 2  (B) 4

 (C) 5  (D) 6

Solution: Period of a cos(ax  b) is 2  when a is an 

integer and the period of cos(kx)  2 /k when k  0 

integer. Therefore, period of f (x) is 6 .

Answer: (D)

21.  Which of the following graphs represents 

y x x x2 2 1 ?

 (A)

In Question 17, f (x)  cos x satisfies the conditions of 

f (x) with   .

QUICK LOOK

1

0

2

3

2 x

y

1

4

5

3−1

−1

 Worked-Out Problems
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 (B)

 (C)

 (D)

Solution: It can be seen that

f x
x

x x
x x

( )
5 1
3 2 1 2
2 5 2

if
if
if

Answer: (A)

22.  The graph in Fig. 1.25 is represented by which of the 

following function?

 (A) f x x( ) 2  (B) f x x( ) 1 1

 (C) f x x( ) 1 (D) f x x( ) 1 1

Solution: The domain of f x x( ) 1 1 is ( , 0]  

[2, ) because x 1 1. Now

x f x x x0 1 1( )

So the graph must be upper half the parabola y2   x 

with vertex at origin. Again

x y x y x2 2 22

which represents parabola in the upper half of the x-axis 

with vertex at (2, 0).

Answer: (B)

23.  lim ( )
x

f x
3 0

 of the graph of the function given in  

Fig. 1.26 is 

 (A) 1 (B) 3

 (C) 2 (D) 4

Solution: As per the graph, lim ( )
x

f x
3 0

2

FIGURE 1.26 Single correct choice type question 23.

1

2

3

3

4

2 xO

y

1

Answer: (C)

24. If f (x)  3x2  x, then 

lim
( ) ( )

h

f x h f x
h0

 (A) 3x  1 (B) 4x  1

 (C) 8x  1 (D) 6x  1

Solution: We have

lim
( ) ( )

lim
[ ( ) ( )] ( )

h h

f x h f x
h

x h x h x x
h0 0

2 23 3

0

2

4

2 x

5

3

4 51−1

1

3

y

0

2

4

2 x

5

y

3

4 51−1

1

−1
3

5

2 x

y

FIGURE 1.25 Single correct choice type question 22. 

O 2

y

x
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lim
h

xh h h
h0

26 3

lim[ ]
h

x h x
0

6 3 1 6 1

Answer: (D)

25. Let 

f x
x x

x x x
( )

if
if

0 1

2 1 1 2

Then lim ( )
x

f x
1

 is equal to

 (A) 1 (B) 2

 (C) 1 (D) does not exist 

Solution: We have 

lim ( ) lim ( ) lim( )

lim ( ) lim

x h h

x h

f x f h h

f x

1 0 0 0

1 0 0

1 1 1

ff h h

h

h

h

( ) lim[ ( ) ]

lim( )

1 2 1 1

2 2 1 1

0

0

Therefore

lim ( ) lim ( )

lim ( )

x x

x

f x f x

f x

1 0 1 0

1

1

1

Answer: (A)

26. Let 

 f x

x x

x x

x x

( )

1 1

2 1 1 2

1

if
if
if 2

Then lim ( )
x

f x
1

 (A) is equal to 1 (B) is equal to 0

 (C) is equal to 3 (D) does not exist

Solution: We have

lim ( ) lim ( ) lim[( ) ]
x h h

f x f h h
1 0 0 0

1 1 1 0

lim ( ) lim ( ) lim[ ( ) ]
x h h

f x f h h
1 0 0 0

1 2 1 1 1

lim ( ) lim ( ) lim ( )
x x x

f x f x f x
1 0 1 0 1

 does not exist

Answer: (D)

27. Let 

f x
x x

x x
( )

7 3 2

3 5 2

if
if

Then lim ( )
x

f x
2

 equals

 (A) 11 (B) 14

 (C) 12 (D) does not exist

Solution: We have

lim ( ) lim ( ) lim( ( ) )
x h h

f x f h h
2 0 0 0

2 3 2 5 6 5 11

lim ( ) lim ( ) lim( ( ) )
x h h

f x f h h
2 0 0 0

2 7 2 3 14 3 11

Therefore

lim ( ) lim ( ) lim ( )
x x x

f x f x f x
2 0 2 0 2

11 11

Answer: (A)

28. lim
x x x2 2

1

2

4

4
 is

 (A) 
1

2
 (B) 

1

4

 (C)  (D) does not exist

Solution: This is the case where lim( )( )
x a

f g x  exists 

even though lim ( )
x a

f x  and lim ( )
x a

g x  do not exist as we 

said in Theorem 1.6. Therefore

 lim lim lim
x x xx x

x

x x2 2 2 2 2

1

2

4

4

2 4

4

1

2

1

4

Answer: (B)

29. lim
x x x1 3

1

1

3

1
 is equal to

 (A) 0 (B) 1

 (C) does not exist (D) 1

Solution: Observe that individually lim /( )
x

x
1
1 1  and 

lim /( )
x

x
1

31 1  do not exist. But

lim lim
x xx x

x x

x1 3 1

2

3

1

1

3

1

1 3

1

lim
( )( )

lim
( )

( )

x

x

x x

x

x

x x

1 3

1 2

2 1

1

2

1

1 2

1 1 1
1

Answer: (D)

30.  Let f (x)  x[x], where [x] denotes integral part of x. 

If a is not an integer, then 

lim
( ) ( )

h

f a h f a
h0

 (A) a (B) 2[a]

 Worked-Out Problems
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 (C) [a] (D) does not exist

Solution: We have

lim
( ) ( )

lim
( )[ ] [ ]

h h

f a h f a
h

a h a h a a
h0 0

lim
( )[ ] [ ]

( ,
h

a h a a a
h

a

a h a
0

∵ is not an integer

[ + ] [ ] for smaall values of h)

lim[ ] [ ]
h

a a
0

Answer: (C)

31. Let 

f x
x

x
x

x

( )

sin( )2

0

1 0

if

if

Then lim ( )
x

f x
0

 is

 (A) 1 (B) 0

 (C)  (D) does not exist

Solution: We have

lim ( ) lim
sin

x x
f x x

x

x0 0

2

2

 0  1 (By Theorem 1.27)

 0

Answer: (B)

32. lim sin
x

x
x0

2 1
 equals

 (A) 0 (B) 1

 (C) does not exist (D)  

Solution: By Example 1.16 lim( )
x

x
0

2 0 and sin(1/x) is 

bounded. Hence by Corollary 1.4,

lim sin
x

x
x0

2 1
0

Answer: (A)

33. lim
( )

( )

/

/x

x

x0

1 2

1 3

1 1

1 1
 is equal to

 (A) 0 (B) 
3

2

 (C) 1 (D)  

Solution: Let 

f x
x

x

x
x

x

( )
( )

( )

( ) ( )

/

/

/ /

1 1

1 1

1 1

1 1

1 1

1 2

1 3

1 2 1 3

11 1x

y
y

y
y

1 2 131
1

1
1

/ /

where y  1  x. Now y  1 as x  0. Therefore

lim ( ) lim
/ /

x y
f x

y
y

y
y0 1

1 2 1 31

1

1

1

lim lim
/ /

y y

y
y

y
y1

1 2

1

1 31

1

1

1

1

2

1

3
( . )By Theorem 1 26

3

2

Answer: (B)

34. lim
sin( ) sin( )

x

a x a x
x0

 equals

 (A) 2 sin a (B) cos a

 (C) 2 cos a (D) 2 cos a

Solution: Let 

f x
a x a x

x
( )

sin( ) sin( )

2cos sina x
x

( cos )
sin

2 a
x

x

Therefore

lim ( ) lim( cos )
sin

x x
f x a

x
x0 0

2

( cos ) lim
sin

( . )2 a
x

xx a
By Corollary 1 2

 (2 cos a)  1 (By Theorem 1.27)

 2 cos a

Answer: (D)

35. lim
tan tan

x a

x a
x a

 is

 (A) 2 sin a (B) 2 cos a

 (C) cosec2 a (D) sec2 a
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Solution: We have

f x
x a
x a

x a x a
x a x a

( )
tan tan

sin cos cos sin

( )cos cos

sin( )

cos cos

x a
x a x a

1

Therefore

lim ( ) lim
sin( )

lim
cos cosx a x a x a

f x
x a

x a x a
1

1
1

cos cosa a

 sec2 a

Answer: (D)

36. lim
sin

cosx

x
x x0

2
 is equal to

 (A) 2 (B) 1

 (C) 0 (D) does not exist

Solution: We have

lim
sin

cos
lim

sin

cosx x

x
x x

x
x x0 0

2
2

2

2

1

2 1
1

1

 2

Answer: (A)

37. Let

f x

x x

x x

x x

x x

( )

2 1

2 1 2

8 2 2 3

2 4 3

if
if
if
if

Which one of the following is not correct?

 (A) lim ( )
x

f x
1

1 (B) lim ( )
x

f x
2

4

 (C) lim ( )
x

f x
3

2  (D) lim ( )
x

f x
4

4

Solution: We have

lim ( ) lim( )
x h

f x h
1 0 0

21 1

and lim ( ) lim[( ) ]
x h

f x h
1 0 0

1 2 3

Therefore lim ( )
x

f x
1

1  is not true.

Answer: (A)

38.  Suppose a and b are positive and [y] denotes the 

 integral part of y and 

f x
x
a

b
x

( )

Then

 (A) lim ( )
x

f x
0 0

0  (B)  lim ( )
x

f x
0 0

0  and  

 
lim ( )

x
f x

b
a0 0

 (C) lim ( )
x

f x
0 0

0  and  (D) lim ( )
x

f x
b
a0

 lim ( )
x

f x
b
a0 0

Solution: We have

b
x

b
x

b
x

x
a

b
x

x
a

b
x

b
a

1

1

Therefore (by Theorem 1.15)

lim lim
x x

x
a

b
x

x
a

b
x

b
a0 0 0 0

1

b
a

x
a

b
x

b
ax

lim
0 0

Therefore by squeezing theorem

lim
x

x
a

b
x

b
a0 0

When x  0, we have

x
a

b
x

x
a

b
x

x
a

b
x

1

Again

b
a

f x
b
ax

lim ( )
0 0

Therefore

lim ( )
x

f x
b
a0 0

Hence lim ( ) lim ( ) / .
x x

f x f x b a
0 0 0 0

 Thus 

lim ( )
x

f x
b
a0

Answer: (D)

 Worked-Out Problems
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39.  Let f (x)  cos[x] where [x] is the integral part of x. 

Then

 (A) lim ( )
x

f x
0

1 (B) lim ( )
x

f x
0 0

1

 (C) lim ( )
x

f x
0 0

1 (D) lim ( )
x

f x
0

0

Solution: If  is a positive number less than 1, then

x [0,  ]  [x]  0

and hence f (x)  1  x [0, 1). Therefore

lim ( )
x

f x
0 0

1

Again

x  ( , 0)  [x]  1

and hence f (x) cos( 1) cos 1 for all x  ( , 0). Thus 

lim ( ) cos .
x

f x
0 0

1

Answer: (B)

40.  Let f (x)  sin x/x for x  0 and [ ]  denote the greatest 

integer function. Then lim[ ( )]
x

f x
0

 is

 (A) 0 (B) 1

 (C) does not exist (D) 1

Solution: Let 0    1. Then according to the proof of 

Theorem 1.27

0 1
sin

( , )
x

x
x

Therefore

sin
( , )

x
x

x0

Hence lim[ ( )] .
x

f x
0

0

Answer: (A)

41. lim
sin

cosx

x x
x x

 is equal to

 (A) 0 (B) 

 (C) 1 (D) does not exist

Solution: We have

x x
x x

x
x

x
x

sin

cos

sin

cos

1

1

Put y  1/x so that y  0 as x  . Now

y
y

y
y

sin cos
1

0
1

0and

as y  0 (see Example 1.20). Therefore 

lim ( )
x

f x
1

1
1

Answer: (C)

42. Let

f x
x x

x
( )

cos sin

( )

2 3

6 2

for x  /6. Then lim ( )
/x

f x
6

 is

 (A) 
1

24
 (B) 

1

36

 (C) 
1

12
 (D) 

1

48

Solution: Put y  6x   so that y  0 as x  /6. Also 

x  (   y)/6. Therefore 

f x

y y

y
( )

cos sin2 3
6 6 6 6

2

2 3
3

2 6

1

2 6

1

2 6

3

2 6

2

cos sin cos sin
y y y y

y

2 2 6

4 12

4
12

12

1

144

2

2

2

2

cos( / )

sin ( / )

sin( / )

/

y

y

y

y

y
y

1

36

2
sin

where   y/12  0 as y  0. Therefore

lim ( ) lim
sin

x
f x

0 0

2
1

36

1

36
1

1

36

2

Answer: (B)

43. lim
cos

sinx

x

x0 2

2 1
 is equal to

 (A) 
1

2 2
 (B) 

1

4 2



85

 (C) 
1

8 2
 (D) 

1

12 2

Solution: We have

2 1 2 1 1

2 12 2

cos

sin

( cos )

sin cos

x

x

x

x x

2
2

4
2 2

1

2 1

2

2 2

sin

sin cos cos

x

x x x

1

2
2

1

2 12cos cosx x

Therefore

lim
cos

sinx

x

x0 2

2 1 1

2

1

2 1 1

1

4 2

Answer: (B)

44. lim
sin( cos )

x

x

x0

2

2
 is equal to

 (A) 1 (B) 
2

 (C)  (D) 

Solution: We have

lim
sin( cos )

lim
sin( ( sin ))

x x

x

x

x

x0

2

2 0

2

2

1

lim
sin( sin )

x

x

x0

2

2

lim
sin( sin )

x

x

x0

2

2

lim
sin( sin )

( sin )

sin

x

x

x

x

x0

2

2

2

2

lim
sin( sin )

sin
lim

sin

x x

x

x

x
x0

2

2 0

2

   1  1  

Answer: (D)

45. Let 

f x

x
x

x

x
( )

sin[ ]

[ ]
[ ]

[ ]

if

if

0

0 0

 

where [x] is the integral part of x. Then lim ( )
x

f x
0

 equals

 (A) 1 (B) 0

 (C)  1 (D) does not exist

Solution: Observe that [x] 0  0  x  1. Therefore 

if 0    1, then 

f x

x

x
( ) sin( )

( )
sin

0 0

1

1
1 0

if

if

So

lim ( ) lim ( ) sin
x x

f x f x
0 0 0 0

0 1and

Hence lim ( )
x

f x
0

 does not exist.

Answer: (D)

46. lim
cos ( )

x

x

x1

1 2 1

1

 (A) exists and equals 2

 (B) exists and is equal to 2

 (C) does not exist because x  1  0 as x  1

 (D)  does not exist because the left limit at x  1 is 

not equal to the right limit at x  1

Solution: We have

 
1 2 1

1
2

1

1

cos ( ) sin( )x

x

x

x

Therefore

lim
cos ( )

lim
sin( )

( )x h

x

x

h

h1 0 0

1 2 1

1

2 1 1

1 1

lim
sinh

h h0
2 2

lim
cos ( )

lim
sin( )

x h

x

x

h

h1 0 0

1 2 1

1
2

1 1

1 1

2
0

lim
sin

h h
h

2

Left limit  Right limit 

Answer: (D)

47. lim
tan tan

( cos )x

x x x x

x0 2

2 2

1 2
 equals 

 (A) 
1

2
 (B) 2

 (C) 
1

2
 (D) 2

 Worked-Out Problems
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Solution: Let

f x
x x x x

x
( )

tan tan

( cos )

2 2

1 2 2

2
1

1
1

4

2

4

x x
x

x

tan
tan

sin

x x

x x

tan

sin tan

3

4 22

1

1

x x

x x

x
x

sin

cos sin

cos

cos

3

3 4

2

2 2

1

2

1

2

x
x x xsin cos cos

So

lim ( ) ( )
x

f x
0

1

2
1

1

1

1

2

Answer: (A)

48. If [t] denotes the integral part of t, then lim[ sin ]
x

x x
1

 (A) equals 1 (B) equals 1

 (C) equals 0 (D) does not exist

Solution: Use the concept of the integral part of a real 

number.

Answer: (D)

49.  Let f :� �  be a function satisfying the relation 

f x f y f xy x( ( )) ( )  for all x y, .�  Then

lim
( )

( )

/

/x

f x

f x0

1 3

1 2

1

1

 (A) 1 (B) 
1

2

 (C) 
2

3
 (D) 

3

2

Solution: Given relation is 

 f x f y f xy x( ( )) ( )  (1.56)

Interchanging x and y in Eq. (1.56), we have

 f y f x f yx y( ( )) ( )  (1.57)

Again replacing x with f (x) in Eq. (1.56) we get

 f f x f y f y f x f x( ( ) ( )) ( ( )) ( ) (1.58)

Therefore, Eqs. (1.56) (1.58) imply

 f f x f y f xy y f x( ( ) ( )) ( ) ( ) (1.59)

Again interchanging x and y in Eq. (1.59), we have

 f f y f x f yx x f y( ( ) ( )) ( ) ( ) (1.60)

Equations (1.59) and (1.60) imply

 f (xy)  y  f (x)  f (yx)  x  f (y) (1.61)

f x x f y y x y( ) ( ) , �

Suppose

f (x) x  f (y) y  

Substituting  f (x)    x in Eq. (1.56), we have

x f y xy x( ) ( )

x f y xy x( )

Therefore

x y xy x f y y( ) [ ( ) ]∵

 x  x

1 0( )∵ x

So

f (x)  x    x  1

Hence

lim
( ( ))

( ( ))
lim

( )

( )

/

/

/

/x x

f x

f x

x

x0

1 3

1 2 0

1 3

1 2

1

1

1 1

1 1

lim
( )

( )

/

/
x

x
x

x

x0

1 3

1 2
1 1

1 1

1 1

1 1

1 3

1 2

2

3

/

/

Answer: (C)

50. Let 

f x
x x n n

( )
sin , , , , ...if

otherwise

0 1 2

2

and g x

x x

x

x

( )

, ,

,

,

2 1 0 2

4 0

5 2

Then lim ( ( ))
x

g f x
0

 is

 (A) 1 (B) 6

 (C) 5 (D) 7

Solution: If 0    1, then f (x)  sin x for x  ( , ), 

x  0. Therefore

lim ( ( )) lim (sin ) lim(sin )
x x x

g f x g x x
0 0 0

2 1 1

Answer: (A)
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51. lim( )tan
x

x
x

1
1

2

 (A)  (B) 
2

 (C) 
2

 (D) 
1

Solution: Put 1  x   so that   0 as x  1. Therefore

lim( )tan lim tan ( )

lim cot

li

x
x

x
1 0

0

1
2 2

1

2

mm

cos

sin
0

2

2

lim .

sin

cos
0

2 2

2

2

2
1 1

2

Answer: (C)

52. Let 

f x
x x

x x
x

( )

3 1

4

3

2

13

4
1

2

if

if

Then lim ( )
x

f x
1

 is equal to

 (A) 1 (B) 0

 (C) 2 (D) 2

Solution: We have

lim ( ) lim
( )

( )
x h

f x
h

h
1 0 0

21

4

3

2
1

13

4

1

4

3

2

13

4
2

lim ( ) lim
x h

f x h
1 0 0

1 3 2

Therefore

lim ( )
x

f x
1

2

Answer: (D)

53. Let f (x)  Min{x, x2}. Then 

lim
( ) ( )

h

f h f
h0

1 1

 (A) 0 (B) 1

 (C) 2 (D) does not exist

Solution: We can see that (Fig. 1.27)

f x

x x

x x

x x

( )

if

if
if

0

0 1

1

2

Now

lim
( ) ( )

lim
( )

h h

f h f
h

h
h0 0 0

21 1 1 1

lim
h

h h
h0

22
2

Now

lim
( ) ( )

lim
( )

lim
h h h

f h f
h

h
h

h
h0 0 0 0

1 1 1 0 1

0
1

Therefore the required limit does not exist.

FIGURE 1.27 Single correct choice type question 53.

y = x

y = x 2
(1, 1)

y

x

Answer: (D)

54. lim
tan sin

x

x x

x0 3

 (A) 1 (B) 
1

2

 (C) 0 (D) 

Solution: We have

lim
tan sin

lim
sin ( cos )

cosx x

x x

x

x x

x x0 3 0 3

1

lim

sin cos sin

cosx

x x x

x x0

2

3

2
2 2

2
2

lim

sin
cos

cos
x

x

x

x

x
0

3

4
2

2

2
8

1

2
1 1

1

2

3

Answer: (B)

 Worked-Out Problems
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55. lim
( ) /x

x

x1 1 4

1

17 2
 

 (A) 8 (B) 16

 (C) 32 (D) 64

Solution: Let

f x
x

x
( )

( ) /

1

17 21 4

Put (17  x)1/4  y so that y  2 as x  1. Therefore 

f x
y
y

y
y

( )
4 4 416

2

2

2

So

lim ( ) lim
x y

f x
y

y1 2

4 4
32

2
4 2 32

Answer: (C)

56. lim
x

n

m

x

x1

1

1
 (m, n are odd positive integers) is

 (A) 
m
n

 (B) 
n
m

 (C) 1 if n  m (D)  if n  m

Solution: Put x = zmn so that x  −1  z  −1 and  

x1/n = zm, x1/m = zn.  Therefore

lim lim
x

n

m z

m

n

x

x

z

z1 1

1

1

1

1

lim
( )

( )

( , )

z

m m

n n

z
z

z

z
m n

1

1

1

1

1

∵ are odd

m
n

m
n

( )
( )

1
1

1

1

1

m
n

m n( , )∵ are odd

Answer: (A)

57. lim
sin sin

sin sinx

x x

x x
6

2

2

2 1

2 3 1
 

 (A) 1 (B) 1

 (C) 3 (D) 3

Solution: Given limit is

lim
( sin )(sin )

( sin )(sin )
lim

sin

sinx x

x x
x x

x

6 6

2 1 1

2 1 1

1

xx 1

( / )

( / )

1 2 1

1 2 1
3

Answer: (C)

58. lim
cos

cosx

mx
nx0

1

1

 (A) 
m

n

2

2
 (B) 

n

m

2

2

 (C)  (D) does not exist

Solution: We have

lim
cos

cos
lim

sin

sin
x x

mx
nx

mx

nx0 0

2

2

1

1

2
2

2
2

lim
sin

/

/

sinx

mx

mx
mx

nx
nx

0

2

2

2 2

2

2

1

nnx/2

lim
sin

lim

sin
x x

mx

mx

nx

nx
m

n0

2

0

2

2
2

2

2

2

22

2 2
2

2

2

2
1 1

m

n

m

n
Answer: (A)

59. lim
x

x
x0

1Sin

 (A) 0 (B) 1

 (C)  (D) does not exist

Solution: Put   Sin 1 x so that   0 as x  0 and 

x  sin . Therefore

lim lim
sinx

x
x0

1

0
1

Sin

Answer: (B)

60. lim
cos

tanx

x

x1 2

1

 (A) 0 (B) 
1

2

 (C) 1 (D) 
1

2

Solution: Let

f x
x

x

x x

x
( )

cos

tan

( cos )cos

sin

1 1
2

2

2
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( cos )cos

cos

cos

cos

1

1 1

2

2

2x x

x

x
x

Therefore

lim ( ) lim
cos

cos

cos ( )

cos

( )

( )

x x
f x

x
x1 1

2

2

2

1

1

1

1 1

1

22

Answer: (D)

61. lim
/

/x

x

x1

1 3

2 3

1

1

 (A) 
1

2
 (B) 

1

3

 (C) 
1

6
 (D) 

1

6

Solution: We have

x

x

x
x

x

x

1 3

2 3

1 3

2 3

1

1

1

1

1

1

/

/

/

/

Therefore

lim lim lim
/

/

/

x x x

x

x
x

x

x
1

1 3

2 3 1

1 3

1

1

1

1

1

11

12 3x /

1

3
1

2

3
1

1

2

1 3 1

2 3 1

( )

( )

( / )

( / )

Answer: (A)

62. lim(sec tan )
x

x x

2

 (A) 1 (B) 0

 (C)  (D) 1/2

Solution: We have

lim(sec tan ) lim
sin

cosx x

x x
x

x
2 2

1

lim

cos

sinx

x

x2

1
2

2

lim

sin

sin cosx

x

x x
2

22
4 2

2
4 2 4 2

lim

sin

cosx

x

x
2

4 2

4 2

sin

cos

4 4

4 44

0

ALITER

lim(sec tan ) lim
sin

cosx x

x x
x

x
2 2

1

lim
sin

sin

lim
sin

sin

x

x

x

x

x
x

2

2

2

1

1

1

1

1 1

1 1
0

Answer: (B)

63. If 

f x
x x

x x
( )

( )( )2 3 1

2 32

then lim ( )
x

f x
1

 is equal to

 (A) 0 (B) 10

 (C) 
1

10
 (D) 

1

10

Solution: f (x) is defined in a deleted neighbourhood 1. 

Also

f x
x x
x x

x

x x
( )

( )( )

( )( )

( )

( )( )

2 3 1

2 3 1

2 3

2 3 1

Therefore

lim ( )
( )( )x

f x
1

2 3

2 3 1 1

1

10

Answer: (D)

64. Let

g x
x x

x
( )

tan tan

cos[ ( / )]

3

4

Then lim ( )
x

g x

4

 is

 Worked-Out Problems
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 (A) 2 2  (B) 4 2

 (C) 4 (D) 8

Solution: g(x) is defined in a neighbourhood of /4 

except at /4. Now,

g x
x x x

x x

x x

( )
tan (tan )(tan )

( / )(cos sin )

tan (tan )(si

1 1

1 2

2 1 nn cos )

cos (cos sin )

tan (tan )

cos

x x
x x x

x x
x

2 1

Therefore

lim ( )
( )( )

/
( )

x

g x

4

2 1 1 1

1 2
2 2 4

Answer: (C)

65. lim ( )
x

x x x2 1

 (A) 
1

2
 (B) 

 (C) 0 (D) 1

Solution: We have

lim ( ) lim
( )

lim

x x

x

x x x
x x x

x x

x

2
2 2

2

2

1
1

1

1

1
1

1

1

11 1

1

2

Answer: (A)

66. lim ( )
x

x x2 3 52
 is

 (A)  (B)  

 (C) 0 (D) 10

Solution: We have 

lim ( ) lim

lim

x x

x

x x
x x

x x
2 3 5

2 3 25

2 3 5

2
2 2

2

223 3

2 3 5

23
3

2
3

5

2

2

2

x

x x

x
x

x
x

x
lim

( )

2 5

Answer: (B)

67. lim
x

x
x

2 3

4 3

2

 (A) 
1

2
 (B) 

1

2 2

 (C)  (D) does not exist

Solution: As x is positive, we have

lim lim
x x

x
x

x

x

2 3

4 3

2
3

4
3

2

4

1

2 2

2 2

Answer: (B)

68. lim
cos

( sin ) /
x

x

x
2

2 31

 (A) 0 (B) 1

 (C)  (D) 1

Solution: Let

f x
x

x
( )

cos

( sin ) /1 2 3

Put   ( /2)  x so that  0 as x  /2. Now 

f x( )

cos

sin

sin

( cos )

/

/

2

1
2

1

2 3

2 3

2
2 2

2
2

2

2 3 4 3

1 3

1

sin cos

sin

cos

sin

/ /

/

/33

2

0as

Answer: (C)

69. lim
x

x x

x x x

4 9 7

3 1

5

5 4 2

 (A)  (B) 0

 (C) 4/3 (D) 7
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Solution: We have

lim lim
x x

x x

x x x
x x

x x x

4 9 7

3 1

4
9 7

3
1 1 1

5

5 4 2

4 5

3

4

3

∵ lim
x nx

n
1

0 when is a positive integer

Answer: (C)

Let

P x a a x a x a x an
n

n( ) ... ,0 1 2
2 0

and Q x b b x b x b x bm
m

m( ) ... ,0 1 2
2 0

Then

lim
( )

( )x

n

m
P x
Q x

a

b
n m

n m

if

if0

When n  m, then 

lim
( )

( )x

n

m

n

m

P x
Q x

a

b

a

b

if 

if

0

0

QUICK LOOK

70. lim
x

x

x x

8

3 10 2

 (A) 0 (B)  

 (C)  (D) 1

Solution: We have

lim lim
x x

x

x x
x x

x x

8

3 10

1 8

3 1
10

2

2

2

00

0 0 10
0

Answer: (A)

71. lim
x

x x
x

9 2

4 11

2

 

 (A) 1/4 (B) 3

 (C) 3/4 (D) 1/2

Solution:

lim lim
x x

x x
x

x

x

9 2

4 11

9
2

1

4
11

9 0 1

4 0

1

2

2 2

Answer: (D)

72. Let f x x x x( ) ( ).4  Then lim ( )
x

f x

 (A) exists and is equal to 2 (B)  exists and is equal 

to 0

 (C) exists and equals to 
1

2
 (D) does not exist

Solution: f (x) is defined for all x  0. We have

f x
x x x

x x

x

x x
x

( )
( )4

4

4

4

4

1
4

1

Therefore

lim ( )
x

f x
4

1 0 1

4

2
2

Answer: (A)

73.  Let f x x x x x( ) { }.3 2 4 1 2  Then lim ( )
x

f x  

is equal to

 (A) 
1

2 2
 (B) 

1

4 2

 (C) 
3

4 2
 (D) does not exist

Solution: We have 

f x
x x x x

x x x

x x x

x x x

x x

( )
{ }

{ }

(

3 2 4 2

2 4

3 4 2

2 4

3 4

1 2

1 2

1

1 2

1

1 2 1

1 2 1

4

2 4 4 2

3

2 4 4 2

x

x x x x x

x

x x x x x

)

[ ][ ]

[ ][ ]

1

1 1
1

2 1
1

1
4 4x x

 Worked-Out Problems
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1

1 1 2 1 1

1

2 2 2

1

4 2

( )( )

( )

Answer: (B)

74. lim
( )

/

/x

x x

x x

20 2 3

2 4 3 8 4

1 3

1 3

 (A) 1 (B) 0

 (C) 
3

2
 (D) 10

Solution: Let

f x
x x

x x
( )

( )

/

/

20 2 3

2 4 3 8 4

1 3

1 3

Dividing numerator and denominator by x  we get

f x x x

x x x x x

( )
/

20
2

3

2
4

3 8 4

6

1 3

Therefore

lim ( )
( ) /x

f x
0 2 0

0 4 0 0 0

2

2
1

1 3

Answer: (A)

75. lim[ ]
x

x x x2 44 16  

 (A) 4 (B) 8

 (C) 2 (D) 16

Solution: We have

f x x x x

f x
x x x

x x x

x

x x

( )

( )
( ) ( )

2 4

2 2 4

2 4

2

2

4 16

4 16

4 16

4 16

4 164x

4
16

1
4

1
16

4 0

1 0 1 0

4

2
2

2

2 4

x

x x

Answer: (C)

Try it out  In place of 4 (  22) and 16 (  24) if 

there are a2 and a4, respectively, then the answer is 

a2/2.

76. lim
x

x x
x

3 1 1

2 3

2 2

 (A) 
3

2
 (B) 

3 1

2

 (C) 
3 1

2
 (D) does not exist

Solution: We have

lim lim
x x

x x
x

x x

x

3 1 1

2 3

3
1

1
1

2
3

3 0 1 0

2 0

3

2 2 2 2

11

2

Answer: (B)

Try it out If x  0, then x x2 , and so the 

limit of the above function as x   is ( )/ .1 3 2  

Hence, 

lim
x

x x
x

3 1 1

2 3

2 2

is meaningless.

77. lim
x x

x

x0

1

2

1 2

1
Sin

 (A) 
1

2
 (B) 1

 (C) 2 (D) 2

Solution: In a neighbourhood of zero, 

Sin Tan1

2

12

1
2

x

x
x

Therefore

lim lim
x xx

x
x

x0

1

0

11 2
Sin

Tan

2
0

1lim
tan

where Tan x

2  1  2

Answer: (C)
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78. lim tan
x

x
x

2
3

2

1

 (A) 1 (B) 
3

2

 (C) 
2

3
 (D) 

Solution: We have

lim tan lim

tan

/x

x
x x

x

x
2

3

2

1

2

3

2

3 2
31

3

2

3

2

3

2
1

3

2

0
lim

tan
where 

x  

Answer: (B)

79. lim
tan sin

tan sin

x

x xa a
x x0

 is equal to (a  0)

 (A) loge a (B) 1

 (C) 0 (D) 

Solution: We have

lim
tan sin

lim
tan sin

tan sin
sin

tan sin

x

x x

x

x
x xa a

x x
a

a
x0 0

1

xx

lim( ) lim ( tan sin )sin

x

x

t

t

a
a

t
t x x

0 0

1
where

 a0  loge a  loge a [By part (3) of Important Formulae] 

Answer: (A)

80. lim
log( ) log( )

x

x x
x0

6 6

 (A) 
1

2
 (B) 

1

3

 (C) 1 (D) 2

Solution: We have

lim
log( ) log( )

lim

log

/

li

x x

x x
x

x

x0 0

6 6

1

6
1

6

6

mm

log

/x

x

x0

1

6
1

6

6

1

6
1

1

6
1

1

3

Here we have made use of part (2) of Important Formulae.

Answer: (B)

81. lim
cosx

x x x

x0

12 3 4 1

2 7 3

 (A) loge12 (B) log loge e3 4

 (C) (log log )e e3 4 1  (D) 6 3 4log loge e

Solution: The given limit can be written as

lim
( )( )( cos )

cos

lim

x

x x

x

x x

x
x

x

0

0

3 1 4 1 2 7 3

2 2

3 1 4 1

xx
x x

x

x x
x

x x

( cos )

sin

lim

2 7 3

4
2

3 1 4 1

2

2

0

(( cos )

[sin( / ) ( / )]

log log

2 7 3

2 2

3 4 6

2

x

x x

e e

We have used part (3) of Important Formulae.

Answer: (D)

82. lim
sinx

x x x

x x0

1 2 5 10

 (A) loge 10 (B) log loge e5 2

 (C) log loge e5 2  (D) (log log )e e5 2 1

Solution: We have

Given limit = lim
( )( )

sin

lim

x

x x

x

x x

x x

x x

0

0

5 1 2 1

5 1 2 1 x
x

e e

e e

sin

log log

log

5 2 1

5 2log

Answer: (C)

83. If G x x( ) ,25 2  then 

lim
( ) ( )

x

G x G
x1

1

1

 (A) 
1

2 6
 (B) 

1

24

 (C) 
1

2
 (D) 

1

2 3

Solution: We have

 Worked-Out Problems

G x G
x

x
x

( ) ( ) ( )1

1

25 24

1

2
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[ ]

[ ]

( )

25 24

1

25 24

1

1

25 24

1

25 24

2

2

2

2

x
x

x
x x

x

x

Therefore

lim
( ) ( )

x

G x G
x1

1

1

1 1

24 24

1

24

1

2 6

Answer: (A)

84. lim
x

xx
x

6

1

4

 (A) e6 (B) e5

 (C) e4 (D) 

Solution: We have

x
x

x

x

x

x

x

x

x

6

1

1
6

1
1

1
6

1
1

4

4

1
6

1
1

1
6

1
1

6 6
4

x

x

x

x

x

x

/

Therefore

lim
x

xx
x

e
e

e
6

1

1 0

1 0

4 6
5

We have used part (1) of Important Formulae.

Answer: (B)

85. lim

/

x

x
x

x0

2

2

1
1 6

1 3

2

 (A) e2 (B) e9

 (C) e3 (D) 

Solution: We have

1 6

1 3

1 6

1 3

2

2

1 2 1 6 6

2 1 3 3

2
2

2

x

x

x

x

x x

x

/ /

/

[( ) ]

[( ) ]

Therefore using part (1) of Important Formulae we get

lim

/

x

x
x

x

e

e
e

0

2

2

1 6

3

31 6

1 3

2

Answer: (C)

86. lim tan

/

x

x

x
0

1

4

 (A) e (B) e2

 (C) 1 (D) 

Solution: Let

f x x

x
x

x

x

x

( ) tan

tan

tan

( tan )

/

/

4

1

1

1

1

1

11

11

/tan tan /

/tan tan /
( tan )

x x x

x x x
x

Using parts (1) and (7) of Important Formulae we get

lim ( )
x

f x
e

e
e

0

1

1

2

Answer: (B)

87. lim(cos )cot

x

xx
0

 (A) 1 (B) 

 (C) e (D) 0

Solution: We have

(cos ) [( cos ) ]cot /(cos ) (cos )/tanx xx x x x1 1 1 1 1

Take

f x x g x
x

x
x( ) [ (cos )] ( )

cos

tan

/(cos )1 1
11 1 and

We know that [by part (1) of Important Formulae]

lim ( )
x

f x e
0

Now,

g x

x
x

x

x
x

x
x( )

sin cos

sin

sin cos

cos

2
2 2

2

0 0

2

as

Therefore, by part (7) of Important Formulae

lim( ( )) ( )

x

g xf x e
0

0 1

Answer: (A)
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88. lim
( sin )( )cos

( )x

x x x

x
2

3 3

4

1 8

2

 (A) 
2

16
 (B) 

3

16

2

 (C) 
2

16
 (D) 

3

16

2

Solution: Let

f x
x x x

x

x x x x

( )
( sin )( )cos

( )

( sin )cos ( )(

1 8

2

1 2 4 2

3 3

4

2 xx

x

x x x x

x

2

4

2 2

3

2

1 4 2

2

)

( )

( sin )cos ( )

( )

Therefore

 lim ( ) lim
( sin )cos

( )
( )

x x

f x
x x

x
2 2

3

21

2
3  (1.62)

Put 2x    y so that y  0 as x   / 2. Therefore now

( sin )cos

( )

sin cos
1

2

1
2 2

1

3 3

x x

x

y y

y

cos sin

sin sin

y y

y

y

y

y

y

2 2

2
4 2

3

2

2

2 4
4

1

16
2
2

1

2

2
2

sin

/

sin

/

y

y

y

y

 
1

16
4
4

2
2

2

sin

/

sin

/

y

y

y

y
 (1.63)

Therefore from Eqs. (1.62) and (1.63)

lim ( )
x

f y
0

23

16
1 1

Answer: (D)

89. lim
tan( / )

x

x

x1

2

2
1

 (A) e2  (B) e2/

 (C) e 2/  (D) e /2

Solution: Suppose

 
f x

x x

x x

( )
tan( / ) tan( / )

2
1

1 1
1

2 2

Put y  1  (1/x) so that y  0 as x  1. Therefore

f x y

y

y

y

y

y y y

( ) ( )

( )

[( ) ]

tan( / )( )

cot( / )

/ cot( /

1

1

1

2 1

2

1 2))

/ [( / )/tan( / )] ( / )[( ) ]1 1 2 2 2y y y y

Therefore using part (7) of Important Formulae we have

Given limit e e1 2 2/ /

Answer: (B)

90. If 

lim
x

xae b
x0

2

then (a, b) is equal to

 (A) (2, 2) (B) ( 2, 2)

 (C) (2, 2) (D) ( 2, 2)

Solution: We have

lim
x

xae b
x0

2

Since the denominator x  0 as x  0, by Corollary 1.2 

we have

lim( )
x

xae b
0

0

which implies that a  b  0. Therefore by part (3) of 

Important Formulae

2
1

0 0
lim lim
x

x

x

xae a
x

a
e

x
a

Hence

a  2  b

Answer: (C)

91. If lim( ) ,/

x

xax bx e
0

2 1 31  then

 (A)  a  3 and b is any real number

 (B) a 3 2/  and b is any real number

 (C) b  3 and a is any real number

 (D) a  1 and b is any real number

Solution: We have

 Worked-Out Problems



96 Chapter 1   Functions, Limits, Continuity, Sequences and Series

[ ( )] [ ( )]

[ ( )

/ ( )/ ( )1 1

1

2 1 2

2

2 2

ax bx ax bx

ax bx

x ax bx x ax bx

]][ /( )][( )/ ]1 2 2ax bx ax bx x

Using parts (1) and (7) of Important Formulae, the given 

limit  ea  e3  a  3.

Answer: (A)

92. If 

lim
x

x
x

ax b
2 1

1
0

then (a, b) value is

 (A) (1, 1) (B) (1, 1)

 (C) ( 1, 1) (D) (1, 0)

Solution: Let

f x
x
x

ax b

x x ax b
x

a x a b x b

( )

( ) ( )( )

( ) ( )

2

2

2

1

1

1 1

1

1 1

xx 1

Put y  1/x so that y  0 as x  . Therefore

f x f
y

a a b y b y
y y

( )
( ) ( ) ( )

( )

1 1 1

1

2

Now,

lim ( )

lim
( ) ( ) ( )

( )

x

y

f x

a a b y b y
y y

0

1 1

1
0

0

2

Since the denominator tends to zero as y  0, by Corollary 

1.2 the numerator must tend to zero as y  0. Therefore

1  a  0 or a  1

0
1

10
lim

( ) ( )
( )

y

a b b y

y
a b

a b

Hence (a, b)  (1, 1).

Answer: (B)

Note:  Under the given hypothesis, the function given in 

Problem 91 becomes 

x
x

x
x

x
2 1

1
1

2

1
0 as

93. lim
sin( / )

x

x x x

x

3 2

2

1 2

1 3
 

 (A) 0 (B) 1

 (C)  (D) 
2

3

Solution: We have

lim
sin

lim
sin

x x

x
x

x

x

x
x

x

3 2

2

2

1
2

1 3

1
2

1
3

1 2

0 3

1
1∵ lim sin

x
x

x

3

3
1

Answer: (B)

94. If n is a fixed positive integer then 

lim( ... )sec sec sec sec cos

x

x x x x xn

2

1 2 3
2 2 2 2 2

 (A) n (B) 

 (C)  (D) n2

Solution: It is known that K nx xsec sec2 2

 for K  1, 2,  

3, …, n.  Therefore

( ... ) ( )sec sec sec cos sec cos cos1 2
2 2 2 2 2 2 2x x x x x x xn n n n n

Again

( ... ) ( )sec sec sec cos sec cos1 2
2 2 2 2 2 2x x x x x xn n n

Therefore

n n n
x x

x x x x

x

lim( ) lim( ... )

lim

sec sec sec cos

2 2

1 2
2 2 2 2

22

2

( )cosn n nx

By squeezing theorem, we have

lim( ... )sec sec sec cos

x

x x x xn n

2

1 2
2 2 2 2

 

Answer: (A)

Try it out  

lim( ... )sin

x

x x x xn n
0

1 2
2 2 2 2cosec cosec cosec
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Limits of Sequences

95. Let 

x
n

n
n

1 2 3
2

...

for n  1, 2, 3, …. Then the value of lim
n

nx  is

 (A) 
1

2
 (B) 1

 (C)   2 (D)  

Solution: We have

x
n n

n n
nn

( )1

2

1

2
1

1 1

22
as

Answer: (A)

96. If

y
n

n
n

1 2 32 2 2 2

3

...

then lim
n

ny  is equal to

 (A) 
1

6
 (B) 

1
3

 (C) 
2

3
 (D) 

Solution: We have

y
n n n

n n n
n

n
( )( )

( )

.

1 2 1

6

1

6
1 1 2

1 2

6

1

33

as

Answer: (B)

97. Let 

z
n

n
n

1 2 33 3 3 3

4

...

Then lim
n

nz  is

 (A) 1 (B) 
1

2

 (C) 
1

4
 (D) 0

Solution: We have

z
n n

n n
nn

2 2

4

2
1

4

1

4
1

1 1

4

( )
as

Answer: (C)

98.  Let x be a real number and [ ] denote the integral 

part function. Then 

lim
[ ] [ ] [ ] ... [ ]

n

x x x nx

n

1 2 3
2

 (A) 
x
2

 (B) x

 (C) 0 if 0  x  1 (D)  if x  1

Solution: By the definition of the integral part

x  1  [x]  x

2x  1  [2x]  2x

3x  1  [3x]  3x

…………………

…………………

nx  1  [nx]  nx

Adding all the inequalities we have

x n n x x nx

x n

( ... ) [ ] [ ] ... [ ]

( ... )

1 2 3 1 2

1 2

x
n n n x x nx

xn n
2

1 1 2
1

2
( ) [ ] [ ] ... [ ]

( )

Dividing throughout by n2, we get

x
n n

x x nx

n

x
n2

1
1 1 1 2

2
1

1
2

[ ] [ ] ... [ ]

Taking limit as n   and using squeezing theorem 

we have

lim
[ ] [ ] ... [ ]

n

x x nx

n

x1 2

22

Answer: (A)

Try it out On similar lines (i.e., by using the con-

cept of [x]) we can show that

1. lim
[ ] [ ] ... [ ]

n

x x n x

n

x1 2

3

2 2 2

3

2. lim
[ ] [ ] ... [ ]

n

x x n x

n

x1 2

4

3 3 3

4

99. Let x be a real number and 

a
n

x x x nx nn
1

1 2 2 3 3
2

{[ ] [ ] [ ] ... [ ]}

then lim
x

na  is equal to (where [·] denotes integral 

part)

 (A) 
x
2

1 (B) 
x 1

2

 Worked-Out Problems
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 (C) 
x 2

2
 (D) 

x 2

2

Solution: We know that [x  y]  [x]  [y] if one of x 
or y is an integer. Therefore

[x  1]  [x]  1

[2x  2]  [2x]  2

[3x  2]  [3x]  3

…………………

…………………

[nx  n]  [nx]  n

Adding all the equations and dividing by n2, we get

lim lim {[ ] [ ] ... [ ] ( )}

lim
[ ] [

n
n

n

n

a
n

x x nx n n

x

1
2

1

2
1

2

22 1

2

2

1

2

2 2

x nx

n

n n

n

x

n

] ... [ ]
lim

( )

(by Problem 98)

Answer: (B)

100. Let 

x x
x

x
nn

n

n
1 11

4 3

3 2
1and for

If lim
n

nx  exists finitely, then the limit is equal to

 (A) 2  (B)  1

 (C)  2 (D) 2 1

Solution: We have

x x

x
x
x

1 2

3
2

2

1
4 3

3 2

7

5

4 3

3 2

4 3
7

5

3 2
7

5

41

29

,

x2

We can easily verify that xn  xn 1 and hence {xn} 

is strictly increasing sequence of positive terms. Let 

lim .
n

nx l  Therefore

l x

x
x

x

x

n
n

n

n

n

n
n

n
n

lim

lim

lim

lim

1

4 3

3 2

4 3

3 2

4 3

3 2

l
l

Hence

3l  2l 2  4  3l

or l l x nn
2 2 2 0( )∵

Answer: (A)

Note: It can be seen that 2  is the l.u.b. {xn} (see Theo-

rem 1.42).

101.  Let x0  0, x1  1 and x x xn n n1
21 for n  1. 

Then 

lim
n

n
n

x

2 1

 (A) 
4

 (B) 
2

 (C) 
2

 (D) 
4

Solution: {xn} is an increasing sequence. Define 

n  Cot 1 (xn) or xn  cot n

Now

x x0 1 2
0

2
1

2
cot , cot

and in general

xn n n

n

n

n

n

1

1

2

4 2

cot

cos

sin

cot

cot

cosec

∵ x xp 1
4 8 4 2

2cot , cot cot , etc.

Therefore

xn
n

n

n

n
n

2

4 2

2

1

2
4 2

1

1

1

1

1

cot

tan
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1

4 2
tan nn

n

x
x

1

14 2

4

4 1

tan

where x
n4 2

0
1

 as n  . Therefore

lim
n

nx
4

1
4

Answer: (D)

102. Let a0  1, a1  2 and

n(n  1)an  1  n(n  1) an  (n  2) an  1

for n  1. Then lim
n

na  is

 (A) 1 (B) 0

 (C)  (D) 
1

e

Solution: From the given relation we have

1 2 0 1 2 12 0a a( )

a2

1

2

1

2

and 6 2 0 2
1

2
13 2 1a a a

a3

1

6

1

3

Assume that a kk 1/  for all k  2, 3, …, m. Now

m m a m m a m a

m m
m

m
m

m
m
m

m m m( ) ( ) ( )

( )

1 1 2

1 2

1

1

2

2

1

1 1

(( ) ( )m m
m m

1 2

1

1

1

Therefore

a
m m m mm 1

1

1 1

1

1( )

Hence by complete induction, a kk 1/  for k  2.

 Therefore

lim lim
n

n
n

a
n
1

0

Answer: (B)

103. Let x  1 and for each positive integer n, define

s x
x

x
x

x x

x

x x x

x

x

n

n

( )
( )( ) ( )( )( )

...

(

1 1 1 1 1 1

1

2

2

4

2 4

2 1

))( )...( )x x
n2 21 1

1

Then lim ( )
n

ns x  is equal to

 (A) 1 (B) 0

 (C) x (D) 
1

1x

Solution: We have 

s x

x
x

x

x

x

x

x

x

x

x x

n
n

n

( )
...

1 1 1 1 1

1

1

1

1

2

2

4

4

16

2

2

2

1

1

1

1

1

1

1

1

1

1

1

1

2 4

2 2

2

1

x x

x x

x x

n n

n

...

1

Therefore

s x
x

x
n n( ) 1

1

12

Since x  1, we have lim( )
n

x
n2 1  so that 

x
nn2 1

0 as

Therefore 

lim ( )
n

ns x 1 0 1

Answer: (A)

104.  The sequence {an} is defined as a1  1 and an  

n(an  1  1) for n  2. If 

P
a a an

n

1
1

1
1

1
1

1 2

...

then lim
n

nP  equals

 (A) 1 (B) e 1

 Worked-Out Problems
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 (C) e  1 (D) e

Solution: We have 

P
a

a
a

a

a

a

a
a

a

a

n
n

n

1

1

2

2

2

1

3

1 1 1

2 3

...

22
1

1

1

1
1 2...

( )

a

n a

a

k
a k

a

n

n

n

k
k

n

∵ for

11

 

(1.64)

Now

a

n

n a

n

a

n

a

n n

n n

n n

1

1

1 1

1

1

1

1

( )( )

Therefore

a a2 1

2 1

1

1

a a3 2

3 2

1

2

......................

......................

a

n

a

n n
n n1

1

1

Adding all the above equations we get

a

n
a

n
n 1 1

1 1

1

1

1

2

1...

From Eq. (1.64) we have

P
n

an 1
1

1

1

2

1
11

... ( )

But the number e is the sum of the infinite series 
1

0
nn

 

(this is to be assumed). Note that an is defined as the 

limit of the sequence of the partial sums {sn} where 

s a a an n1 2
...  (see Definition 1.38). Thus 

lim
n

nP e

Answer: (D)

105. Suppose x is real. Define 

f x
x

( )
2

1

f x f f x

f x f f x

( ) ( ( ))

( ) ( ( ))

( )

( ) ( )

2

3 2  

and in general 

f n 1 (x)  f ( f  (n)(x))

for n  1 where 

f x f x
x( )( ) ( )1

2
1

Then lim ( )( )

n

nf x  is equal to

 (A) 1 (B) 2

 (C) x (D)  
1

1 x

Solution: We have

f x f f x f f x
f x x( ) ( )( ) ( ( )) ( ( ))
( )2 1

22
1

2

1

2
1

f x f f x
x x( ) ( )( ) ( ( ))3 2

2 3 2

1

2 2

1

2
1 1

2

1

2

1

2
1

By induction we can see that

f x
x

x

x

n
n n n

n

n

n n

( )( ) ...
2

1

2

1

2

1

2
1

2

1
1

2

1
1

2

2
2

1

2

1 2

1

Now

lim lim ( )( )

n n n

nf x
1

2
0 0 02 2

Answer: (B)

106.  Define an  n2  20 for n  1, 2, 3,… . Let dn be the 

greatest common divisor of an and an  1 and d be 

the least common multiple of dn for n  1, 2, 3, … . 

Then the infinite sum of the series 

d
d d d
4 4 42 3

...

is

 (A) 162 (B) 9

 (C) 108 (D) 54
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Solution: We have

an  1  an  2n  1

This implies dn divides 2n  1 for all n  1, 2, 3, …. Now

3an  an  1  4n2  2n  81  2n (2n  1)  81

This implies dn divides 81 and 81 will be the L.C.M. of dn 

for n  1, 2, 3, … so that d  81. Now

d
d d d
4 4 1

1

4

81
4

3
108

2
...

( )

Answer: (C)

107.  Let a1 = 1, a2 = 1 + a1, a3 = 1 + a1a2, …, an+1 = 1 + 

a1a2 … an.  Then 
1

1
ann

 (A) 1 (B) e

 (C) 2 (D) 
1

2

Solution: Let 

s
a a an

n

1 1 1

1 2

...

2
1 1 1 1

1
1 2 3

1a a a a
a

n

... ( )∵

2
1 1 1

11 2

1 2 3 4
1 2

a a
a a a a a

a a
n

... ( )∵

2
1 1 1 1

1 2 3 4a a a a an

...

2
1 1

11 2 3

1 2 3 4
1 2 3

a a a

a a a a a
a a a

n

... ( )∵

2
1 1 1

1 2 3 4a a a a an

...

..................................................

..................................................

Finally 

s
a a a

a a an
n

n2
1

1
1 2

1 2...
...and

Therefore

lim
n

ns 2 0 2

Answer: (C)

108. For each positive integer n, let

s
n

n n nn
3

1 2 4

4

2 3 5

5

3 4 6

2

1 3
...

( )( )

Then lim
n

ns  equals

 (A) 
29

6
 (B) 

29

36

 (C) 0 (D) 
29

18

Solution: Let 

u
k

k k k

k
k k k k

k k
k k k

k
2

1 3

2

1 2 3

4 4

1 2

2

2

( )( )

( )

( )( )( )

( )( ))( )

( )

k

k k k

3

1 3 4

1

2 3

3

1 2 3

4

1 2 3

1

2

1

3

( )( ) ( )( )( )

( )( )( )

k k k k k

k k k k

k k
3

2

1

2 3

1

1 2

4

3

1

1 2 3

( )( ) ( )( )

( )( )( )

k k k k

k k k
11

1 2k k k( )( )

( . )see Sec. 5 5, Vol. 1, p. 225

Now, put k  1, 2, 3, …, n and add. Thus

s u u u

n n n

u n1 2

1

3

1

3

3

2

1

2 3

1

2 3

4

3

1

...

( )( )

(( )( )( )n n n1 2 3

1

1 2 3

Therefore

lim
n

ns
1

3

3

12

4

18

29

36

Answer: (B)

109. lim
cosn

n n

n n
1

1
2

2

 is equal to

 (A) 1 (B) e

 (C) e2 (D) does not exist

Solution: Put m  n2  cos n so that m    as n  . 

 Worked-Out Problems
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Now

n n
m

n n

n n

n
n

n

n

2 2

2

2

1
1

1

1

cos

cos
as

because

lim lim
cos

n nn
n

n

1
0 0

2
and

Therefore

lim
cos

lim

( )/

n

n n

n

m n n m

n n m
1

1
1

1
2

2
2

e

Answer: (B)

110. 
n
nn

2

1
!

 equals

 (A) e (B) e2

 (C) 2e (D) 

Solution: Let 

u
n
n

n
n

n
n n nn

2

1

1 1

1

1

2

1

1

for n  2.  Therefore

sn k
n

n

u
n n

1

1 1
1

1

1

1

1

2

1

2

1

1
...

2 1
1

1

1

2

1

1

1

1
...

n n

Hence

lim
n

ns e2

Answer: (C)

111.  Let xn 2 2 2 2...  (n square roots). 

Then lim
n

nx  is equal to

 (A) 8 (B) 16

 (C) e2 (D) 4

Solution: We have x xn n2 1 . Suppose lim .
n

l  

Then

 l l2

l 2  5l  4  0

(l  1) (l  4)  0

l  1 or 4

But xn  2 and {xn} is an increasing sequence and hence l 
 1. Thus l  4.

Answer: (D)

112. lim[ log( ) log( )]
n

n n2 3 12  is equal to

 (A) 0 (B) log 3

 (C) 2 log 3 (D) 4 log 6

Solution: The given limit is

lim[log( ) log( )] lim log

lim log

n n

n

n n
n

n

n

9 1
9

1

9

1
1

2 2
2

2

22

9

1 0

9 2 3

log

log log

Answer: (C)

113. lim
sin

n

n
n

n
1

1
2

8

2

3

 is equal to

 (A) 4 (B) e4

 (C) 1 (D) 

Solution: We have

 Given limit lim

sin

/

n

n
n

n

n
e1

1
2

4
2

2
2

44 1 4e

Answer: (B)

114. If 
1

62

2

1 nn

,  then 
1

2 1 2
1 ( )nn

 is

 (A) 
2

8
 (B) 

2

6

 (C) 
2

3
 (D) 

2

24

Solution: We have 

1

2 1

1 1

2

6

1

4

1

6 24

2
1

2 2
11

2

2
1

2 2

( ) ( )n n n

n

n nn

n

2

8
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115. If 

lim
...

n

n

n

1 22 2 2

3

and 

lim
( ) ( ) ( ) ... ( )

n

n n

n

1 1 2 2 3 33 2 3 2 3 2 3 2

4

Then

 (A)   3  (B) 2   3

 (C) 4   3  (D) 3   4

Solution: We have

lim
( )( )

lim
...

n

n

n n n

n

n

n

1 2 1

6

2

6

1

3

1 2 3

3

3 3 3 3

4
lim

...

lim
( )

lim
( )

n

n n

n

n

n n

n

n n

1 2 3

1

4

1

2 2 2 2

4

2 2

4

(( )2 1

6

1

4
0

4

n

n

Therefore 3   4 .

Answer: (D)

116. lim cos
n

K

n

n
K

n
1

2
0

1

 is

 (A) 1 (B) 0

 (C) 
2

 (D) does not exist

Solution: First we show that

cos cos( ) cos( ) cos( ( ) )

cos
( ( ) )

si

2 1

1

2

n

n
nn

sin

n
2

2

Let 

s ncos cos( ) cos( ) cos( ( ) )2 1

Multiply both sides with 2 sin ( /2). Therefore 

s

n

2
2

2
2

2
2

2 1

sin cos sin cos( )sin

... cos( ( ) )ssin

sin sin

2

2 2

sin s
2

iin

...
sin ( )

sin ( )

2

1
2

1

n

n
2

2 1
2 2

2

sin ( ) sinn

ccos

( )

sin

2 1
2 2

2 2

n
n

Therefore

s

n n
cos

( )
sin

sin

1

2 2

2

In the given problem,   0 and    /2n. Therefore

s
n n

n
n

n
n

n cos cos cos ... cos
( )

cos

( )

0
2 2

1

2

0
1

2
2

sin

sin

cos( ) sin

sin

n
n

n

n
n

4

4

1
4 4

44

1

2 4 4

4

n

n

n

cos

sin

Therefore

lim cos lim

cos

n
r

n

nn
r

n
n1

2

1

2

4 4

1

1

ssin

.cos

4

4

4

1

2 4

1

n

n

44 2

Answer: (C)

 Worked-Out Problems
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117. Let 

P
n

n
nn

2 1

2 1

3 1

3 1

1

1
2 3 4

3

3

3

3

3

3
... ; , , , ....

Then lim
n

nP  is equal to

 (A) 
1

2
 (B) 

7

11

 (C) 
3

4
 (D) 

2

3

Solution: We have

k

k

k k k

k k k

k
k

k k

k

3

3

2

2

2

1

1

1 1

1 1

1

1

1

1

( )( )

( )( )

( )) ( )2 1 1k

for k 2, 3, …, n. Therefore

P
n

n
n
n

n

n
2 1

2 1

3 1

3 1

4 1

4 1

2 1

1

7

3

13

7

21

13

...

...
22

2

1

1 1 1

1

3

2

4

3

5

2 1

1

7

3

n

n n

n
n

n
n

( ) ( )

... 113

7

21

13

1

1 1 1

2

1

1

2

2

2

...
( ) ( )

( )

n n

n n

n n
n n

33

2

3
1

1

1n n( )

Therefore

lim ( )
n

nP
2

3
1 0

2

3

Answer: (D)

118.  If an and bn are positive integers and a bn n2
n2 2( ) , then 

lim
n

n

n

a

b

 (A) 2 (B) 2

 (C) e 2  (D) e2

Solution: We have

a b

a b

n n
n

n n
n

2 2 2

2 2 2

( )

( )

Therefore

an
n n1

2
2 2 2 2[( ) ( ) ]

and bn

n n[( ) ( ) ]2 2 2 2

2 2

Therefore

a

b
n

n

n n

n n

n

2
2 2 2 2

2 2 2 2

2

1
2 2

2 2

( ) ( )

( ) ( )

1
2 2

2 2

n

Hence

lim
n

n

n

a
b

2
1 0

1 0

2 2

2 2
1

2

∵

Answer: (B)

119. If

lim[ log( )] sin ,( / )

x

xx b b b
0

2 1 21 1 2 0

and  ( ,  ] then the value of  is

 (A) 
4

 (B) 
3

 (C) 
6

 (D) 
2

 (IIT-JEE 2011)

Solution: Let  

f x x b

x b

x

x b

( ) [ log( )]

[ log( )]

/

log( )

1 1

1 1

2 1

2

1

1 2

llog( )1 2b

Therefore

lim ( ) log( )

x

bf x e b
0

1 22

1

 1  b2  2b sin2 

2b sin2   1  b2  2b (  b  0)

 b  1 and sin2   1

Therefore

2

Answer: (D)
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Continuity

120. If the function 

f x
x x a

x
x

b x

( ) sin

2 2
0

0

when

when

is continuous at x  0, then

 (A) a  0, b  2 (B) a  1, b  0

 (C) a  1, b  1 (D) a  0, b  0

Solution:

f x x f x f b
x

( ) is continuous at 0 0
0

lim ( ) ( )

Now

lim ( ) lim
sinx x

f x
x x a

x0 0

2 2

exists finitely and the denominator sin x  0 as x  0. 

Hence, by Corollary 1.3

lim( )
x

x x a a
0

2 2 0 0

Therefore

lim ( ) lim
sin

lim
sin

(

x x

x

f x
x x

x

x
x

x

f

0 0

2

0

2

2

0 2

1

2 00 2) b

 

Thus a  0, b  2.

Answer: (A)

121. The function 

f x

x

x
x

A x

x

x
x

( )

cos1 4
0

0

2

16 4
0

2
if

if

if

is continuous at x  0 for

 (A) A  16 (B) A  8

 (C) A  4 (D) no value of A

Solution: f is continuous at x  0 if 

lim ( ) lim ( ) ( )
x x

f x f x f A
0 0 0 0

0

(see Theorem 1.24 and Quick Look 6). Now

lim ( ) lim ( )

lim
cos ( )

( )

lim

x h
h

h

h

f x f h

h

h

0 0 0
0

0 2

0

1 4 0

0

00

2

2

0

2

2 2

2
2

2
4

8 1 8

sin

lim
sin

h

h

h
hh

Also

lim ( ) lim ( )

lim

lim
(

x h
h

h

h

f x f h

h

h

h h

0 0 0
0

0

0

0

2

16 4

2 16 44

16 16

2 16 4

2 4 4 16

0

)

lim( ( ))

( )

h

h
h

Therefore

lim ( ) lim ( )
x x

f x f x
0 0 0 0

So f (x) is not continuous for any value of A.

Answer: (D)

122.  f :� � is a continuous function such that the 

equation f (x)  x has no real solution. Let g :� �  

be defined by g (x)  f (f (x)). Then the number of 

real solutions of the equation g (x)  x is

 (A) only one (B) 0

 (C) only one in the  (D) infinite

 interval (0, 1) 

Solution: Let h(x)  f (x)  x. Since h(x)  0 has no real 

solutions, by Corollary 1.10 either h(x)  0 for all real x or 

h(x)  0 for all real x. Therefore, 

g(x)  x  (f (f (x))  f (x))  ( f (x) x)

keeps the same sign for all real x. That is the graph of  

g (x)  x can never cross the x-axis. Hence g(x)  x  0 has 

no real solution. Thus f ( f (x))  x has no real solution.

Answer: (B)
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123. Let a  0, b  0 and 

f x
a b

x
x

k x

x x

( ) if

if = 0

0

If f is continuous at x  0, then the value of k is

 (A) (log a) (log b) (B) log a  log b

 (C) log a  log b (D) 1

Solution: We have 

lim ( ) lim

lim
( ) ( )

lim

x x

x x

x

x x

x

f x
a b

x

a b
x

a

0 0

0

0

1 1

xx

x

x

x
b

x

a b

1 1

0
lim

log log

[using part (3) of Important Formulae.]

Answer: (C)

124. Let f :� �  be a continuous function such that

f x y f x f y x y( ) ( ) ( ) , �

Then, there exists a constant m such that

 (A) f (x)  mx only for integer values of x

 (B)  f (x)  mx only for positive integer values 

of x

 (C) f (x)  mx only for rational values of x

 (D) f (x)  mx for all real values of x

Solution: We have

f (x  y)  f (x)  f (y)  f (0)  0

and  f ( x)  f (x) for all x

Let f (1)  m. Then

f (2)  f (1  1)  f (1)  f (1)  2m  m(2)

f (3)  f (1  2)  f (1)  f (2)  m  2m  3m  m(3)

Hence by induction, f (n)  mn for all positive integers n. 

If n is a negative integer, then 

f ( n)   f (n)

f n f n m n n( ) ( ) ( ) ( )∵ 0

 mn

That is, f (x)  mx for all integer values of x. Now suppose 

x  p /q is a rational number, q  0 integer. Then

f (qx)  f ( p)  mp ( p is an integer)

Therefore

mp f qx f x x q f x f x q( ) ( ... ) ( ) ( ) ...times times 

mp qf x f x m
p
q

mx( ) ( )

Hence f (x)  mx for all rational numbers x.

We now suppose that x irrational.

Let {xn} be a sequence of rational numbers such that 

xn  x as n . (This is possible due to Theorem 1.49 

and the note under it.) Now, by Theorem 1.52 we have

f (xn)  f (x) as n 

But f (xn)  mxn ( )∵ xn in rational  and mxn  mx as n . 

Therefore

f (x)  mx

Thus f (x)  mx for all irrational x. Hence f (x)  mx for  

all real numbers x where m  f (1).

Answer: (D)

All straight lines y  mx (except the y-axis) are 

the graphs of the function f :� �  such that f is 

 continuous and

f x y f x f y x y( ) ( ) ( ) , �

QUICK LOOK

125. Let x  1. For each positive integer n, let

f x
x

x
x

x x

x

x x x

x

x

n

n

( )
( )( ) ( )( )( )

...

(

1 1 1 1 1 1

1

2

2

4

2 4

2 1

))( ) ... ( )x x
n2 21 1

1

for each positive integer n. Suppose f x f x
n

( ) lim ( ).

Then

 (A) f is discontinuous at 0

 (B) f is discontinuous at 1

 (C) f is discontinuous at infinitely many values of x

 (D) f is continuous for all x  1

Solution: With reference to Problem 103,

f x

x

x
x

x
n

n

n

( )

...

1
1

1
1

1

2

1

2

1

2

1

2
1

2

2 3

if

if

Case I:  x 1. That is x  1 or x  1. In this case x
n2  

as n  . Therefore

f x f x
n

n( ) lim ( ) 1
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FIGURE 1.28  Single correct choice type question 125.

(1, 1)

p /4

1

1

x

y

y = 1 y = 1

y 
= x

−1

Case II:  x f x f x
n

n1
1

2

1

2

1

22 2
( ) lim ( ) ...

1

2

1
1

2

1

Case III:  x x1 1 1( ) . Therefore 

f x f x
x

x
n

n( ) lim ( ) 1
1

0 1

f x

x

x x

x

( )

1 1

1 1

1 1

if
if
if

So f is continuous for all x  1. See Fig. 1.28.

Answer: (D)

126.  Suppose f is continuous on the closed interval [0, 2] 

and f (0)  f (2). Then

 (A)  y x 1 and f (x)  f (y) for at least one pair x, 
y  [0, 2]

 (B) y x 1 of f (x)  f (y) for same x, y  [0, 2]

 (C)  y x 1 and f (x)  f (y) for infinitely many x, y 
  [0, 2]

 (D) y x 1 and f (x)  f (y) for no pair x, y  [0, 2]

Solution: Define g : [ , ]0 1 �  by

g(x)  f (x  1)  f (x)

Since f is continuous, g is continuous on [0, 1]. Also

g(0)  f (1)  f (0), g(1)  f (2)  f (1)

and f (0)  f (2)  g(0) and g(1) are of opposite sign. 

Therefore, g(x)  0 for some x (0, 1). That is 

f (x  1)  f (x) for some x (0, 1)

Take y  x  1 so that 

y x f y f x1 and ( ) ( )

Answer: (A)

127.  Suppose f and g are continuous functions on the 

closed interval [a, b] such that f (a)  g(a) and f (b)  

g(b). Then

 (A) f (x0)  g(x0) for exactly one x0  [a, b]

 (B) f (x0)  g(x0) for at least one x0  [a, b] 

 (C) f (x0)  g(x0) for no value of x0  [a, b]

 (D)  f (x0)  g(x0) for infinitely many values of  

x0 [a, b]

Solution: Define Q(x)  g(x)  f (x) for x [a, b]. 

Therefore Q is continuous on [a, b] and Q(a)  g(a)  

f (a)  0 and Q(b)  g(b)  f (b)  0. If either Q(a)  0 

or Q(b)  0, we are through. Otherwise Q(a)  0 and 

Q(b)  0 so that Q(x)  0 for some x (a, b). Thus  

f (x)  g(x) for some x (a, b).

Answer: (B)

128. If the function 

f x
x x

x ax b x
( )

2 1

12

for

for

is continuous, then

 (A) a  2, b  1 (B) a  2, b 1

 (C) a  2, b  1 (D) a  2  b

Solution: We have

f x

x ax b x

x x

x ax b x

( )

2

2

1

2 1 1

1

for
for

for

Since f is continuous at x  1, 

lim ( ) lim ( )
( ) ( )x x

f x f x
1 0 1 0

Therefore

1  a  b  2

 a  b  3 (1.65)

Again, 

lim ( ) lim ( )
x x

f x f x a b
1 0 1 0

2 1

So

 a  b  1 (1.66)

 Worked-Out Problems
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From Eqs. (1.65) and (1.66), a  2, b  1.

Answer: (C)

129. If f is a real-valued function satisfying the relation 

f x f
x

x( ) 2
1

3

for all real x  0, then lim(sin ) ( )
x

x f x
0

 is equal to 

 (A) 1 (B) 2

 (C) 0 (D) 

Solution: We have

 f x f
x

x( ) 2
1

3  (1.67)

Replacing x with 1/x, we have

 2
1 3

f x f
x x

( )  (1.68)

From Eqs. (1.67) and (1.68), we get

f x
x

x( )
2

Therefore

lim(sin ) ( ) lim
sin

sin

( )

x x
x f x

x
x

x x
0 0

2

2 1 0 2

Answer: (B)

130. Let 

A
n

n 1
1

2

1

32 2 2
...

and lim .
n

nA a  Then

 (A) a  0 (B) 0
1

2
a

 (C) 1.5  a  1.7 (D) 
19

12

7

4
a

Solution: We have

A
n

n 1
1

2

1

3

1
2 2 2

...

Clearly

A
n nn 1

1

2

1

3 4

1

4 5

1

1

1
1

4

1

3

1

4

1

4

1

5

2
...

( )

... 1 1

1n n

1
1

4

1

3

1

1n

 
19

12

1

1n
 (1.69)

Also

A
n nn 1

1

2

1

2 3

1

3 4

1

12
...

( )

1
1

4

1

2

1

3

1

3

1

4

1

1

1...
n n

1
1

4

1

2

1

n

 
7

4

1

n
 (1.70)

Therefore from Eqs. (1.69) and (1.70), we have

19

12

1

1

7

4

1
3

n
A

n
nn for

Taking limits we get

19

12

1

1

7

4

1
lim lim lim
n n

n
nn

A
n

Hence

19

12

7

4
a

Answer: (D)

131.  P(x) is a polynomial such that P(x)  P(2x)  5x2  18. 

Then 

lim
( )

x

P x
x3 3

 (A) 6 (B) 9

 (C) 18 (D) 0

Solution: Since 5x2  18 is a quadratic polynomial and 

P(x)  P(2x)  5x2  18 it follows that P(x) must be a 

quadratic polynomial. Suppose 

P(x)  ax2  bx  c

By hypothesis 

(ax2  bx  c)  (4ax2  2bx  c)  5x2  18

or 5ax2  3bx  2c  5x2  18

This gives

a  1, b  0, c  9
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So

P(x)  x2 9

Therefore

lim
( )

lim( )
x x

P x
x

x
3 33

3

6

Answer: (A)

132. Let 

f x
x x x

xn

n

n
( ) lim

log( ) sin2

1

2

2

for x  0. Then

 (A) f is continuous at x  1

 (B) f is not continuous at x  1

 (C)  f has exactly two points of discontinuties in the 

open interval (0, 1)

 (D) f is not defined at x  1

Solution: If 0  x  1, then x2n  0 as n   so that

f (x)  log(2  x)

f ( )
log sin

1
3 1

2

If x  1, then 

f x

x

x
x

x

x
x

n

n

( ) lim

log( )
sin

sin

2

1
1

2

2

Therefore

f x

x x

x

x x

( )

log( )

[log sin ]

sin

2

1

2
3 1 1

1

if 0 < 1

if

if

Since lim ( ) log ( )
x

f x f
1 0

3 1 and lim ( ) sin ( ),
x

f x f
1 0

1 1   

f is not continuous at x  1.

Answer: (B)

133. If f :� �  is continuous such that

f x f
x

f
x

x( ) 2
2 4

2

for all x �,  then

 (A) f x f x( ) ( )0
9

16

2

 (B) f x f x( ) ( )0
4

9

2

 (C) f x f x( ) ( )0
9

16

3

 (D) f x f x( ) ( )0
16

9

2

Solution: Given relation can be rewritten as

f x f
x

f
x

f
x

x( )
2 2 4

2

Replacing x with 
x x x x

n2 2 2 22 3
, , , ... ,  on both sides and 

adding all the equations, we have

f x f
x

f
x

f
x

x
n n

n

( )
2 2 2

1
1

2

1
1 2

2
2

1

1

22
 

(1.71)

Since f is continuous, taking limits on both sides of 

Eq. (1.71) as n   we get

f x f f
x

f x( ) ( ) ( )0
2

0
4

3

2

Therefore

 f x f
x

x( )
2

4

3

2  (1.72)

In Eq. (1.72), again replace x with x x x n/ , / , ..., /2 2 22  

and add all of them. Then, we have

f x f
x

x
n

n

( )
2

4

3

1
1

2

1
1

2

1

2
2

1

2

Again taking limits on both sides as n  , we get

f x f x( ) ( )0
16

9

2

Therefore

f x f x( ) ( )0
16

9

2

Answer: (D)

 Worked-Out Problems
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134.  f : [ , ]0 1 �  is continuous and assumes only rational 

values and f (0)  3. Then, the roots of the equation

f x f x f1
2

1
3

1 02 ( )

are

 (A) rational and unequal (B) irrational

 (C) imaginary (D) equal

Solution: Since f is continuous and in between any 

two real numbers, there are infinitely many rational and 

irrational numbers, f must be a constant function. Since 

f (0)  3, we have 

f (x)  3  x  [0, 1]

Therefore the given quadratic equation is 3x2  3x  3  0 

which has imaginary roots.

Answer: (C)

135. The values of a and b so that the function

f x

x a x x

x x b x

a x b x x

( )

sin ,

cot ,

cos sin ,

2 0
4

2
4 2

2
2

is continuous for 0  x   are, respectively,

 (A) 
3 12

,  (B) 
3 12

,

 (C) 
4 12

,  (D) 
6 4

,

Solution: f is continuous at x  /4 implies

lim ( ) lim ( )
x x

f x f x

4
0

4
0

 
4 2

a b

 a b
4

 (1.73)

Again f is continuous at /2 implies

lim ( ) lim ( )
x x

f x f x

2
0

2
0

b  a b

a  2b  0 (1.74)

Equations (1.73) and (1.74) give 

a b
3 12

,

Answer: (A)

136. Let 

f x

a x x
x

x

c x

x bx x

bx
x

( )

sin( ) sin

( ) / /

/

1
0

0

2 1 2 1 2

3 2

for

for

for 00

If f is continuous at x  0, then

 (A) a b
3

2
0,  is any real number, c

1

2

 (B) a b c
3

2
0

1

2
, ,

 (C) a b c
5

2
0

1

2
, ,

 (D) a b c
3

2
0

1

2
, ,

Solution: f is continuous at x  0. This implies

lim ( ) lim ( )
x x

f x f x c
0 0 0 0

Now 

lim ( ) lim
sin( ) sin

x
f x

a x
x

x
x0 0

1

 (a  1)  1  c

 a  c  2 (1.75)

Again

lim ( ) lim
[ ] /

x x
f x

bx
bx0 0 0 0

1 21 1

 lim
[ ]x

bx

bx bx
c

0

1 1

1 1

1

2
 (1.76)

From Eqs. (1.75) and (1.76), we get

a c
3

2

1

2
,  and b is any real  0

Answer: (B)

137. Consider

f x
x x

x x
( )

1 0 2

3 2 3

if
if
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FIGURE 1.29 Single correct choice type question 137.

1

0

2

3

3

4

2 x

y

1−1−2

(1, 1)

(1, 3)

(2, 2)

(3, 1)

Let g x f f x( ) ( ( )).  Then the number of values of x 
at which f (x) is discontinuous is

 (A) 0 (B) 1

 (C) 2 (D) infinite

Solution: We have (see Fig. 1.29)

g x f f x
f x f x

f x f x
( ) ( ( ))

( ) ( )

( ) ( )

1 0 2

3 2 3

if
if

Now

 
0 1 0 1 2

1 1 1 2

x x

g x f x x x( ) ( ) ( )
 (1.77)

 1  x  2  2  1  x  3

 g(x)  f ( f (x))  3  (1  x)  2  x

Therefore

 1  x  2  g(x)  2  x (1.78)

Again

2  x  3  f (x)  3  x

and 0  3  x  1 so that 

 g(x)  f (3  x)  1  (3  x)  4  x (1.79)

From Eqs. (1.77) (1.79) we have

g x

x x

x x

x x

( )

2 0 1

2 1 2

4 2 3

if
if
if

Now

lim ( )
x

g x
1 0

2 1 3

and lim ( )
x

g x
1 0

2 1 1

Therefore g is discontinuous at x  1. Again 

lim ( )
x

g x
2 0

2 2 0  

and lim ( )
x

g x
2 0

4 2 2

So g(x) is discontinuous at x  2 and hence g is discon-

tinuous at x  1, 2.

Answer: (C)

138.  Let f x x x( ) [ ] 1  for 1  x  3 where [x] is the 

integral part of x. Then, the number of values of x 

in [ 1, 3] at which f is not continuous is

 (A) 0 (B) 1

 (C) 2 (D) 3

1

O

2

3

3

4

2 x

y

1 4−1

(1, 1)(−1, 1)

(2, 3)

(3, 4)

FIGURE 1.30 Single correct choice type question 138.

Solution: We have (see Fig. 1.30)

f x

x x x

x

x x

x

x x x

( )

1 1 1 0

1 0

1 0 1

1 1

1 1 1 2

if
if
if

if
if

22 1 1 2 3x x xif

More clearly

f x

x x

x x

x x

x x

( )

if

if

if

if

1 0

1 0 1

1 2

1 2 3

Clearly f is discontinuous at x  0, 1, 2. 

Answer: (D)

 Worked-Out Problems
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Multiple Correct Choice Type Questions

1. Let

f x x
x

( ) [ ] in
[ ]

s
1

where [ ] denotes the greatest integer function. Then

 (A) domain of f is �  [ 1, 0) (B) lim ( )
x

f x
0 0

0

 (C) f is continuous on [0, 1) (D) lim ( )
x

f x
1 0

1

Solution:

(A) f is not defined for all those values of x such that

[x  1]  0  0  x  1  1

  1  x  0

Therefore domain of f is �  [1, 0). This implies (A) 

is true.

(B) We have

lim ( ) lim( ( ))

lim[ ] sin
[ ]

x h
h

h
h

f x f h

h
h

0 0 0
0

0
0

0

0
0 1

lim( sin )

( )

h

f

0
0

0 0

Therefore (B) is true.

(C) Now

0  x  1  [x  1]  [x]  1  0  1  1

Therefore

f (x)  0  sin   0

for 0  x  1 and f (0)  0. So f is continuous on [0, 1). 

This means that (C) is true.

(D) Here

lim ( ) lim ( )

lim [ ] sin
[ ]

x h
h

h

f x f h

h
h

1 0 0
0

0

1

1
1 1

11
2

1sin

So (D) is also true.

Answers: (A), (B), (C), (D)

2. Let

f x
x

x
x

x

( )
sin

1
0

0 0

for 

for 
Then

 (A) lim ( )
x

f x
0

 does not exist (B)  f is continuous at 

x  0

 (C) lim ( )
x

f x 0  (D) lim ( )
x

f x 1

Solution: Since x  0 and sin /1 x  is a bounded function, 

by Corollary 1.4

x
x

xsin
1

0 0as

Therefore

lim ( ) ( )
x

f x f
0

0 0

So (B) is true. Now put x  1/y so that y  0 as x  . 

Therefore

f x
y

y
y

y
y( ) sin( )

sin1
1 0as 

So

lim ( )
x

f x 1

Therefore (D) is also true.

Answers: (B), (D)

3. Suppose

f x
x x

x
x

x
( )

log( ) log( )1 2 2 1
0

1 0

2
if 

if 

Then

 (A) lim ( )
x

f x
0

 exists and is equal to 1

 (B) lim ( )
x

f x
0

 exists

 (C) lim ( )
x

f x
0

 exists and is equal to 1

 (D) f is continuous at x  0

Solution: Note that f is defined for all x  1/2. Now

f x

x

x x
x

x

x
x

( )

log

log

1 2

1 2
0

1
1

2

2

2

when  

x2

log

( )

1
1

1

1

1

2

2 2

x
x

x
x

x

Therefore, by part (2) of Important Formulae
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lim ( ) ( )( )
x

f x
0

1 1 1

Answers: (B), (C)

4. Let

f x
x

e
x

x

x( )
,

, .

/1
0

0 0

1

Then

 (A) lim
( ) ( )

h

f h f
h0

0 0
1

 (B) lim ( )
x

f x
0 0

0

 (C) lim ( )
x

f x
0 0

1

 (D) lim ( )
x

f x
0 0

0

Solution: We have

lim ( ) lim ( ) lim
/x h

h
h h

f x f h
h

e0 0 0
0

0 1
0

1

0

1 0
0

lim ( ) lim ( ) lim
/x h

h
h h

f x f h
h

e0 0 0
0

0 1
0

1
0 0 0

lim
( ) ( )

lim

lim

/

h h
h

h

f h f
h

h

e
h

0 0

1

0

0 0
1

0

1

1
1

ee h1

1

1 0
1

/

Answers: (A), (B), (D)

5. If f x x( ) sin1  then

 (A)  lim
( ) ( )

h

f h f
h0

0 0
 does not exist

 (B) lim
( ) ( )

h

f h f
h0

0 0
 does not exist

 (C)  f is continuous for all real x

 (D) f is continuous for all x  0

Solution:

(A) We have

lim
( ) ( )

lim
sin( )

lim
sin

lim

h h

h h

f h f
h

h

h

h

h

0 0

0

0 0 1 1

00

1sin ( )h
h

∓

according as h  0  0 or h  0  0. So (A) is true. 

Similarly

lim
( ) ( )

h

f h f
h0

0 0
1

according as h  0  0 or h  0  0. So (B) is true. Since 

sin x is continuous for all real x, sin x  is also continuous 

for all real x and hence (C) is true.

Answers: (A), (B), (C)

6. Let

f x
x

x
x

x
( )

sin ,

,

1
0

0 0

and g(x)  xf (x). Then

 (A) f is continuous at x  0

 (B) lim
( ) ( )

h

f h f
h0

0 0
 exists finitely

 (C) g is continuous at x  0

 (D) lim
( ) ( )

h

g h g
h0

0 0
 exists finitely

Solution:

(A) We have (by Corollary 1.4)

lim sin

( )

x
x

x

f

0

1
0

0

Therefore f is continuous at x  0. So (A) is true.

(B) We have

lim
( ) ( )

lim
sin

lim sin
h h h

f h f
h

h
h

h h0 0 0

0 0
1

0
1

This limit does not exist and so (B) is not true.

(C)  Since x is continuous at x  0 and f is continuous at 

x  0, it follows that g(x) is continuous at x  0. So 

(C) is true.

(D) We have

lim
( ) ( )

lim
sin

lim sin

h h

h

g h g
h

h
h

h

h
h

g

0 0

2

0

0 0
1

0

1

0 (( )0

Therefore (D) is true.

Answers: (A), (C), (D)

7. Let

f x

x x

n
x

m
n

n
( )

,

0 0

1
0

if  or  is irrational

if  rational  

and 
mm
n

 is in lowest terms

 Worked-Out Problems
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Then

 (A) f is continuous at x  0

 (B) f is discontinuous at all non-zero rationals

 (C) f is continuous at all irrational numbers

 (D) f is continuous at x  0 only

Solution:

Case I: a is irrational. Therefore f (a)  0. Suppose {xn} 

is a sequence of irrational numbers such that xn  a as 

n  , then

f (xn)  0  f (a)

so that f (xn)  f (a) as n  . Now suppose {yn} is a se-

quence of rational numbers such that yn  a as n  . Let 

y m q qn / , 0 and m q/  is in lowest terms. Therefore

f y
q

nn( )
1

0 as

because q   as n  . So

f (yn)  0  f (a) as n  

Hence by Theorem 1.52, f is continuous at all irrational 

numbers because any sequence of reals tending to a con-

tains subsequences of rationals and irrationals. So (C) is 

true.

Case II: a is rational. Suppose a  0. Let {xn} and {yn} 

be sequences of rational and irrational numbers, respec-

tively, such that

lim lim
n

n
n

nx y0

Let xn  {m/q} where m/q is in lowest terms so that

f x
q

nn( )
1

0 as

Therefore

lim ( ) lim ( )
n n q

f x
q

f1 0 0

Also

f y n f y fn
n

n( ) lim ( ) ( )0 0 0

Hence f is continuous at 0 because any sequence of reals 

contains subsequences of rationals as well as irrationals. 

Suppose a  0 be a rational. Assume that f is continuous 

at a. Let {zn} be a sequence of irrational numbers such 

that lim .
n

nz a

Since f is continuous at a, by Theorem 1.52

lim ( ) ( )
n

nf z f a
q
1

where a  m/q is in its lowest terms. But

f z n
qn( ) 0
1

0

which is a contradiction. Therefore f is not continuous at 

any non-zero rational. Hence (A) and (B) are true.

Note: The above function f is called Thomae’s function.

Answers: (A), (B), (C)

8. Let

f x

x x

ax b x

x x

( )

3 1 0

0 1

3 1

2 if 

if 

if 

If f is continuous for all real x, then

 (A) a  4 (B) b  1

 (C) a  3 (D) b  1

Solution: Since f is continuous for all real x, it must be 

continuous at 0 and 1 also.

1 0 1
0

lim ( ) ( )
x

f x a b b

Also

a f x a
x

( ) lim ( )1 1 1 3 2 3
1

Answers: (B), (C)

9. Which of the following statement(s) is (are) true?

 (A)  If f  is continuous at a, then f need not be con-

tinuous at a.

 (B)  If f and g are functions such that f  g is continu-

ous in their common domain, then f and g may 

not be continuous.

 (C)  Let f :� �  be a continuous function such that 

f (x)  0 for all rational x. Then f (x)  0 for all x.

 (D)  Let f and g be two continuous functions from �  

to �  and f (x)  g(x) for all rationals x. Then f (x) 

 g(x) for all x.

Solution:

(A) Let f : � � be defined by

f x
x

x
( )

1 if is rational

1 if is irrational

Let a be any real number. Since in every neighbour-

hood of “a” , there are infinitely many rational num-

bers and infinitely many irrational numbers (See 

Theorems 0.14 and 0.17), it follows that f is not con-

tinuous at a. But f x( ) 1  for all x is continuous at 

all real numbers. Hence (A) is true.

(B) Define f :� � and g :� �  by

f x
x

x
( )

1 if is rational

1 if is irrational
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and

g x
x

x
( )

1 if is rational

1 if is irrational

Then both f and g are discontinuous at every real x 

whereas ( )( )f g x x0 � is continuous for all 

real x. So (B) is true.

(C)  Let a �  be irrational. Choose a sequence {xn} of 

rational numbers (see Theorem 1.49 and the note 

under it) such that xn  a as n  . Since f is con-

tinuous at x  a, by Theorem 1.52, we have

f x f a nn( ) ( ) as

But

lim ( ) ( )
n

nf x f a0 0

Hence f (a) 0 for all irrational a. Therefore f (x)  0 

for all real x, because any sequence of reals tending to 

a contains subsequences of rationals and irrationals. 

Therefore (C) is true.

(D)  Take h(x)  f (x)  g(x) so that by the above result [i.e., 

(C)] h(x)  0 for all x. Therefore (D) is true.

Answers: (A), (B), (C), (D)

10. Let

f x

x

x x
x

x

k x

( )

,
2 2

4 3
1 3

1

2
1

2
for 

for 

for 3

Then

 (A) f is not continuous at x  1

 (B) f is discontinuous at x 3 for any value of k

 (C)  f is continuous at x  1, if f ( 1) is defined 

to be 1

 (D)  The number of values of x at which f is discon-

tinuous is 2

Solution: We have

f x
x

x x x
x( )

( )

( )( )

2 1

1 3

2

3
1if

Now

lim ( )
x

f x
1

2

1 3
1

Hence f is discontinuous at x  1 because f ( 1) is 1/2. So 

(A) is true.

Now if f ( 1) is defined to be 1, then f is continuous at 

x  1. So (C) is true.

Again, since lim ( )
x

f x
3

 does not exist, it follows that f 

is not continuous at x  3, whatever value of k may be. 

So (B) is true.

Finally,  f is discontinuous at x  1 and 3 and at all 

other values of x, f is continuous implies the number val-

ues of x at which f is discontinuous is two. Therefore (D) 

is true.

Answers: (A), (B), (C), (D)

11. Let

f x

x x

x x

x x

( )

1 1

2 1 1 2

1 2

if 

if 

if 

Then

 (A) f is discontinuous at x  1

 (B) f is continuous at x  2

 (C) f has intermediate value property on [0, 2]

 (D) f has intermediate value property on [1, 2]

Solution: f is discontinuous at x  1, because

lim ( ) lim ( )
x x

f x f x
1 0 1 0

0 1and

So (A) is true. Now

lim ( ) ( )
x

f x
2 0

2 2 1 3

and lim ( )
x

f x
2 0

2 1 3

imply that f is continuous at x  2. So (B) is true.

Since f is discontinuous at x  1, f cannot enjoy the 

intermediate value property on [0, 2] because [0, 1] is 

contained in [0, 2]. As f (x)  2x  1 is continuous on [1, 2], 

it will have intermediate value property in [1, 2]. Hence, 

(C) is not true whereas (D) is true. See Fig. 1.31.

1

O

2

3

3

4

2 x

y

1 4

−1

FIGURE 1.31 Multiple correct choice type question 11.

Answers: (A), (B), (D)

12.  Let f (x)  [x2]  [x]2 where [ ] is the greatest integer 

function. Then

 (A) f is discontinuous at all integer values of x

 (B) f is continuous at x  1

 Worked-Out Problems
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 (C) f is discontinuous at x  0

 (D) f is discontinuous at all integer values of x  1

Solution: We have

lim ( ) lim([( ) ] [ ] )

lim([

x h
h

h
h

f x h h

h h

1 0 0
0

2 2

0
0

2

1 1

1 2 ]] )

lim( [ ] )

( [ ] )

1

1 2 1

1 1 0 2 0

0

2

2

h
h h

h h∵

lim ( ) lim([( ) ] [ ] )

lim([

x h
h

h
h

f x h h

h h

1 0 0
0

2 2

0
0

2

1 1

1 2 ]] )

(

)

1

1 1 1 1 2 22∵ h h

h

for very small positive

values of 

00

Therefore

lim ( ) lim ( ) ( ).
x x

f x f x f
1 0 1 0

0 1

So f is continuous at x  1. This implies that (B) is true.

Now

lim ( ) lim([( ) ] [ ] )

( [ ] )

x h
h

f x h h

h

0 0 0
0

2 20 0

0 1 0 1

1

∵

liim ( ) lim([( ) ] [ ] )
x h

h

f x h h
0 0 0

0

2 20 0

0 0 0

Therefore f is discontinuous at x  0 and so (C) is true.

Let n be an integer. Then for very small positive h, we 

have

n2  1 (n  h)2  n2

so that

[(n  h)2]  n2  1

and [n  h]2  (n  1)2

Hence

lim ( ) lim([( ) ] [ ] )
x n h

h

f x n h n h
0 0

0

2 2

( ) ( )n n

n

2 21 1

2 2 0 1for n

Again

lim ( ) lim([( ) ] [ ] )
x n h

h

f x n h n h

n n

0 0
0

2 2

2 2 0

Because

n2  (n  h)2  n2  1

for small positive values of h implies that [(n  h)2]  n2. 

Note that at n  1, and so

lim ( ) ( )
x

f x
1 0

2 1 2 0

Therefore (D) is true.

Answers: (B), (C), (D)

The function f (x)  [x2]  [x]2 is discontinuous at all 

integer values of x  1 and is continuous at x  1.

QUICK LOOK

13. Let

f x
x

xx

n

n
( ) lim

1

1

2

2

Then

 (A) f is continuous for all x  1

 (B) f is discontinuous at x  1, 1

 (C) f is continuous for 1  x  1

 (D) f is continuous for all x  1

Solution: If x 1, then lim
n

nx2  so that

lim
n nx

1
0

2

Therefore f (x)  1 for x 1.  By definition f ( 1)  0. If 

1  x  1, then lim( )
n

nx2 0  so that f (x)  1. Therefore

f x

x

x

x

x

x

( )

1 1

0 1

1 1 1

0 1

1 1

for

for

for

for

for
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So f is continuous at all x  1, 1. Figure 1.32 shows the 

graph of f (x).

1O

1

x

y

−1

−1

FIGURE 1.32 Multiple correct choice type question 13.

Answers: (A), (B), (C), (D)

14. Let x1  1 and

x xn n1

1

4
2 3( )

for n  1. Then

 (A) xn  2 for all n

 (B) {xn} is monotonic increasing

 (C) lim( )
n

nx 2

 (D) lim( )
n

nx 3/2

Solution: We have x1  1  2 and

x x2 1

1

4
2 3

5

4
2( )

Therefore xn  2 for n  1 and 2. Assume that xm  2 for 

same n  m. Now

x xm m1

1

4
2 3

1

4
2 2 3

7

4
2( ) ( ( ) )

Hence by induction, xn  2 for all n and so (A) is true. 

Also

x x1 21
5

4

Assume that xm  xm  1.  Now

x x

x x x

x

m m

m m m

m

1

1 1

2

1

4
2 3

1

4
2 3

( )

( ) ( )∵

Therefore {xn} is increasing and so (B) is true. Thus {xn} 

is an increasing sequence and bounded above. Therefore 

by Theorem 1.43 the sequence {xn} converges to a finite 

limit, say l. Therefore

l x x l
n

n
n

nlim( ) lim ( ) ( )1

1

4
2 3

1

4
2 3

Hence l  3/2 and so (D) is true.

Answers: (A), (B), (D)

15.  Let x1  2 be a fixed number. Define xn 1 1 

xn 1. 

 (A) Then {xn} is a decreasing sequence

 (B) Then xn  2 for all n

 (C) If x1  2, then lim
n

nx 2

 (D) If x1  2, then lim
n

nx 2

Solution: We have

x x x x

x x

2 1 1 1

1 1

1 1

1 1

0

( )

[( ) ]

Therefore x2  x1. Assume that xn  1  xn. Now

x x x x

x x x x

n n n n

n n n n

2 1 1

1 1

1 1 1 1

1 1 0

( ) ( )

( )∵

Therefore

xn  2  xn  1

So {xn} is a decreasing sequence. This implies (A) is true.

Now

x x x x2 1 1 21 1 2 2and

Assume xn  2. Now,

x xn n1 1 1 1 2 1 2

Therefore xn  2 for all n. So {xn} is a decreasing sequence 

which is bounded below by 2. Hence {xn} is convergent 

by Theorem 1.42. Suppose the limit is l. Then

l x

x

l

n
n

n
n

lim( )

lim( )

1

1 1

1 1

So

l 2  3l  2  0  l  1 or 2

But xn  2 for all n implies that l  2. So (D) is true. Also 

when x1  2, then xn  2 for all x so that lim
m

nx 2. Hence 

(C) is true.

Answers: (A), (B), (C), (D)

 Worked-Out Problems
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Matrix-Match Type Questions

Solution:

(A) lim lim

lim

x

x

x

x

x

x x

x

x0 0

0

2 1

1 1

2 1

1 1

22 1 1

1 1

x

x x
x

(log )

log

2
1

1

2

2 2

Answer: (A)  (p)

(B) f x
x x

x x

x x
x x

x x

x x

( )
1 2 3

3 2

1 2 3

3 4

3 2

1 2 3

11

3

3 2

1 2 3

x x

x x

Therefore

lim ( )
( )

x
f x

1

1

3

2 2

2 3

2

3 3

Answer: (B)  (t)

(C) lim
sin sin

lim
sin cos

lim
sin

x x

x

x x

x

x
x

x

x

x
x

0 3 0 2

0

2 2 2 1

4
2

2

2

sin
x

x

lim
sin

sin

x

x
x

x

x0

2

2

2

1 1 1

Answer: (C)  (q)

(D)  x1  1,  x x x2 1 23 . Assume that xn  xn  1. 

Therefore

x x

x x x x

n n

n n n n

2 1

2 1 1

2

2 2

which is positive, because xn  xn  1. So {xn} is an 

increasing sequence and bounded above by 2. By 

Theorem 1.42, {xn} converges to a finite limit, say L. 

So

L x x
n

n
n

nlim( ) lim1 2 2 L

Now

L L

L L

L x nn

2 2 0

2 1 0

2 2

( )( )

( )∵

By Cauchy’s first theorem on limits (Theorem 1.45)

lim
n

ny 2

Answer: (D)  (r)

2. Match the items of Column I to those of Column II.

Column I Column II

(A) lim
x

x

x0

2 1

1 1
 is (p) 2 log 2

(B)  f x
x x

x x
( )

1 2 3

3 2
. Then 

lim ( )
x

f x
1

 equals

(q) 1

(C) lim
sin sin

x

x x

x0 3

2 2
 is (r) 2

(D)  x1  1 and x xn n1 2 . 

Define y
x x x

nn
n1 2

Then lim
n

ny  is

(s) 
4

3
3 2( )

(t) 
2

3 3

1. Match the items of Column I with those of Column II.

Column I Column II

(A) lim
sin cos

x

x x

x2
 is (p) 1

(B)  If l
x x xx

lim ,
0 3

1

8

1

2
 then 

(48)l is

(q) 0

(C)  If [ ] denotes greatest 

integer function, then 

lim([ ] [ ] )
x

x x x
2

2 2

(r) 1

(D)  lim ([ ] )
x

x x
1 0

 ([x] is integral part  

of x) is equal to

(s) 2
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Solution:

(A)  2 2sin cosx x  (i.e., sin x  cos x is bound- 

ed) and 1/x2  0 as x  . This implies

lim
sin cos

x

x x

x2
0

Answer: (A)  (q)

(B) We have

l
x

x

x
x x

x

x

lim

lim

2

3

3

2

3 3

3

2 8

2 8 3

1

2

8 8 1

8

 

1

2

1

3
8

1

2

1

2

1

3

1

4

1

2

1

48

2 3/

Therefore (48) l  1.

Answer: (B)  (r)

(C) In a neighbourhood (very small) of 2,

[x  2]  [2  x]   1

 [x  2]  [2  x]  x  1  x

Therefore

lim([ ] [ ] )
x

x x x
2

2 2 1 2 1

Answer: (C)  (p)

(D) [1 h]  0 when h  0 is very small. This implies

lim ([ ] )
x

x x
1 0

0 1 1

Answer: (D)  (p)

3.  Match the items of Column I to those of Column II.

(Continued)

Solution:

(A) f (1) = 2(1) − 4(1) + 5(1) − 4 = − 1

 f (2) = 2(8)  4(4)  5(2)  4 = 6

f (1) f (2) 0 and f is continuous on [1, 2]. This  

implies f (x) has a zero in (1, 2).

Answer: (A)  (q)

(B)  f x16 2  is continuous on [ 4, 0] and f (0)  4, 

f ( 4)  0. Since 0 7 4 , by intermediate value 

theorem for continuous functions on a closed in-

terval,

 f x( ) 7  for some x  ( 4, 0)

16 72x  for some x  ( 4, 0)

 x   3

Therefore x  3.

Answer: (B)  (t)

(C) For

f x
x x

x x

f x
x

( )

lim ( )

2 0 1

1 1

2
1 0

if 

if 

and lim ( )
x

f x
1 0

1 1 0

implies that f (x) is not continuous at x  1.

Answer: (C)  (s)

(D)  lim ( )
x a

f x a2  and f (a)  0  f is continuous at x  a, 

only when a  0.

Answer: (D)  (p)

Column I Column II

(A)  f x x x x( ) 2 4 5 43 2 has a 

zero in the interval

(p) 0

(B)  If f x x( ) 16 2
 then f (x) 

assumes the value 7  at x 
equals to

(q) [1, 2]

Column I Column II

(C) f x
x x

x x
( )

2 0 1

1 1

for

for

Then f is not continuous at x 

equal to

(r) [ 1, 3]

(D) f x
x a

x a
x a

x a

( )

2 2

0

if

if

Then f is continuous at x  a, if 

the value of a is

(s) 1

(t) 3

 Worked-Out Problems
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4. Match the items of Column I to those of Column II.

Column I Column II

(A) lim( sin )co

x

xx
0

1 sec  is (p) 0

(B) lim
x

xx
x

2

1
 is (q) e

(C) lim
tan

sin

co

x

xx
x0

1

1

sec

 is (r) 1

(D) f x

x x

x x

x x
x x

( )

,

cos ,

,
log ,

2 2

2
0

1 0 1
1

(s) e2

Then the number of points at 

which f is not continuous is
(t) e

(IIT-JEE 2011)

Solution:

(A) lim( sin ) lim( sin )co /sin

x

x

x

xx x e
0 0

11 1sec

Answer: (A)  (q)

(B)

 
x
x

x

x

x

x

x

x

x

2

1

1
2

1
1

1
2

1
1

2 2/

x

Therefore

lim

lim

lim

/

x

x x

x

x

x
x

x

x

2

1

1
2

1
1

2 2

x

e
e

e
2

Answer: (B)  (q)

(C) Let

f x
x
x

x

x

x x

( )
( tan )

sin

( tan )

( s

co

/tan sec

1

1

1

1

1

sec

iin ) /sinx x1

Therefore

lim ( )
x

f x
e
e0

1

Answer: (C)  (r)

(D) We have

lim ( )

cos

lim

x

x

f x

2
0 2 2

0
2

22
0

f x( )

Therefore f is continuous at x   / 2. Now

lim ( ) cos lim ( )
x x

f x f x
0 0 0 0

0 1 0 1

Therefore f is continuous at x  0. Again

lim ( ) log lim ( )
x x

f x f x
1 0 1 0

1 1 0 1

Therefore f is continuous at x  1. This implies that f 
is continuous for all x.

Answer: (D)  (p)

5. Match the items of Column I to those of Column II.

Column I Column II

(A) Let f x

x

x x

x

( )

tan

tan tan

tan

1 1

1

1 1

Then the number of values of x 

such that 0  x  /2 at which f is 

not continuous is

(p) 2

(B) Let f x

x

x x

k x

( )

sin

sin

9
2

2

0

0

if 

if 
If k is the value such that f is 

continuous at x  0, then 2k/9 is

(q) 3

(Continued)
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Solution:

(A) Add R3 to R1. Then

f x x x

x

( ) tan tan

tan

0 0 2

1

1 1

 2(tan2 x  1)  2 sec2 x

which is continuous for all x in [0,  / 2].

Answer: (A)  (t)

(B) We have

lim ( ) lim
sin

sin
x x

f x

x

x
x

x

x0 0

9

2
9

2

9

2
2

2

22

9

x

k

Therefore

2

9
2( )k

Answer: (B)  (p)

(C) We have

f x x

f x
x

( )

( )

3 5

5

3

1

Therefore

lim ( )
x

f x
1

1 1 5

3
2

Answer: (C)  (p)

(D) In the left neighbourhood 2, [2  h] 1. Therefore

lim ( ) lim([ ] ( ) )
x h

h

f x h h
2 0 0

0

2 1 2

1 1 2

Answer: (D)  (p)

6. Match the items of Column I to those of Column II.

Column I Column II

(A) lim
n n n

1
1

1

3

1

5

1

2 1
 equals (p) 1

(B) Let s
n n n nn

1
1

1
2

1
2 2 2( ) ( ) ( )

Then lim ( )
n ns  is equal to

(q) 1/2

(C)  Let x1  1 and x
x
xn

n

n
1

4 3
3 2

 for n  1

Then lim
n

nx  is equal to

 (r) 0

(D) lim
n n

n

2
 is  (s) 2

 (t) 2

Solution:

(A)  Let s
nn
1

2 1
 so that lim

n
ns 0. Therefore by 

Cauchy’s first theorem on limits (Theorem 1.45)

s s s

n
n

n
nn1 2

1
1

3

1

5

1

2 1 0
...

...

as

Answer: (A)  (r)

(B) We have

s
n n n n

n n
n

n
1

1

1

2

1

1 1

2 2 2

2 2

( ) ( )
...

( )

...  times

n

n n2

1

Therefore

s
n

nn
1

Also

s
n n n n

nn
1 1

2 2( ) ( )
... times

n

n n4

1

42

That is 

1

4

1

n
s

nn

(C)  Let f (x)  3x  5. Then lim ( )
x

f x
1

1  

is equal to

(r) 1

(D)  If f (x)  [x]  |1  x| where [x] 

is the integral part of x, then

lim ( )
x

f x
2 0

 is

(s) 1

(t) 0

Column I Column II

 Worked-Out Problems
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Hence by squeezing theorem lim
n

ns 0  because 

lim .
n n

1 0

Answer: (B)  (r)

(C)  x1  1, x x x2 1 2
7
5

2.  By induction we can see 

that xn  xn  1 so that {xn} is an increasing sequence 

and also xn  2  n. That is {xn} is an increasing se-

quence and bounded above. Hence by Theorem 1.42 

{xn} converges to a finite limit say l. So

l x

x

x

l
l

x
n

n

n

n

lim

lim

1

4 3

3 2

4 3

3 2

This gives

3l  2l 2  4  3l

2 4 22l lor

Hence x n ln 1 2.

Answer: (C)  (t)

(D) Let xn  n/2n. Then

x

x
n

n n
nn

n

1 1

2

1 1

2
1

1
1 2/ as

Therefore by Ratio test (Theorem 1.47)

xn  0 as n  

Answer: (D)  (r) 

Comprehension-Type Questions

1. Passage: It is known that

lim
sin

lim
tan

x x

x
x

x
x0 0

1

 Based on this information, answer the following 

questions.

  (i) lim
cos

x

x

x0 2

1
 is

 (A) 1 (B) 2

 (C) 
1

2
 (D) 0

  (ii) lim
sin

sinx

x

x x0

3

2

2

3
 is equal to

 (A) 
3

2
 (B) 

4

9

 (C) 
2

3
 (D) 

8

9

(iii) lim
cos cos

x

x x

x0 2

1 2 2
 is

 (A) 1  (B) 1

 (C) 
1
2

 (D) 
1

2

Solution:

(i) lim
cos

lim
sin

x x

x

x

x

x0 2 0

2

2

1
2

2

lim
sin

x

x

x0

2

2

2

1

2

1
1

2

1

2

Answer: (C)

 (ii) lim
sin

sin
lim

sin

sinx x

x

x x

x
x

x

x
x

x

0

3

2 0

3
3

2

3

2

2
8

3

3

22
29

8

9
x

Answer: (D)

(iii) lim
cos cos

lim
cos cos

x x

x x

x

x x

x0 2 0

2

2

1 2 2 2 2

lim
cos (cos )

x

x x

x0 2

2 1

4 2
0

2

2
lim

sin

x

x

x

lim
sin x

x
2

2

1

2

Answer: (B)

2.  Passage: Using lim ,
x a

n n
nx a

x a
na 1

 answer the fol-

lowing questions.

 (i) lim
/ / /

x

x x x

x1

1 3 1 2 3 2

3

3

1
 is

 (A) 
2

3
 (B) 

7

9
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 (C) 
1

3
 (D) 

1

9

  (ii) If n is a positive integer then

lim
( )

( )x

nx n x n

x1

1

2

1

1

 (A) 
n
2

 (B) 
n 1

2

 (C) 
n n( )1

2
 (D) 

n n n( )( )1 2 1

2

(iii) lim
x

x
x0

1 2 1
 is

 (A) 0 (B) 
1

2

 (C) 
1

2
 (D) 1

Solution:

 (i) Let

f x
x x x

x
( )

/ / /1 3 1 2 3 2

3

3

1

Therefore

f x
x x x

x x x

x
x

x
x

( )
( )( )

/ / /

/ /

1 3 1 2 3 2

2

1 3 1 2

3

1 1

1

1

1

1

1

1

1

1

3 2

2

x
x x x

/

Taking limit we get

lim ( )
x

f x
1

1

3

1

2

3

2

1

1 1 1

14

6

1

3

7

9

Answer:  (B)

 (ii) Let

 

f x
x n x n

x

n

( )
( )

( )

1

2

1

1

 

x x n x

x

x x
x

n

x

n

n

( ) ( )

( )

( )

1 1

1

1

1

1

2

x x x x n
x

x x x x n
x

n n

n n n

( ... )

( ... )

1 2

1 2

1

1

1

( ) ( ) ... ( ) ( )

...

x x x x
x

x
x

x
x

n n

n n

1 1 1 1

1

1

1

1

1

1 2

1 x
x

x
x

2 1

1

1

1

Therefore

lim ( ) ( ) ( ) ...

( )

x
f x n n n

n n

1
1 2 2 1

1

2

Answer: (C)

(iii) We have

lim lim
( )

lim

x x

y

x
x

x
x

y

y

0 0

1

1 2 1
2

1 2 1

1 2 1

2
1

1
, where y x1 2

2
1

2
1

Answer: (D)

3.  Passage: A function f is continuous at a point a if and 

only if

lim ( ) lim ( ) ( )
x a x a

f x f x f a
0 0

 Equivalently lim ( ) ( ).
x a

f x f a  Based on this informa-

tion, answer the following questions.

(i) Let

f x
x

x

x

x

x

x

x

x
( )

( ) ( ) ( )
...

2

2

2

2 2

2

2 3

2

2 41 1 1 1

Then lim ( )
x

f x
0

 (A) is 0

 (B) is 1

 (C) is continuous at x  0

 (D)  is discontinuous at x  0

(ii) Let

f x
x x

x x

g x
x x

x

( )

( )

1 2

5 2

2

4 2

2

if

if

if

if

Then

 (A)  f is discontinuous at x  2 and g is continu-

ous at x  2

 (B) f is continuous at 2 and g is discontinuous at 2

 Worked-Out Problems
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 (C) both f and g gave continuous at  2

 (D) both f and g are discontinuous at  2

(iii) Let

f x

x

x

x

( )

1 0

0 0

1 0

if

if

if

and g x x x( ) [ ]1

where [x] is the integral part of x. Define h(x)  

f (g(x)). Then

 (A) h(x) is not continuous at integer values of x

 (B) h(x) is continuous at x  0 only

 (C) h(x) is continuous for all real x  0,  1

 (D) h(x) is continuous for all real x

Solution:

(i)  f (x) is a geometric series with common ratio 1/(1  

x2) which is positive and less then unity when x  0. 

Thus

f x

x

x

x

( )

2

2

2

1

1
1

1

1

So

f x
x
x

( )
1 0
0 0

when
when

Therefore f is not continuous at x  0.

Answer: (D)

(ii) We have

lim ( )
x

f x
2 0

1 2

and lim ( )
x

f x
2 0

5 2 3

Also

lim ( ) lim ( )
x x

g x g x
2 0

2

2 0
2 4

Thus both f (x) and g(x) are continuous at x  2. 

Also both f and g are continuous at x  2. There-

fore both f and g are continuous at x  2.

Answer: (C)

(iii) Since

x  [x]  0  h(x)  f (g(x))  1

for all x, therefore h is continuous for all real x.

Answer: (D)

4. Passage: Let f :� �  be such that

  (a) f x y f x f y x y( ) ( ) ( ) , �
  (b) f (1)  2

 (c) f is continuous at origin. 

Answer the following questions.

 (i)   Which of the following statements is true?

 (A) f is discontinuous at all rational values of x

 (B) f is discontinuous at all irrational values of x

 (C) f is continuous for all real x

 (D) f (x)  2x

 (ii) lim
( )

x

f x

x0

2 1
 is equal to

 (A) log 4 (B) 
1

2
log 2

 (C) log 2 (D) 
1

8
log 4

(iii) lim( ( )) /

x

xf x1 1  is

 (A) e2 (B) e

 (C) e  (D) e4 

(IIT-JEE 2011)

Solution:

(i)  We shall prove that f is continuous at all real x. Let 

a �.  Now

f (x  y)  f (x)  f (y) for all x y, �

 0  f (0  0)  f (0)  f (0)

Therefore

 f (0)  0 (1.80)

Also,

0  f (0)

 f (x  ( x))  f (x)  f ( x)

  f ( x)  f (x) (1.81)

Now

lim ( ) lim ( )

lim ( ( ))

lim( ( ) (

x a h

h

h

f x f a h

f a h

f a f h

0 0

0

0
)))

lim( ( ) ( ))

( ) lim ( )

h

h

f a f h

f a f h

0

0

f a f

f a

f a

( ) ( ) [ ( )]

( ) [

( )

0

0

By c

By Eq. (1.80)]
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 Thus lim ( ) ( )
x a

f x f a
0

. Similarly lim ( ) ( ).
x a

f x f a
0

 

Therefore

lim ( ) ( )
x a

f x f a

so that f is continuous at a �.

Answer: (C)

Now, we prove that f (x)  2x.

Case I: Suppose x is a positive integer. Then

f x f x

f f x

x f

( ) (

( ) ( )

( ) [

1 1

1 1

2 2 2

times)

times

times ∵ (( ) ]1 2

2x

 Case II: x is a negative integer, say x  y where y is 

a positive integer. Then

f x f y

f y

y

x x y

( ) ( )

( ) [ )]

( ) ( )

( )

By Eq. (1.81

By Case I2

2 ∵
 Case III: Suppose x  m/n

 
where m is an integer and 

n is a positive integer. Then

f m f nx f x x n

f x f x n

nf x

( ) ( ) ( )

( ) ( )

(

upto times

upto  times

))

But f (m)  2m (by Cases I and II). Therefore 

2

2 2

m nf x

f x
m
n

x

( )

( )

 Case IV: Suppose x is irrational. According to Theo-

rem 1.49 together with the Note under it, we can al-

ways construct a sequence {xn} of rational numbers 

such that xn  x as n   Since f is continuous at x, 

by Theorem 1.52

f (xn)  f (x) as n  

But f (xn)  2xn (by Case III). Therefore

f x f x

x

n
n

n
n

( ) lim ( )

lim( )2

2

2

lim
n

nx

x

Thus f x x x( ) .2 �  Note that all the functions 

satisfying the conditions f (x  y) = f (x)  f (y) and f 

is continuous on �  will be determined by the value 

of f (1). In fact if f (1)  k, then f (x)  kx.

 (ii) We have

lim
( )

lim ( ( ) )
( )

x

f x

x

x

x x
f x x

0 0

22 1 2 1
2∵

lim

log log

x

x

x0

4 1

4 2 2

Answer: (A)

(iii) We have

lim ( ( )) lim ( )

lim ( )

/ /

( / )

x
x

x
x

x
x

f x x

x

e

1 1 2

1 2

1 1

1 2 2

2

Answer: (A)

5.  Passage: The function y  f (x) is defined by the para-

metric equations

x t t2 1

and y t t t2 2

Answer the following questions.

        (i)   The value of f (2) is

 (A) 3 (B) 6

 (C) 9 (D) 0

       (ii) f (x) consumes the value 1/2 at x equal to

 (A) 2 1

2
 (B) 

3 2

2

 (C) 
2 1

2
 (D) 

3 1

2

(iii)  The number of values of x at which f is discon-

tinuous is

 (A) 0 (B) 1

 (C) 2 (D) 4

Solution: First, we express f explicitly which will help 

us in answering the questions. 

Case I: t  0. In such case for the given equations we 

have

x  2t  (1 t)  3t  1

and y t t t
x

2
1

3

2 2 2
2

Also t  0  x  1.

Case II: 0  t  1. In this case we have

x  2t  (1 t)  3t  1

 Worked-Out Problems
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and y t t t
x

2 3 3
1

3

2 2 2
2

Also 0  t  1  1  x  2.

Case III: t  1. In this case we have

x  2t  (t  1)  t  1

and y  2t2  t2  3t2  3(x  1)2

Also x  2.  Therefore

f x

x x

x x

x x

( )

( )

( )

( )

1

9
1 1

1

3
1 1 2

3 1 2

2

2

2

for

for

for

  (i) We have

f ( ) ( )2
1

3
2 1 32

Answer: (A)

 (ii) Since f is continuous on [ 1, 2] and

f f( ) ( )1 0 1
2

3 2

by the intermediate value theorem for continuous 

functions, we have f (x)  1/2 for some x  [ 1, 2]. 

Therefore

1

3
1

1

2

3 2

2
1 2

2( )

( , )

x

x

Answer: (B)

(iii)  Clearly f is continuous at x  1 and 2 and hence f 
is continuous for all x.

Answer: (A)

Note: Draw the graph of y  f (x) of the above function 

to have a clear picture.

6. Passage: Let

f x
x a x

x x
( )

if

if

0

1 0

and

g x
x x

x b x
( )

( )

1 0

1 02

if

if

where a and b are non-negative real constants. For 

the function h x g f x( ) ( )( ),�  answer the following 

questions.

 (i) If h(x) is continuous for all real x, then

 (A) a  1, b  1 (B) a  1, b  0

 (C) a  0, b  1 (D) a  1, b  0

 (ii)  If h(x) is continuous for all x, then the number 

of solutions of the equation h(x)  0 is

 (A) 3 (B) 2

 (C) 4 (D) 0

(iii)  The number of values of x at while f is discon-

tinuous is

 (A) infinite (B) 2

 (C) 0 (D) 4

(IIT-JEE 2002 mains)

Solution:

 (i) We will first find g f� .

 
( )( ) ( ( ))g f x g f x�

x a x a

x a b a x

x b x b x

x

1

1 0

1 1 0 1

2

2 2

for

for

for

( )

( )

( 22 12) b xfor

Since g f� is continuous at x  a, we have that 

left limit at x  a is same as right limit at x  a. 

Therefore

1  1  b  b  0

Also at x  0, g f�  is continuous. Therefore left 

and right limits at x  0 are equal. So

(a  1)2  b  0  b

 a  1

Thus a  1, b  0.

Answer: (D)

(ii) For these values of a and b,

h g f

x x

x x

x x

�

2 1

1 1

2 1

2

2

if

if

if( )

(−1,1) (1,1)
1

y

1O x2−1−2

FIGURE 1.33 Comprehension-type question 6.
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Assertion–Reasoning Type Questions

In the following set of questions, a Statement I is given 

and a corresponding Statement II is given just below it. 

Mark the correct answer as:

(A)  Both Statements I and II are true and Statement II 

is a correct explanation for Statement I.

(B)  Both Statements I and II are true but Statement II is 

not a correct explanation for Statement I.

(C) Statement I is true and Statement II is false.

(D) Statement I is false and Statement II is true.

1. Statement I: The sum of the infinite series

1
2 3

1
3 4

1
4 5

1
5 6

is 1/2.

Statement II: The nth term of the series is equal to 
1

1

1

2n n
.

Solution: The nth term of the series is

1

1 2

1

1

1

2( )( )n n n n

Thus, Statement II is true. Now let

u
k k k kk

1

1 2

1

1

1

2( )( )

Put k  1, 2, ..., n and add. Then

s u u u u
nn n1 2 3

1

2

1

2

Thus

lim
n

ns
1

2
0

1

2

Therefore Statement I is also true and Statement II is a 

correct explanation of Statement I.

Answer: (A)

2. Statement I: lim
x

xx
x

3

2
 is equal to e 5

Statement II: lim
x

x

x
e1

1

Clearly Statement II is true [see part (1) of Important 

Formulae]. Now

lim lim
x

x

x

x

x
x

x

x

3

2

1
3

1
2

lim

lim

/

/

x

x

x

x

x

x

e

1
3

1
2

3 3

2 2

33

2

5

e
e

Statement I is also true and Statement II is a correct 

explanation of Statement I.

Answer: (A)

3. Let [x] denote the integral part of x.

Statement I: Let

f x

x
x

x

x
( )

sin[ ]

[ ]
[ ]

[ ]

if

if

0

0 0

Then lim ( )
x

f x
0

 does not exist.

Statement II: lim
sin

x

x
x0

1

Solution:  Statement II is true (see Theorem 1.27). Now

lim ( ) lim
sin[ ]

[ ]

lim
sin( )

( )

sin

x h
h

h

f x
h

h0 0 0
0

0

0

0

1

1

1

Also lim ( )
x

f x
0 0

0  because [0  h] 0. Therefore 

lim ( ) lim ( )

lim ( )

x x

x

f x f x

f x

0 0 0 0

0

does not exist

 does nott exist

 Worked-Out Problems

Now h( 2)  0, h(0)  0 and h(2)  0 implies that 

the equation h(x)  0 has three solutions. 

Answer: (A)

(iii)  Since there is no break in the curve (see Fig. 1.33) h 

is continuous for all real x.

Answer: (C)
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Statement I is also true. That is, both statements are true and 

Statement II is not a correct explanation of Statement I.

Answer: (B)

4. Statement I: Let

f x
x

x
x

ax b x
( )

sin
if

if

0

0

If lim ( )
x

f x
0

 exists, then a  1 and b  0. 

Statement II: lim( )
x

px q q
0

 where p and q are any 

real constants.

Solution: Statement II is clearly true. Since lim ( )
x

f x
0

 

exists, the left and right limits of f (x) at x  0 must be 

equal. So

lim
sin

lim ( )

x

x

x
x

f x

0

0 0

1

1

Now

lim ( ) lim ( )
x x

f x ax b b
0 0 0 0

Therefore b  1 whereas a may be any real number. 

Hence Statement I is false.

Answer: (D)

5.  Statement I: If lim
sin sin

x

x a x

x0 3

2
 exists finitely, 

then the value of a is 2.

Statement II: If lim
( )

( )x a

f x
g x

 exists finitely and 

lim ( )
x a

g x 0 then lim ( ) .
x a

f x 0

Solution: According to Corollary 1.3, Statement II is 

true. Now 

lim
sin sin

lim
sin ( cos )

lim

x x

x a x

x

x
x

x a

x0 3 0 2

2 2

xx

x a

x0 2

2cos
exists finitely

Therefore

lim( cos )
x

x a
0

2 0

So a  2.

Answer: (A)

6. Statement I: Let

f x

x

x
x

a x

b x

x
x

( )

sin

cos

( sin )

( )

1

3 2

2

1

2 2

3

2

2

if

if

if

If f is continuous at x   / 2 then the values of a and 

b are, respectively, 1/2 and 4.

Statement II: A function f is continuous at x  c, if 

and only if 

lim ( ) lim ( ) ( )
x c x c

f x f x f c
0 0

Solution: Statement II is true (Theorem 1.24). So

lim ( ) lim

sin

cos

lim

x h
h

f x
h

h2
0

0
0

3

2

1
2

3
2

hh

h

h0

3

2

1

3

cos

sin

lim
( cos )( cos cos )

( cos )( cos )

lim
cos

h

h

h h h
h h0

2

0

1 1

3 1 1

1 hh h
h

cos

( cos )

2

3 1

3

3 2

1

2 2( )
f a

Therefore a  1/2. Also

lim ( ) lim

sin

x h
h

f x
b h

h
0 0 0

0

1
2

2
2

2

0 2

1

2
lim

( cos )

( )h

b h

h

lim
sin

lim
sin

h

h

b
h

h

b
h

h

0

2

2

0

2

2

2
2

4

2

2

lim
sin

h

b
h

h0

2

8
2

2
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b
8

Now

b
a b

8

1

2
4

Therefore

a b
1

2
4and

Hence Statement I is also correct and Statement II is a 

correct explanation of Statement I.

Answer: (A)

Integer Answer Type Questions

 1. Let f :� �  be a function and 0    1. If

f x f y x y x y( ) ( ) , �

Then the number of points of x �  such that the 

graph of y  f (x) intersects the line y  x is _______.

Solution: Let x0 �. Now define 

x f x x f x x f xn n1 0 2 1 1( ), ( ), , ( )

Consider the sequence {xn}. By the construction of the 

sequence {xn} and the property that f is satisfying, we get 

that

 x x x xn n
n

1 0 1  (1.82)

Therefore for m  n, we have

x x x x x x

x x

x x

n m n n n n

n m n n m n

n n

1 1 2

1

0 1
1

...
( )

xx x

x xn m n

0 1

1
0 1

... ( )

n m n

n

x x

x x

0 1
2 1

0 1

1

1

1

( ... )( )

∵ 1
1

1

2 ...

Since 0    1, n  0 as n   Hence {xn} is a Cauchy 

sequence so that lim
n

nx  exists. Suppose lim .
n

nx x  Also 

for any two y and z in �
f y f z y z y z( ) ( ) ( )∵0 1

implies that f is continuous on �.  Therefore

xn  x  f (xn)  f (x) (By Corollary 1.12)

But f (xn)  xn  1  { f (xn)} is a subsequence of {xn}. 

Hence (by Theorem 1.44)

xn  x as n    f (xn)  x as n  

Therefore f (x)  x. To prove that the point is unique,  

suppose f (x)  x and f (y)  y. Therefore 

x y f x f y x y( ) ( )

 ( )1 0x y

x y x y( )∵1 0 0and

Answer: 1

2. Let

f x
x x

x
x

k x
( )

tan3 4
0

0

if

if

If f is continuous at x  0, then the value of k is _______.

Solution: We have

lim ( ) lim
tan

x x
f x

x
x0 0

3
4

3 4 7

Therefore k  7.

Answer: 7

3.  Let f : ( 1, 1)  ( 1, 1) be continuous and f (x)  f (x2) 

for all x  ( 1, 1) and f ( ) ,0
1

2
 then the value of 

4
1

4
f  is _______.

Solution: By hypothesis

f ( )0
1

2

f f f f n
n

1

2

1

4

1

16

1

2
1for

Since f is continuous at x  0, by Theorem 1.52 we have

f f n
n

1

2
0( ) as

Therefore

lim ( )
n nf f1

2
0 1

2

f
1

4

1

2

4
1

4
2f

Answer: 2

 Worked-Out Problems
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4. For x  (0, 1), define

f x
x x x

x x x
( )

( )

( )

1

1

4
1

if is rational

if is not rational

Then, the number of points in (0, 1) at which f is con-

tinuous is ________.

Solution: Let 0  a  1. Then f is continuous at a if and 

only if, 

a a a a

a

( ) ( )

( , )

1
1

4
1

2 2

4
0 1

because in every neighbourhood of a, there are infinitely 

many rationals tending to a and infinitely many irratio-

nals tending to a.

Answer: 2

5.  If m and n stand for the number of positive and nega-

tive roots, respectively, of the equation ex  x, then m 

 n is equal to _______.

Solution: We have e xx 0 �. Also ex  0 as x   

and ex  as x  . The function f (x)  x is the graph 

of the line y  x (see Fig. 1.34). Also ex  x for x  0. Hence  

m  0 and n  0.
Answer: 0

p /4

1

O

y

x

y = c x

y =
 x

FIGURE 1.34 Integer type question 5.

6. If

f x
x x

x

( )
( )

sin( log ) log( log )

2 1

2 1 4

3

2

is continuous everywhere, then the integral part of 

f (0) is ______.

Solution: We have

lim ( ) lim

log
sin( log )

log

lox x

x

f x
x

x
x

0 0

3
2 1

2
2

2

gg( log )

log
log

(log )

(log )( log )

log

1 4

4
4

2

2 2 2

1

2
2

2

2

3

x

x

Therefore f (0) is defined to be (1/2)log 2 so that 

[f (0)]  0.

Answer: 0

7. Let

f x

x
x

x

x
x

x
( )

1
1

1
1

if

if

The number of points at which f is not continuous is 

_______.

Solution: We have

f x

x
x

x

x
x

x

x
x

x

x
x

x

( )

1
1

1
1 0

1
0 1

1
1

if

if

if

if

Clearly

lim ( ) lim ( ) ( )
x x

f x f x f
0 0 0 0

0 0

Hence f is continuous at x  0. Also 

lim ( )
( )x

f x
1 0

1

2

but lim ( )
( )x

f x
1 0

 does not exist and 

lim ( )
x

f x
1 0

1
2

but lim ( )
x

f x
1 0

 does not exist. Therefore at x  1, f is not 

continuous.

Answer: 2

8. If f :� �  is continuous and satisfies the relation

f (x  y)  f (x  y)  2 f (x)  2 f (y)
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and f (1)  1, then f (3) is equal to________.

Solution: In the given relation, taking x  y  0, we 

have f (0)  0. Also x  0 implies

f (y)  f ( y)  0  2 f (y)

 f ( y)  f (y)

Again if we put y  x in the given relation we get

 f (2x)  4 f (x)  22 f (x) (1.83)

Now replacing y with 2x in the given relation we obtain

f (3x)  f ( x)  2 f (x)  2 f (2x)

Therefore [ ( ) ( )]∵ f x f x

f (3x)  f (x)  2 f (2x)

 f x f x( ) ( )2 22  [By Eq. (1.83)]

 32 f (x)

Therefore by induction, we have f (nx)  n2 f (x) for all 

positive integers n. Replacing n with n and observing 

that f ( x)  f (x)  x, we have

f ( nx)  f (nx)  n2 f (x)  ( n)2 f (x)

Therefore f (nx)  n2 f (x) for all integers x. Also

f n n f( ) ( ( ) )2 1 1∵

If x  p/q is rational, then

q f x f qx f p p f p f2 2 21 1 1( ) ( ) ( ) ( ) ( ( ) )∵

Therefore

f x
p

q
x( )

2

2

2 for all rational

If x is irrational, then let {xn} be a sequence of rational 

numbers such that xn  x as n  . Since f is continuous, 

by Theorem 1.52 we have

f (xn)  f (x) as n  

But

lim ( ) lim( )
n

n
n

nf x x x2 2

Therefore f (x)  x2 when x is irrational. Also f (x)  x2 for 

all real x. Hence

f (3)  32  9

Answer: 9

9.  If f is a real-valued function defined for all x  0, 1 and 

satisfying the relation

f x f
x x x

( )
1

1

2

1

Then lim ( )
x

f x
2

 is ________.

Solution: Given relation is

 f x f
x x x

( )
1

1

2 2

1
 (1.84)

Replacing x with 
1

1 x
 in Eq. (1.84) we have

 f
x

f
x

x
x

x
x

1

1

1
2 1

2 1
( )

( )
 (1.85)

Again replacing x with 
1

1 x
 in Eq. (1.84), we get

 f
x

x
f x x

x
x

1
2

2

1
( )  (1.86)

Now adding Eqs. (1.84) and (1.86) and subtracting  

Eq. (1.85) gives

2
2 2

1
2

2

1
2 1

2 1

2 2 1

f x
x x

x
x
x

x
x

x

x
x

x

( ) ( )
( )

( ) 2

1

2

1
2 2 1

x
x
x

x x( )

 

2 2 1

1
2

2
2 1

1
2

2 1

1

x
x

x
x

x
x

x
x

( )

( )

( )

( )

Therefore

f x
x
x

( )
1

1

Taking limit we get

lim
x

x
x2

1

1

2 1

2 1
3

Answer: 3

10.  The number of solutions of the equation cos x  x in 

the interval [  /6,  /4] is ________.

Solution: Let f (x) cos x  x Clearly f (x) is continuous 

on [  /6,  /4]. Also 

f
6

3

2 6
0

and f
4

1

2 4
0

Hence by Corollary 1.10, f (x)  0 for same x  (  /6, 

 /4). Since x  cos x is strictly increasing in [ 0,  /2], it fol-

lows that the equation x  cos x  0 has unique solution.

Answer: 1

 Worked-Out Problems
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Single Correct Choice Type Questions

EXERCISES

 1.  Let f (x)  log10 (3x2  4x  5) where x is real. Then, 

the domain and range of f are, respectively

 (A) � �{0} and

 (B) � and log 11 31[ ( / ), )0

 (C) � { , } [ ( / ), )0 1 0and log 13 31

 (D) � �and

 2. Let f x x
x x

( ) .2
2 32  Then the range of f is

 (A) 
1

2

1

2
,  (B) 

1

3

1

3
,

 (C) 0
3 1

4
,  (D) 

( )
,

3 1

4

3 1

4

 3. The range of f x
x x

x x
( )

2

2

2

1
 is

 (A) [1, ) (B) [ 1, )

 (C) [1, 7/5) (D) [1, 7/3)

 4.  The domain and range of f x x x( ) log( )2 6 10
 

are respectively

 
(A) � and [ , )0

 
(B) � and [ 1]0,

 (C) � �and { }0  (D) � �and { }1

 5. The domain of the function f x
x

x x
( )

log ( )2
2

3

3 2
 is

 (A) � { , }1 2  (B) ( 2, )

 (C) � { , , }1 2 3  (D) ( 3, )  { 1, 2}

 6. Let

f x x
x

x
( ) ,

9

9 3
�

and   f
k

n
k

2011
1

2010

Then lim
x

nx
x1

1

1
is equal to

 (A) 2010 (B) 1004

 (C) 1005 (D) 1006

 7.  Let p(x) be a polynomial satisfying the relation 

p(x)  p(2x)  5x2  18. If n  p(4), then

lim
x

nx
x1

1

1

 (A) 6 (B) 7

 (C) 8 (D) 9

 8.  Let A be the set of all non-negative integer and for 

real number t, [t]
 
denotes the greatest integer not 

exceeding t. Define f A: �
 
by

f x

x

x
x

f
xx( ) log

0 0

10
10

10
10

10

if

if x 0

If a  f (7752), then lim
x

ax
x1

1

1
 is

 (A) 2577 (B) 7572

 (C) 7275 (D) 2757

 9. Let f be a real-valued function satisfying the relation

f x f
x

x x( ) 2
1

3 0for all real

If n is the number of real solutions of the equation 

f (x)  f ( x), then

lim
x

n nx
x2

2

2

 (A) 4 (B) 6

 (C) 8 (D) 16

10. The range of the function f x
x

( )
cos

1

4 3
 

is

 (A) [0, 1] (B) 
1

7

1

2
,

 (C) 
1

7
1,  (D) [ , ]1 7

11.  If [t]
 
denotes the greatest integer not exceeding t,

 

then the range of the function Sin 1 21

2
x  is

 (A) [0.1] (B) 0
2

,

 (C) 0
4 2

, ,  (D) 
4 3 2

, ,
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12. Let

f x

x
x

x

x

g

( )

1

1
1

0 0

1

 if  

      if      

       if  = 1

(( ) ( )( )x f f f x� �

Then lim ( )
x

g x
1

 is equal to

 (A) 4 (B) 3

 (C) does not exist (D) 1

13. Let

f x
x x n n

x n
( )

sin , , , ,if 

       if =

0 1 2

and g x
x x

x
( )

2 1 2

3 2

if 

       if 

Then lim( )( )
x

g f x
0
�  is

 (A) 0 (B) 1

 (C) 3 (D) does not exist

14. Let f (x)  2x4  x2  x  5. Then lim ( )
x

f x is

 (A)  (B) 

 (C) 2 (D) 0

15.  For real x, let {x} denote the fractional part of x. 
Then

lim
sin( })

x

x x
x1 1

 (A) 0 (B) 1

 (C) does not exist (D) 1

16.  lim
x

x

x x

3 13

4 2

 (A) 1 (B) 0

 (C)  (D) 

17. lim
x

x

x x2

2

2

5 3

2

 (A) 1/2 (B) 1/3

 (C) 2 (D) 3

18. Let f (x)  3x2  x.
 
Then

lim
( ) ( )

h

f x h f x
h0

 (A) 3x  1 (B) 6x  1

 (C) 9x  1 (D) 6x

19. lim
x

x x

x x

4 2

6

100

2

 (A) 0 (B) 

 (C)  (D) 50

20.  Let f (x)  17x7  19x5  1. Let P and Q be the follow-

ing statements.

P: f is continuous for all real x.

Q: f (x)  0 has a solution in the interval ( 1, 0).

Then

 (A) both P and Q are true

 (B) P is true whereas Q is false

 (C) P is false and Q is true

 (D) both P and Q are false

21. Let f :� �  be defined by

f x
x

x
( )

2

5 1

   if 

   if 

Consider the following two statements S1 and S2.

S1: f is continuous on the closed interval [0, 2].

S2: f assumes the value 4 in [0, 2].

Then

 (A) both S1 and S2 are true

 (B) S1 is false and S2 is true

 (C) S1 is true and S2 is false

 (D) both S1 and S2 are false

22.  Consider the following two functions defined on the 

closed interval [0, 1]:

f x
x
x

g x
x

x
( ) ; ( )

2 3

2 5

4

4

2

2

Then

 (A) both f and g are continuous

 (B) f is continuous whereas g is not continuous

 (C) f is not continuous whereas g is continuous

 (D) both f and g are not continuous

23.  Consider the function f x x( ) = 25 2
 on the inter-

val [ 5, 0].

 (A)  f is continuous on [ 5, 0] and f x( ) = 7 for 

some x ( 5, 0)

 (B)  f is continuous on [ 5, 0] and f x( ) 7 for any 

x [ 5, 0]

 Exercises
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 (C) f is not continuous on [ 5, 0]

 (D) f (x)  7 for some x [0, 5]

24. lim
x

x

x4

2 1 3

2 2

 (A) 
2

3
 (B) 

2 2

3

 (C) 
4

3
 (D) 

2

3

25. lim
( / ) ( / )

x a

m mx a
x a

1 1

=

 (A) 
a

ma

m

 (B) ma1/m

 (C) ma (1  m)/m (D) ma(m  1)/m

26. lim
sin sinx

x xe e
x x0

 

 (A)  (B) 0

 (C) 1 (D) 

27.  The number of points of discontinuity of the func-

tion tan (1/x) in the interval [0, 100]
 
is

 (A) 100 (B) 101

 (C) 50 (D) 51

28. The number of points of discontinuities of

f x
x

x

x

( )
/1 2 0

0 0

1 if

       if

is

 (A) 0 (B) 1

 (C) 2 (D) infinite

29. lim
cos

sin[ ( / )]x

x
x

3

1 2

3
is

 (A) 
1

3
 (B) 1

 (C) 3  (D) 
1

3

30. lim( tan )cot

x

xx
0

21 3
2

 (A) e2 (B) e3

 (C) e 3 (D) 1

31. lim
n

n

n
1

1
5

 (A) e (B) e5

 (C) 1 (D) 

32. If lim ( )
x

x x ax b2 1 0 then

 (A) a b1
1

2
,  (B) a b1

1

2
,

 (C) a b
1

2
1,  (D) a b1

1

2
,

33. If x  ( /2)  n , then lim(sin )
n

n x2  is equal to

 (A) 1 (B) 0

 (C)  (D) does not exist

34. Let

f x x x x x
n

( ) ( )( )( )...( )1 1 1 12 4 2

where | |< 1, x  the lim ( )
n

f x
 
is

 (A) 
1

1 x
 (B) 

1

1 x

 (C) 
x

x1
 (D) 

x
x1

35. Let

f x x x

x

x x
( ) ( )1 2 0

0

1 1

| | if 

if 0

Then, the number of points of discontinuities of f
 
in 

the interval [ 2, 2] is

 (A) 1 (B) 0

 (C) 2 (D) infinite

36. If k is a positive integer, then

lim
...

n

k k k k

k

n

n

1 2 3
1

 (A) 1/k (B) 1/(k  1)

 (C) k/(k  1) (D) 1

Hint: Use part (i) of Theorem 1.21 and show that

1

1

1 2 3 1

1
1

1 1
1

1

1k
n

n k n n

k k k k

k

k

k

...

and take limit as n  

37.  {an}
 
is a sequence of non-zero real numbers which 

are in AP with common difference d. Then

lim ...
n n na a a a a a

1 1 1

1 2 2 3 1
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 (A) 1/d (B) a1/d

 (C) d/a1 (D) 1/da1

38. lim( )/

n

nn1

 (A) 1 (B) 0

 (C) does not exist (D)  finite positive number 

less than 1

39. lim ...

/

n

n n
n

n
2

1

3

2

4

3

1 2 3 1

+1
=

 (A) 1 (B) 1/e

 (C) e (D)  

Hint: Use Cauchy’s second theorem on limits.

40.  f :� � is a function satisfying the relation 

f f x f x ax b x( ( )) ( ) � where a  0. Then the 

number of solutions of the equation f (x)  x is

 (A) 1 (B) 0

 (C) 2 (D) infinite

41. lim( !) /

x

nn 1

 (A) 0 (B) 1

 (C)  (D) cannot be determined

42. If s
k

n
n

k

n

1 1
2

1

 then lim( )
x

ns  is

 (A) 1 (B) 1/2

 (C) 1/4 (D) 

Hint: 
x

x
x

x
2

1 1
2

 for x  1. Put x
k

n2
 

and use squeezing theorem.

43. lim sec log
x x

x
1 2

 (A) 
1

2log
 (B) 

2

2log

 (C) 
log 2

2
 (D) 

2 2log

44. Let p be a real number and

a e
pi
pin

i n p( cot )2 1

1

+ 1

where i 1.Then lim( )
n

na  is equal to

 (A) p (B) p2

 (C) p/2 (D) 1

Hint: Put Cot 1 p   and use De Moivre’s theorem.

45. Let

f x
x x

x x
x( )

tan( / )2

2

1

8 7 1
0for  

Then lim ( )
x

f x  is

 (A) 1/2 (B) 1 2/

 (C) 1/2 2  (D) 2 2

46. Let

f x

x

x

x

g x f x

( )

( ) ( )

1 0

0 0

1 0

1

if 

if 

if 

 

Then the number of values of x at which g(x) is dis-

continuous is

 (A) 0 (B) 1

 (C) 2 (D) 3

47. Let A and B be real constants and

f x

Ax B x

x x

Bx A x

( )

if 

if 

if 

1

3 2 1 2

22

If f is continuous at x  1 and 2 then

 (A) A  6, B  3 (B) A  3, B  6

 (C) A  3, B  6 (D) A  3, B  6

48. Let

f x x a x a
x a

x
( )

sin
1 1

0

if 

                        if aa

Then

 (A) left limit at a exists and is equal to zero

 (B) right limit at a exists and is equal to 1

 (C)  at a, left limit exists finitely, but right limit does 

not exist

 (D) both left and right limits at a do not exist

49. Let

f x
x n

x

n n n( )

1

2

1

2

1

2
0

0 0

1
   if  for  integer

      if 

Then

 (A)  f is discontinuous in the open interval 

1

2

1

21n n
,

 Exercises
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 (B) f is not continuous at x 1

 (C) f is discontinuous at x  1/2

 (D)  f is continuous exactly at x n
n

1

2
1 2 3 for , ,

50. Function f
 
is defined on [0, 1] by

f x
x x

x x
( )

      if  is rational

if  is irrational1

Then

 (A)  f assumes every value in [0, 1] and is also con-

tinuous on [0, 1]

 (B)  f is continuous exactly at x  1/2 and assumes 

every value in [0, 1]

 (C)  f is not continuous at x  1/2, but assumes every 

value between 0 and 1

 (D)  f is not continuous on [0, 1] and hence it cannot 

assume all the values between 0 and 1

51. If

f x
x x x

x

x
x

( )

1

2
1 1 2

2

2
1

then lim ( )
/x

f x
1 2

 is equal to

 (A) 
3

2 2
 (B) 3

2 2

 (C) 3 2  (D) 3 2

52. lim
x

x

x x x
is

 (A)  (B) 0

 (C) 1 (D) 1/2

53. Let f x
x x

x x
( )

[ ]

1 1 if 

if 

where [ ] is the greatest integer function. Then the 

set of points of discontinuities of f consists precisely

 (A) all integers  1

 (B) the integer 1

 (C) all integers greater than 1

 (D) all negative integers

54.  Let f :� �  be a function satisfying f (x)  2f (1  x) 

 x2  2 for all x �. Then lim ( )
x

f x
3  

is

 (A) 1/3 (B) 1/2

 (C) 2/3 (D) 3/2

55. lim
sin( / )

x

x x x

x

4 2

3

1

1

 (A) 0 (B) 1

 (C) 1/2 (D) does not exist

56. lim
( ) ( )

( )x

x x

x

2 4

2

40 5

45

 (A) 1 (B) 1

 (C)  (D) 

57. lim
cosx

xx x
x0

10

1

 (A) log 10 (B) 2 log 10

 (C) 3 log 10 (D) 4 log 10

58. lim
x

x x

x x0 2

1 3 1 2

2

 (A) 1 (B) 2

 (C) 1/2 (D) 1/2

59. Let f x
e x

x

x

( )
( )/1 11 0

1 0

 if 

if 

Then

 (A) lim ( )
x

f x
0 0

1

 (B) lim ( )
x

f x
0 0

1

 (C) lim ( )
x

f x
0

1

 (D) lim ( )
x

f x
0

0

60. Let s
k k

n
k

n

Tan 1

1
2

1

1
.

Then lim( )
n

ns  is

 (A) 
2

 (B) 
4

 (C) 0 (D) 1

61. Let s kn
k

n

Cot 1

1

22( ). Then lim( )
n

ns is

 (A) 
2

 (B) 0

 (C) 1 (D) 
4

62. Let s nn sin sin sin ... sin( )2 3 . Then

lim
n

ns s s s

n
1 2 3
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 (A) 
1

2 2
cot  (B) 

1

2 2
tan

 (C) 1 (D) 
1

4 2
tan

63. lim cos .cos .cos ...cos
n n

x x x x
2 2 2 22 3

 (A) (sin x)/x (B) 0

 (C) sin x (D) does not exist

64. lim
sin

sin

sin

x

x
x xx

x0

 (A) e (B) 1/e

 (C) e (D) e

65. lim
cos cos

x

x

x0 4

1 1

 (A) 1/4 (B) 4

 (C) 8 (D) 1/8

Multiple Correct Choice Type Questions

 Exercises

 1. Let

f x
x x x

x x
( )

(cot( [ ]))

[ ]

Cos for 

        for 

1

2

1
2

where [x] is the integer part of x. Then

 (A) lim ( )
x

f x

2
0 2

 (B) lim ( )
x

f x

2
0 2

1

 (C) lim ( )
x

f x

2
0 2

1 (D) lim ( )
x

f x

2
0 2

1

 2. Let

f x
x x

x

g x
x

( )

( )

if  is rational

if  is irrational

if  is 

0

0 rrational

if  is irrationalx x

Then the function f  g is

 (A) continuous for all real x

 (B) is one-one

 (C) is onto

 (D) is continuous exactly at x  0

 3. Let

f x

x x x

a x

e

x

( )

(cos sin )

/

cosec if

                if 

 

2
0

0

1 xx x x

x x

e e

ae be
x

2 3

2 3
0

2

/ /

/ /
if 

Then

 (A) a  1/e (B) b  1/e

 (C) a  e (D) b  e

 4. Let

f x

x

x

x

( )

1 0

0 0

1 0

 if 

  if 

  if 

Then

 (A) lim ( )
x

f x
0

 does not exist

 (B) lim( ( ))
x

f x
0

2 0

 (C) lim( ( ))
x

f x
0

2 1

 (D) lim( ( ))
x

f x
0

2 does not exist

 5. f :� � � is a function satisfying the relation

f (x  2y, x  2y)  xy

for all x y, �. Then

 (A) f x y
x y

( , )
2 2

8

 (B) f x y
x y

( , )
2 2

8

 (C) f ( , )2 2 0 1

 (D) f ( , )3 2 0
9

4

 6. Let

A B C D
1

2
1

1

2

1

2

1

2
1

3

2
, , , , , ,,

and  f x
x x

x xx
( ) log 1

2

2

2

2 3

4 4 3

Then f is defined as x belongs to

 (A) A (B) B

 (C) B  C (D) B  C  D
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In each of the following questions, statements are given 

in two columns, which have to be matched. The state-

ments in column I are labeled as (A), (B), (C) and (D), 
while those in column II are labeled as (p), (q), (r), (s) 

and (t). Any given statement in column I can have cor-

rect matching with one or more statements in column II. 

The appropriate bubbles corresponding to the answers 

to these questions have to be darkened as illustrated in 

the following example.

Example: If the correct matches are (A)  (p), (s), 

(B)  (q), (s), (t),(C)  (r), (D)  (r), (t), that is if the 

matches are (A)  (p) and (s); (B)  (q), (s) and (t); 

(C)  (r); and (D)  (r), (t), then the correct darkening 

of bubbles will look as follows:

1.  Match the items of Column I with those of Col-

umn II.

Column I Column II

(A) lim
tan tan

sin cosx

x x
x x

2

2 2
(p) 2

(q) 1

(r) 3 2

(s) 2 2

(t) 0

(B) lim( sin )tan
x

x x

2

21

(C) f x
ax b x

x x x
( )

 if 

if 

2

5 6 22

If f is to be continuous on �  

then b/a is equal to

(D) f x
x

ax bx x

x

( )
2 1

1 1

1

2

            if 

if

If f is continuous at x  1 then 

the value of a  b is

Matrix-Match Type Questions

 7. Let

f x

x

x
x

x

x x

( ) sin

0 0

2

1

2

2

 if 

if 

if 

Then

 (A) f is even for x  1

 (B) f is odd in ( 1, 1)

 (C) f is continuous in ( 1, 1)

 (D) f is discontinuous at x  1

 8. Which of the following are true?

 (A) lim
x

xx
x

e
6

11

4
17

 (B) lim
tan tan

cosx

x x

x3

3 3

6

24

 (C) lim
cos ( )

x

x

x1

1 2 1

1
 does not exist

 (D)  If f :� �  is continuous at origin and satis-

fies the relation

f (x  y)  f (x)  f (y)

for all x, y in � and f (1)  2, then f (x)  2x for 

x �

 9. For each x [0, 1], let

f (x)  Max {x2, (x  1)2, 2x(1  x)}

Then

 (A) f is continuous at x  1/3

 (B) f is continuous at x  2/3

 (C) f is discontinuous at x  1/2

 (D) f is continuous on [0, 1]

10.  Let f :� �
 
be defined by f (x)  x  [x]

 
where [x] is 

the integral part of x. Then

 (A) f is discontinuous at all integer values of x

 (B) f is continuous at all non-integer values of x

 (C) 0 1f x x( ) �
 (D) f (x) assumes 0 but never 1

p

A

B

C

D

q r s t



139

2.  In Column I, functions are given and against them val-

ues of x are mentioned at which f is to be defined such 

that f becomes continuous at the mentioned points. 

In Column II, the values of f at these points are given. 

Match these.

Column I Column II

(A) f x
x

x
x( )

3

1 2
3

23
 at (p) 2

(q) 1/2

(r) 1/2

(s) 4

(t) 0

(B) f x
x x

x
x( )

cos sin2 2

2

1

1 1
0 at 

(C) f x
x

x
x( ) tan

1

2
0 at 

(D)  f x
x x

x x
( )

tan tan

tan tan

2

2

2 3

4 3

at x  Tan 1 (3)

3. Match the items of Column I with those of Column II.

Column I Column II

(A) lim
tan tan

tanx

x x
x0

33
is (p) 1/2

(q) 2

(r) 3

(B) lim
x

x

x x3

2

2
4

7 4

5 6
is

(C) islim
x

x

x2

22 16

4 16 (s) 2

(t) 1/2(D) lim (sin cos )tan
x

x x x

4
4

 is

4.  In Column I, nth terms of a sequence are given. In 

Column II, their respective limits as n   are given. 

Match them.

5. Match the items of Column I with those of Column II.

Column I Column II

(A) 
n n
n

23

1
(p) 1

(q) 4/3

(r) 3/4

(s) 0

(t) 2/3

(B) 
n n

n n

54 23

43 3

2 1

2 1

(C) 
( ) ( )

( )

n n
n

2 1

3

(D) 
1

1

2

1

2

1

2

1
1

3

1

3

1

3

2

2

...

...

n

n

Comprehension-Type Questions

1.  Passage: f :� �  is a function satisfying the follow-

ing three conditions:

 (a)  f x f x x( ) ( ) �
 (b) f x f x x( ) ( )1 1 �

 (c) f
x

f x

x
x

1
0

2

( )

Answer the following questions.

 (i) lim
( ) ( )

x

f x f x

x2

12 2
 is

 (A) 2 (B) log 2

 (C) 2 log 2 (D) 2/(log 2)

(ii) lim( ( ))
x

f x
1

1  is

 (A) 1 (B) 0

 (C) does not exist (D) e

(iii)  The number of common points of the graph of  

y  f (x) with the line y  (x) is

 (A) 2 (B) 4

 (C) 8 (D) infinite

Hint: f (x)  x   x R.

2.  Passage: Let f (x) be a function defined in a neigh-

bourhood of a � . Then lim ( )
x a

f x  exists finitely if  

 Exercises

Column I Column II

(A) lim
cos

x

xe x

x0 2

2

(p) 1

(q) 3

(r) 2

(s) e

(t) 3/2

(B) lim
sin sin

x

x xe e
x0

2

(C) lim( ( ))/

x

xx e1 1

(D) lim
sin cos

tan ( / )x

x x

x0 2

1 2

2
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and only if lim ( ), lim ( )
x a x a

f x f x
0 0

 exist finitely and are 

equal. Further if f (a) is defined and lim ( ) ( ),
x a

f x f a

then f is said to be continuous at x  a. Answer the 

following questions.

 (i) Let f x
x

a
x

ax x a
( )

.

1
2

0 1

2 0

for 

     for 1  where 

If lim ( )
x

f x
1

exist, then a is equal to

 (A) 1 (B) 1

 (C) 2 (D) 2

(ii) Let

f x
x x if x

a if x
( )

sin( )

2 1 1

1 1

If f is to be continuous at x  1, then

 (A) a n
3

2
2  (B) a n

1

2
2

 (C) a n
1

2
2  (D) a n

3

2
2

(iii) Let

f x
ax x

x b x
( )

,

sin ,

1
2

2

      

   

If f is continuous at x    2 then the a  b is equal to

 (A)  : 2 (B) 2 : 

 (C) 1 :  (D)  : 1

3.  f (x) is real-valued function satisfying the functional 

relation

f x f
x x x

( )
1

1

2 2

1

for all x  0 and 1. g(x) is a polynomial of degree n 

satisfying the relation

g(x)  g(y)  g(xy)  2  g(x)g(y)

for all real x and y and g(4)  17. Answer the following 

questions.

  (i) lim
x

f x
1

( )

 (A) 0 (B) 1

 (C) does not exist (D) 2

  (ii)  The number of real solutions of the equation 

( )( )g f x� 2 is

 (A) 1 (B) 2

 (C) 0 (D) infinite

  (iii) Number of discontinuities of g f�  is

 (A) 2 (B) 4

 (C) 3 (D) 1

Hint: Show that f x
x
x

( )
1

1
 and g(x)  x2  1

Assertion–Reasoning Type Questions
In the following set of questions, a Statement I is given 

and a corresponding Statement II is given just below it. 

Mark the correct answer as:

(A)  Both Statements I and II are true and Statement II 

is a correct explanation Statement I.

(B)  Both Statements I and II are true but Statement II is 

not a correct explanation for Statement I.

(C) Statement I is true and Statement II is false.

(D) Statement I is false and Statement II is true.

1.  Statement I: f : ( , )0 1 �
 
defined by f x

x
( )

1
 is a 

bounded function.

Statement II: Every continuous function defined on a 

closed interval is bounded.

2. Statement I: If 1  x1, than lim .
x

nx
0

0

Statement II: For n  3, x2  xn  x2 where 1  x  1.

3. Statement I: Let f x
x

x
x

x
( )

sin ,

,

1
0

0 0

Then f is continuous at x  0.

Statement II: Let a � . In a neighbourhood of a two 
functions f and g are defined such that lim ( )

x a
f x 0

and g(x) is bounded. Then lim ( ) ( ) .
x a

f x g x 0  

Hint: See Corollary 1.3.

4.  Statement I: If n is a positive integer, then 

k
n n

k

n
( )

.
1

2
1

Statement II:

sin sin sin ... sin

sin sin

sin( / )
2 3

1

2 2

2
n

n n

and llim
sin

0 2
1
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5.  Statement I: If f and g are continuous at x  a, then 

h(x)  Max ( f (x), g(x)) is also continuous at x  a.

Statement II: Max( , ) ( )f g f g f g
1

2

1

2

6. Statement I: Let f x x
x

( )
sin

1

0

 for 0

    0   for  

Then f is discontinuous at x  0.

Statement II: f assumes all values between 1 and 1 

both inclusive.

7.  Statement I: Suppose f is continuous on the closed 

interval [0, 2] and that f (0)  f (2). Then there exist x, 

y in [0, 2] such that f x f y y x( ) ( ) . and 1

Statement II: If g is continuous on a closed interval 

[a, b] and g(a)g(b)  0, then g(x) varies for some value 

in [a, b].

Hint: Consider g(x)  f (x  1)  f (x) on [0, 1] to prove 

Statement I.

8. Statement I: Let f x
x x

x
( )

if  is rational

0 if  is irrational.

Then f is continuous at x  0 and discontinuous at all 

x  0.

Statement II: A function g is continuous at x0 [a, b] 

if and only if for any sequence {xn} of real numbers 

in [a, b], xn  x0 as n   implies f (xn)  f (x0) as  
n  .

Hint: If x0 �,  then there exist sequences of rational 

and irrationals tending to x0.

 Exercises

Integer Answer Type Questions
The answer to each of the questions in this section is a 

non-negative integer. The appropriate bubbles below the 

respective question numbers have to be darkened. For 

example, as shown in the figure, if the correct answer to 

the question number Y is 246, then the bubbles under Y 

labeled as 2, 4, 6 are to be darkened.

0 0 0 0

X Y Z W

1111

222

3333

444

5555

666

7777

8888

9999

1. lim( )tan( / )

x

x kx e
1

22  where k is _______.

2. If 

lim lim

lim lim

x x

x x

x x

x x

1
3

1
2

3 3
2

2

l,  then 
1

l
is _______.

 3.  If f a: ( , ) � is a function such that lim( ( )
x

x f x

, )l l IR , then lim ( )
x

f x is equal to _______.

 4.  Let f (x)  2 x and g(x)  e x for all x IR. Then 

lim( )( )
x

f g x�  equals_______.

 5. lim cos
x

x
x

2 1
12  is equal to _______.

Hint: Put x
1

.

 6.  If a x x
x

xlim(cos sin ) ,/

0

1 then integer part of a is 

_______.

Hint: Show that a  e.

 7.  Let f (x)  a0  a1x  a2x
3  a4x

4  a5x
5  a6x

6
 
where a0, 

a1, ... , a6 
are real and a6  0. If lim

( )
,

/

x

xf x

x
e

0 3

1
21

then ai
i 0

4

is equal to _______.

 8. lim
x

x x

x x2

3

1

2 2 6

2 2
 is equal to _______.
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 9.  Let x1  3 and x xn n1 2 for n  1. Then lim
x

nx
 

exists and is equal to _______.

10. lim
x

x x

x x

e e

e e

3 2

3
 is _______.

11. lim

/
/

/

x

x
x

x

x

2
3

2
3

3

1
1

1

3

 is _______.

12.  Let f (x)  Max{x, x2}. Then the number of points at 

which f is not continuous is _______.

ANSWERS

Single Correct Choice Type Questions
 1. (B)

 2. (D)

 3. (D)

 4. (A)

 5. (D)

 6. (C)

 7. (B)

 8. (A)

 9. (A)

10. (C)

11. (B)

12. (D)

13. (B)

14. (A)

15. (C)

16. (D)

17. (B)

18. (B)

19. (A)

20. (A)

21. (D)

22. (A)

23. (A)

24. (B)

25. (A)

26. (C)

27. (D)

28. (B)

29. (C)

30. (B)

31. (A)

32. (B)

33. (B)

34. (A)

35. (A)

36. (B)

37. (D)

38. (A)

39. (C)

40. (A)

41. (A)

42. (C)

43. (B)

44. (D)

45. (C)

46. (B)

47. (A)

48. (D)

49. (C)

50. (B)

51. (A)

52. (C)

53. (C)

54. (A)

55. (B)

56. (B)

57. (B)

58. (C)

59. (B)

60. (B)

61. (D)

62. (A)

63. (A)

64. (B)

65. (D)

Multiple Correct Choice Type Questions

 1. (A), (D)

 2. (B), (C), (D)

 3. (A), (D)

 4. (A), (C)

 5. (A), (C), (D)

 6. (B), (C), (D)

 7. (A), (B), (C)

 8. (A), (B), (C), (D)

 9. (A), (B), (D)

10. (A), (B), (C), (D)



143 Answers

Matrix-Match Type Questions
1.  (A)  (r); (B)  (t); (C)  (p); (D)  (p)

2. (A)  (p); (B)  (s); (C)  (q); (D)  (p)

3. (A)  (r); (B)  (r); (C)  (p); (D)  (q)

4. (A)  (s); (B)  (s); (C)  (s); (D)  (q)

5. (A)  (t); (B)  (p); (C)  (p); (D)  (q)

Comprehension Type Questions
1. (i) (A); (ii) (A); (iii) (D)

2. (i) (D); (ii) (A); (iii) (B)

3. (i) (C); (ii) (A); (iii) (D)

Assertion–Reasoning Type Questions

1. (D)

2. (A)

3. (A)

4. (A)

5. (A)

6. (B)

7. (A)

8. (A)

Integer Answer Type Questions
 1. 2

 2. 2

 3. 0

 4. 0

 5. 1

 6. 2

 7. 2

 8. 8

 9. 2

10. 3

11. 9

12. 0
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2.1 Derivatives: An Introduction

Until the 17th century, a curve was described as a locus of points satisfying certain geometric conditions. It seems that 

mathematicians realized that all the curves cannot be described using geometrical conditions. To overcome this, Ana-

lytical Geometry was created and developed by Rene’ Descartes (1596–1650) and Pierre De Fermat (1601–1665). In 

this new found idea, geometric problems were re-described in terms of algebraic equations and new class of curves

defined algebraically rather than using geometric conditions. The concept of derivative evolved in this new context 

which led to its geometrical interpretation as a slope of a tangent to a curve, velocity of a particle and rate measure. 

The notion of derivate of a function was initiated by Newton and Leibniz in 1680s. Wherever we consider rate of 

change of a function, naturally differentiation steps in. Let us begin with the formal definition of derivative.

DEFINITION 2.1 Suppose f is a function defined in a neighbourhood of a point f c (i.e., there exist real numbers

a, b such that a < c < b and f a: [ , ]b ).� If

lim
( ) ( )

x c

f ( f (

x c

exists then we say that f is differentiable atf c and then the limit,

lim
( ) ( )

x c

f ( f (

x c

denoted by f ( )c , is called the derivative of f at f c.

We also say that f ( )c  is the differential coefficient of f at f c. Usually if we write y f (x), we denote f c)c by

( ) .dyx c x c)x c or ( )y/ )y dxddyc xc or ( / )yy dx If f is differentiable at every point f c of (a, b), then we say that f is differentiable in the openf
interval (a, b). If f is differentiable at each point in its domain, we obtain a new function on the domain of f f called the f
derived function which is denoted by f ( )x or df dx/dd  or dy/dx, where y f (x).

DEFINITION 2.2 Left and Right Derivatives Suppose f is a function defined in a neighbourhood of c as

described in Definition 2.1. If

lim
( ) ( )

x

f ( f (

x cc 0

exists, then it is denoted by f ( )c and is called the left derivative of f at c. Similarly, if

lim
( ) ( )

x

f ( f (

x cc 0

exists, then it is denoted by f ( )c  and is called the right derivative of f atf c.

QUICK LOOK 1

1. f
f f

hh
h

( )c lim
( )c h ( )c

0
0>

2. f
f f

hh
h

( )c lim
( )c h ( )c

0
0>

3. f
f f

hh
( )c lim

( )c h ( )c
0

Example 2.1

Let f x( )x 2 in (0, 2). Show that f is differentiable at 1 

and find f ( ).

Solution: Take c 1. Then
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lim
( ) ( )

lim

lim( )

x

x

f ( f
x

x
xxx

lim(

1x1 x

2

1

11

1

1

2)

Hence f is differentiable at 1 andf f ( ) .2)

Example 2.2

Let f x( )x 3 in ( 1, 1). Show that f is differentiable at 0 f
and find f ( ).

Solution: Take c 0. Then

lim
( ) ( )

lim

lim ( )

x

x

f ( f
x

x
xx

lim ( )

0x0 x

3

0

2

00

0

0

Hence f is differentiable at 0 andf f ( ) .0)

Example 2.3

Let f x x)x in ( 1, 1). Is f differentiable at 0?f

Solution: Take c  0. Then

lim
( ) ( )

lim
x

f ( f
x xx

x
0x0 x 00

Hence

lim
( ) ( )

x

f ( f
x0 0

does not exist. Therefore f x( )x  is not differentiable

at 0. Note that x is continuous at 0.

Example 2.4

Let f (f x) K for allK x b[ ,a ] (i.e., f is a constant funcf tion 

on [a, b]). Show that f is differentiable at 0 and findf f ( )c
where c b( ,a ).

Solution: Let c b( ,a ). Then

lim
( ) ( )

lim
x c

f ( f (

x c
K K
x cc xx c

0

Hence, f in differentiable atf c and f ( )c .0

Example 2.5

Let

f
x

x
x

( )x
sin ,

,

1
0

0 0x,

Show that f is not differentiable at 0.f

Solution: For the given function we have that

lim
( ) ( )

lim
sin( / )

lim sinn

x

x

f ( f
x

x sin( //

x

x

x 0x0 x

0

00

1///

1

does not exist. Therefore f is not differentiable at 0. Also, f
we know that f is continuous at 0.

In the following theorem, we prove that a necessary condition for a function to be differentiable at a point is that 

the function is continuous at that point. Theorem 2.1 gives a more precise description.

More usually, if f is a constant function on an interval J, then f x x J( ) .0

 2.1 Derivatives: An Introduction
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THEOREM 2.1 If f a: [ , ]b �  is differentiable at c b( ,a ), then f is continuous at f c.

PROOF By hypothesis

lim
( ) ( )

( )
x c

f ( f (

x c
f (

Let 0.Then there exists such that

0
f ( )c

, ( , ) ( , )a,, )c, ) and x ( ,c(c )cc, )

x c implies

Now,

f f
x c

f

x c x fc f x c

f

( )x ( )c
( )c

( ,c ) (f) (f ) (f ) () ( ( )c( ) ))

(

x(f(c xf ( )c )c, )c,

cc)

Hence f is continuous atf c.

Note: The converse of the above theorem is not true. See Example 2.3. However, there are functions which are every-
where continuous on �  but nowhere differentiable. One such example is as follows.

Example

Define f :� � by

f x x
n

n

n

( )x cos( ),) xxncos( )
1

2
3

0

�

Then f is continuous on � but not differentiable at 

any point of �. The proof of this result is beyond the

scope of this book.

In the following theorem, we discuss the differentiability of sum, the product, and the quotient of two differentiable 

functions.

THEOREM 2.2 Suppose f and g are differentiable atg c and ,  are any two real numbers. Then

(i) f g is differentiable at c and ( ) ( ) ( ) ( ).f) g)) () ( ) ff)) ( ) ggf( ) f)( )

(ii) f gff  is differentiable atg c and

( ) ( ) ( ) ( ) ( ) ( )f) g) f) g)( ) f) ( ) (f g) )f (Product Rule)

(iii) If g( )c 0, then f /g/ is differentiable at g c and

f
g

f g g f

c

gg
( )c

( )c( )c ( )c( )c ( )c ( )c

( (g ))2
(Quotient Rule)

PROOF (i) We write, when x c,

p
f f

x c
q

g g
x c

( )x
( )x ( )c

( )x
( )x ( )c

 and

By hypothesis p f q g x c( )x ( ) ( )( ) ( )c( ) .f q)c )x( ) ( ))c ag ( )cq )x g( )q( )x s Hence

( )( ) ( ) ( )( )f) g)) c)( ) ( )g x)( )) g
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That is

( )( ) ( )( ) ( ) ( ) ( ) ( )) ( )(

x c
f ( f (

x c
g( g(

x c

)( ) () ()( ) ( ) ( )f ( f (

q

f g x c

( ) ( )x

( ) ( )c as

Therefore ( ) is differentiable at c and

( ) ( ) ( ) ( )( )f) g))

(ii) We have

( )( ) ( )( ) ( ) ( ) ( ) ( )

( ( ) ( )) ( ) ( )( (

) ( )()( f ( g( f ( g(

x(x( c( g( f ( x(

)( )(

)( x( ) ()) ))c(

Therefore

lim
( )( ) ( )( )

lim
( ( ) ( )) ( )

li
x c x c

) ( )(

x c

x( c( g(

x c
m (mm )

( ( ) ( ))

( ) ( ) ( ) ( ) ( )

x c
c(

x( c(

x c

f (f g( f ( g ( g ())f ( g(( ) ( ) ( )( f ( g) ( )( g(  [  exist∵ ss lim ( ) ( )]
x c

x( c(

Therefore, fg is differentiable at c and

( ) ( ) ( ) ( ) ( ) ( )f) g) f) g)( ) f) ( ) (f g) )f

(iii) Now f is continuous at f c implies that g is continuous at c. Also since g is continuous and

g(c) 0, by Theorem 1.8 g( )x 0 in a neighbourhood ( , ), )c,  of c. Hence f/ff g is well

defined in ( , )., )c, Now

1 1

x c
f
g

f
g x c

f g f g
g x

( )x ( )c
( )x ( )c ( )c ( )x

( ) ()) )

[{ ( ) ( )} ( ) ( ){ ( ) ( )}]

( ) ( )

c(

x c
f ( f ( c( c( g( g(

g( g(

1 )} )f ( c(

f f
x c

g f
g g

x c
g g

f

( )x ( )c
( )c ( )c

( )x ( )c

( )x ( )c

( )(( ( ) ( ) ( )

( ) ( )

g) f) g)

g c g( ) (

(∵ g (c) 0 and g is differentiable atg c implies g g c( )x ( )( ) ).xg( )c Therefore f/ff g/  is difg -

ferentiable at c and

f
g

f g f g

c

g f g
( )c

( )c( )c ( )cc ( )cc ( )c

( (g ))2

The following theorem is on differentiability of composite function and is also called chain rule.

THEOREM 2.3
(CHAIN RULE)

If f is differentiable at c andc g is differentiable at g f(c), then g f is differentiable at c andc ( ) ( )

is equal to g c f( (f )) ( )c .

 2.1 Derivatives: An Introduction



150 Chapter 2   Derivative and Differentiability

PRO O F Write u f (c) and y f (x). Let

R
f f

x c
f( )x

( )x ( )c
( )c

for x c so that R( )x 0 as x c. Now, let

S
g g

y u
g( )y

( )y ( )u
( )u

for y u so that S(y) 0 as y u. [Since g is differentiable atg u f (c).] Now,

( )( ) ( )( ) ( ( )) ( ( ))

( ) ( )

( )

) ( )(

x c
g( x g)) c(

x c

g( g(

x c

g(

)( ) (

ggg
y u

y u
x c

u y
y u
x c

u

( )u

[ (g ) (S )]

[ (g ) ()) )]
( ) ( )

[ ( ) ] ( )] )

y(
f ( f (

x c

u( f (((( ) ]u( f ))] ((]]f  c

Therefore

lim
[( )( ) ( )( )]

( ) ( )

( ( )) ( )

x c

g f x g) ( f c)(

x c
g ( f (

g ( c f))

( )( f

( ( ))( c f))

�)(f x g) (

Hence g f is differentiable at c and ( ) ( ) ( ( )) ( ).g f c g) f c( f c(

Note: The chain rule is also called as differentiation by substitution.

The following theorem, known as Carathéodory Theorem (asked in IIT-JEE 2001 mains), gives us a necessary and suf-

ficient condition for the differentiability of a function at a point.

THEOREM 2.4
(CARATHÉODORY

THEOREM)

Suppose f a: [ , ]b � is a function and c b( ,a ).Then f is differentiable atf c if and only if

(i) f is continuous atf c.

(ii) There exists a function g a: [ , ]b � such that g is continuous atg c and f(ff x) f(ff c) g(x)(x c)

for all x b[ ,a ]. In this case, g f( )c ( )c .

P ROOF Suppose f is differentiable atf c. Then by Theorem 2.1, f is continuous atf c. Thus (i) holds. 

Now define

g
f f

x c
x a

f x c
( )x

( )x ( )c
, [ , ]b

( )c

c, xif

f if

(2.1)

Then

lim ( ) lim
( ) ( )

( )

x c
g(

f ( f (

x c

f ( f

c x

(  is different∵ iablii e at )c

g( )c
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Hence g is continuous at c. Further, by Eq. (2.1)

f f g x b( )x ( )c( )c ( )x ( )x c [ ,a ]f )c x)c

Hence (ii) holds and by definition g f( )c ( )c .

Conversely, suppose that both (i) and (ii) hold. Then

lim
( ) ( )

lim ( )

( )

x c

f ( f (

x c
g(

g( g

xx cc

 ( is continuous∵ ats  )

Hence f is differentiable at c and f g( )c ( )c .

Here is an example to illustrate the above theorem.

Example

Let f x( )x 3  for x � and a �.We know that

x a3 3a 2 2a ( )x aa ( )x ax a2 2ax ax2

Here g x ax a( )x x2 2ax a  satisfies the conditions of 

Carathéodory’s theorem and f g a( )a ( )a .3 2

THEOREM 2.5
(DIFFERENTIA-
B IL ITY OF THE

RECIPROCAL

OF A

FUNCTION)

Let f b[ ,a ] �  be a function and f x b( )x [ ,a ]. Let c b( ,a ) and f be differentiable atf c.

Then the function

g
f

g
f f

x bg
1 1 1

(i.e. ( )x( )xx ( )x
( )x

[ ,a ])x

is differentiable at c and

g
f

c
( )c

( )c

( (f ))2

PROOF We can consider g as a quotient of two functions by consideringg

g
h
f

x b( )x
( )x
( )x

[ ,a ]
h( )x

where h(x) 1 is the constant function on [a, b]. Then by Quotient Rule

g
h f h f

c

f f

c

( )c
( )c ( )c ( )c ( )c

( (f ))

( )( ) ( )c

( (f ))

2

2

10 f )c

fff

c

( )c

( (f ))2

In the second step we have used the fact that since h is a constant function, by Example 2.4, 

h ( )c .0

Advice: It is better for the reader to prove Theorem 2.5 using the concept of the differentiable coefficient and the 

property that if f is differentiable at c, then f is continuous at c.

 2.1 Derivatives: An Introduction
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THEOREM 2.6 Let f b c[ ,a ] [ , ]d be a bijection and g be the inverse of g f. If ff f is differentiable at f x b0 ( ,a ) and 

f ( )x0 0 and g is continuous atg f ( )x ,0 then g is differentiable at g f ( )x0 and

g x
f

( (f ))
( )x0

0

1

PROOF Write y f (x) and y
0

f (x
0
). Let k be a non-zero real number such that y k d0 k [ ,c ]. Write

g h( )y k )( )0 0g)k (ygk (ygk (y

so that

g g h x h( )y k ( )y0 0g)k (y 0kk h (2.2)

and hence

f f y k y k( )x h ( (g )))) ( )g f0 0f y)h ( (g 0
1hh k k g (2.3)

Since f ( )x0 0 and 

as
f f

h
f h

( )x h ( )x
( )x

fh (x
0 0

hh

we have

lim
( ) ( ) ( )h

h
f ( f) f)0 0 0) (f) 0

1

))

Now, by Eqs. (2.2) and (2.3) we obtain

g g

k
h

f y

h
f f f

h

( )y k ( )y

( )x h

( )x h ( )x ( )x

0 0g)k (y

0 0y)h

0 0f)h (x 0

1
0

kk

hh

hh
as

Since h kkp 0, we have that

lim
( ) ( )

( )k

g( g)

k f0

0 0) (g)

0

1))

Hence g f 1  is differentiable at f ( )x0  and

g x
f

( (f ))
( )x0

0

1

Note: In the lines immediately succeeding Definition 2.1, we mentioned that if y f ( )x is differentiable at each point 

of its domain then we denote f dy d( )x / .yy dxdby Accordingly, if y f ( )x  admits f y1 1, (x f 1x ff )yx f ) so that 

( ) ( )
/

) (
dy//dx//

1 1

which we write as dx/dy and hence

dy
dx

dx
dy

f
f
f

( )xx ( )ff ( )y
( )x
( )x

1 1

It is in this sense, we write

dx
dy dy dx

1

/yy dd

We now recall the concepts of increasing and decreasing functions (see Definition 1.40, p. 52, Vol. 1).
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DEFINITION 2.3 Let A be a subset of � � and f A  be a function. Then

1. f is called f increasing or g monotonically increasing ifg f (x) f (y) whenever x y belong to A.

If f (x) f (y) whenever x y, then f is called f strictly increasing function or strictly mono-
tonic increasing.

2. f is called f decreasing or monotonically decreasing if f (x) f (y) whenever x y.

If f (x) f (y) whenever x y, then f is called f strictly decreasing or strictly monotonic
decreasing.

The following is a corollary to Theorem 2.6.

COROLLARY 2.1 Suppose f a: [ , ]b �  is continuous and strictly monotonic increasing. Write f ( )

f (b) so that f 1 exists, is continuous and strictly monotonic increasing on [ , ]., ] If a c b

and f is differentiable atf c and ff 1 (c) ≠ 0, then ff 1 is differentiable at f(c) and

( ) ( )
( )

) (
f (

1 1

PROOF Since f is strictly increasing on [f a, b], f is bijection from f [ , ] [ , ]b, , ] and hence f 1 exists on

[ , ]., ] Since f ( )c ,0  by Theorem 2.6, f 1 is differentiable at c and

( ) ( )
( )

) (
f (

1 1

The following proof is based on Carathéodory’s theorem and hence we can say that this is 

also corollary to Carathéodory’s theorem.

ALITER Since f is differentiable atf c, by Carathéodory’s theorem there exists a function h a: [ , ]b �
such that h is continuous at c and h f f f h( )c ( )c( )c ( )x( )x ( )c( )c ( )x( )x ( )x cfff )c )x )c)c h )x (xf )cand for all x b[ ,a ].

Since h is continuous at c and h( )c ,0  there exists 0 such that ( , ) ( , ) ( )a, h(), c, )c,  and 0

in ( , )., )c,  Write I c , )cc . If y f (I), then

f y f h y f c

h y f f

( (f )) ( )c ( (f ))( ( )y( )y )

( (f ))( ( )y ( (f

f h y f(c ( f ))( )y1 1y f h( )) ( )c ( ff h( ( ( f 1

1 1y fy( ))( f( 1 cc)))

Hence

f f c
f y f

h y

y f

h y

y

1 1ff
1

1

1

( )yy ( (f ))
( (f 1 )) ( )c

( (f 1 ))

( )c

( (f 1 ))

f ( )c

( )h f ( )y1

By Carathéodory’s theorem, f 1 is differentiable at f (c) and

( ) ( ( ))
( )( ( ))

) ( c
c(

1

1

1

1

1

h

f

( )c

( )c

Hence

( ) ( ( ))
( )

) ( c
f (

1 1

 2.1 Derivatives: An Introduction
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Note:

1. The theorem is equally valid if f is continuous and strictly decreasing on [f a, b].

2. If f ( )c ,0 the above result is not valid. For, lett f x( )x ,3 then f is continuous and strictly increasing onf � and f isf
differentiable at 0. But f x1 1x 3( )xx /11 is not differentiable at 0 because f 1 0( ) , (f (ff )fffff is not defined.

2.2 Derivatives of Some Standard Functions

In this section we derive the derivatives of the standard functions like x x ex, log , ,e sin ,x cos ,x etc. and later we will 

use them in solving problems.

Example 2.6

Let a 0 and is real. Then show that the function

f x x( )x ,x x 0  is differentiable at a and f a( )a .1

In particular, if n is rational and x x nx 1, (ff ) .n xn 1

Solution: We have (by Theorem 1.23)

lim
( ) ( )

lim
x a

f ( f (

x a
x a

x a
a

xa x a
lim

a 1

Therefore

f a( )a 1

If we replace a by x and by n, then f nxn( )x .1

Example  2.7

If a  0, show that the function f x( )x log  (with base e) 

is differentiable at a and f ( )a / .a1// In general, f x( )x /x1//

where x  0.

Solution: We have

lim
( ) ( )

lim
log log

lim
log( / )

x a

x a

f ( f (

x a
alog

x a

x//

xa x a

x axx

x
a

x
a

ax a
lim

log

.

11
x

1

1

lim
log( )

y

y
ay

y
x
a

a

0

1
1

1
1

where

 [By (3) of Importatt nt Formulae in Chapter 1]

1

a

Therefore

f
a

( )a
1

Example  2.8

Let a 0  and f ax( )x  for x �.  Then show that f is f
differentiable at any c �  and f ac( )c log .a  In gen-

eral, f ax( )x log .a In particular, if f ex( )x ,  then 

f ex( )x .

Solution: We have

lim
( ) ( )

lim
x c

x cf ( f (

x c
a ax

x cxc x c

lim
( )

lim (

x c

c
x c

c

y

y

a
x c

a
a

y
y x c

1
0

0
where as x cxx

ac

)

log [a By (3) of Important Formulae in Chapter 1]
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Example 2.9

Show that the function f x( )x sin is differentiable at

any a � and f ( )a cos .a In general, f x( )x cos  for 

x �.

Solution: We have

lim
( ) ( )

lim
sin sin

lim

cos

x a

x a

f ( f (

x a
x asin

x a

x a

xa x a

2
2

sin
x a

x a
2

lim

sin

cos
x a

x a

x a
x a2

2

2

1 ccocc s ( cos x( cos

a

∵  is continuous)

= cos

Example 2.10

Show that the function g x( )x cos is differentiable at

any a � and g a( )a sin .a In general, g x( )x sin .x

Solution: We have

lim
( ) ( )

lim
cos cos

lim

( )sin

x a

x a

g( g(

x a
x acos

x a

x

xa x a

a x a

x a
2 2

sin

lim

sin

sin

( )sin

x

x a

x a
x a

a

0

2

2

2

sin a

Example 2.11

Show that the function h x( )x tan is differentiable at 

any a � and a is not an odd multiple of /2 and

f ( )a sec .a2 In general, if x is not an odd multiple of 

/2, then h ( )x sec .x2

lim
sin ( )

( )cos cos

lim
sin( )

cos

x a

x a

x a
x acos

x a
x a x

1 1

cosa
Solution: We have

lim
( ) ( )

lim
tan tan

x a

h( h(

x a
x atan

x axa x a

1
1 1

2

cos cos

sec

a acos

a

Example 2.12

If a �  and is not a multiple of , then show that the

function f x( )x cot is differentiable at a and f (a) 

a .cosec2 In general, f x( )x cosec2 for all real x n ,

n .n �

Solution: We have

lim
( ) ( )

lim
cot cot

x a

f ( f (

x a
x acot

x aa xx a

lim
sin( )

( )sin sin

lim
sin( )

si

x a

x a

x a
x asin

x a
x a

1

n snn in

sin sin

x asin

a asin

a

1

1
1 1

2cosec

 2.2 Derivatives of Some Standard Functions
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Example 2.13

If a is not a multiple of , then show that the function

g x( )x cosec is differentiable at a and g (a) cosec a
cot . In general, g x x( )x cotcosec for all x n ,
n �.

Solution: We have

lim
( ) ( )

lim

lim
sin sin

(

x a

x a

g( g(

x a
x a
x a

a xsin

xa x a
cosec cx osec

x axx x a)sin sin

lim

co ss in

( )sin sin

lim

sin

x a

x a

x a x a

x asin

2
2 2

x axx

x a

x a

a
2

2

2
cos

sin sx in

(11
2

)cos

sin

cot

a

a

a acotcosec

Example 2.14

If a n( )n ( / ), ,n 2//// � then show that the function 

h x( )x sec  is differentiable at a and h a( )a sec ta an .

In general, h x( )x sec tx an for all x n ( / ),//2//

.n �

Solution: We have

lim
( ) ( )

lim
sec sec

lim
cos cos

( )

x a

x a

h( h(

x a
x asec

x a

a xcos

a xx a

cocc s cosx acos

lim

si sn in

( )cos cos

lim

sin

x a

x a

a x x a

x acos

x

2
2 2

a

x a

a x

x a

a

a

2

2

2

1
2

sin

cos cx os

sin

cos

sec tana atan

In the coming set of examples, we find the derivatives of inverse trigonometric functions, hyperbolic functions and

inverse hyperbolic functions. Here afterwards we write y f ( )x (function) and write dy x/ (yy dxd f ).

Example 2.15

Let y  Sin–1 x whose domain is [–1, 1] and range is

2 2
, . Find its derivative.

Solution: We have

y x x yxSi 1 sin

Therefore

dx
dy

ycos

Also / / .2/ // / 1 1 0y x/ 1 yf  So

dx
dy

y y xcos yy i 11 yysin2 2x1y

Using the Note under Theorem 2.6 we get

dy
dx x

1

1 2

Hence

d
dx x

x
( )x

for 1 x
1

2

1

1
1
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Example 2.16

Let y xCos 1 ,  whose domain is [ 1, 1] and range is [0,  ].

Find its derivative.

Solution: We have

y x x yxC 1 cos

Therefore

dx
dy

ysin

where y ( , )  whenever 1 1x and sin .y 0  So

dx
dy

y x xsin y 11 xxcos2 2x1x

Hence

dy
dx x

x
1

1
1 1x

2
for

This implies

d
dx x

( )x1

2

1

1

Note: The derivative of Cos 1x  can also be realized from the relation

Sin C forfor1 1CosC
2

1 1xCos 1Cos x

Example 2.17

Let y xTan 1  where x �  and the range is ( / , / ).// ,2 2// , //// , //

Find its derivative.

Solution: We have

y x x yxT 1 tan

Therefore

dx
dy

y y xysec2 2y x1yy

So

dy
dx x

1

1 2

This implies

d
dx x

x( )x1

2

1

1 2

1 �

Example 2.18

Find the derivative of Cot 1x  for all x �. Therefore

Solution: We know that

Tan C1 1CotC
2

xCot 1Cot x �

d
dx

d
dx x

x( ) ( )x)x (1 1d
) (

d
)x (

d
) (

2

1

1
x �

Observe that Cot 1x ( ,0 ).

 2.2 Derivatives of Some Standard Functions

Example   2.19 

Let y x xSec 1 1 1, [ , ]�  and y 0
2 2

, , . 

Find out dy/dx.

Solution: We have

x y
dx
dy

y y y ysec sec tan sec sin2 0

Now

1. x y1 0sec  and hence tan .y 0
2. x y1 0sec  and hence tan .y 0
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Therefore

tan
sec

y
y x x

x x

sec y x2 2y

2

1x2x 1

1x1

if

i

So

dy
dx

x x
x

x x
x

x x
x

1

1
1

1

1
1

1

1
1 1x

2

2

2

if

if

 for

Example 2.20

Let Cosec ,y xCosec xCosec ,xCosec x1 1� [ ,1 ]  and y
2

0,

0
2

, .  Find out dy/dx.

Solution: Working along the same lines as in Example

2.19, we get

d
dx

x x
x

x x
x

x x

( )x

if

if

1
2

2

2

1

1
1

1

1
1

1

1

When x is real, then 
e ex xe

2
is called cosine hyperbolic and is denoted by coshx. Also

e ex xe
2

is called sine hyperbolic

and is denoted by sinhx. Also observe that cosh2 2sinh 1x xsinh2sinh xsinh .  The functions tanhx, cothx, cosechx and sechx are defined

similar to tan x, cot x, cosec x and sec x.

Example 2.21

Let y x
e ex xe

xsinh
2

.  Find dy/dx.

Solution: By part (i) of Theorems 2.2 and 2.3 we have

dy
dx

e e

e e

x

x xe

x xe

e ( )

2

2

cosh

Example 2.22

Let y x
e ex xe

xcosh
2

. Find dy/dx.

Solution: We have

dy
dx

e e

e e

x

x xe

x xe

( )

2

2

sinh

Example 2.23

Let y x
x
x

xtanh
sinh

cosh
. Find dy/dx.

Solution: We have

dy
dx

x

x

( )x ( )x ( )xcosh

cosh
Quotient Rule

2

cosh

cosh

cosh

sech sech is defined as
c

2 2sinh
2

2

2

1

1

x xsinh2sinh

x

x

x x∵
osoo h x
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Try it out Show that

d
dx

x( )x cosech2

Example 2.24

Let y xcosech , {x }0 . Find dy/dx.

Solution: We have

dy
dx

d
dx x

d
dx

x

1

2

sinh

( )1 (sinh )

( )xsinh

cosh

sinh
The derivative of sinh is

cosh and by Quot

x

x
x

x2
(∵

ient Rulii e

cosech coth

)

x xcoth

Therefore

d
dx

x x( )x cosech coth

Example 2.25

Let y x xsech ., �  Find dy/dx.

Solution: We have

dy
dx

d
dx x

d
dx

x

1

2

cosh

cosh
By Quotient Rule

( )1 ( )xcosh
( ))

( )
(

2

sinh

cosh
The derivative

of coshf is sinh )

sech

x

x x xis sinh 
∵

x xxx tanh

Therefore

d
dx

x( )) h htx) s)x ech x a

The following are the derivatives of inverse hyperbolic functions.

Example 2.26

Let y xSinh 1 for all x �. Find its derivative.

Solution: We have

y x x y

dx
dy

y

dy
dx y

x xSinh sinh

cosh

cosh

1

1

1

1

1

1

2

2 2

2

sinh
h2

y
y

x

( cos n )12 y2h

Therefore

d
dx x

( )x
1

1 2

Example   2.27 

y x x y xCosh cosh1 1, ( , ) . Find its derivative.

Solution: We have

y x

x y

dx
dy

y

Cosh

cosh

sinh

1

 2.2 Derivatives of Some Standard Functions
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cosh2

2

1

1

y

x

For x > 1,

d
dx x

( )x1

2

1

1

Example 2.28

Find the derivative of y xxTanh 1 1, (xx , )1 .

Solution: We have

y x x yxT h 1 tanh

Therefore

dx
dy

y

e ey ye

y y

sech2

2

2

2

4

( )e ey ye

1

1

1 0

2

2

21

e e

e e

y

x0

y ye
y ye

tanh

( 1< 1x )

Therefore

dy
dx x

1

1 2

and hence

d
dx x

( )x1

2

1

1

Example 2.29

Find the derivative of y xCothhh 1 , x � ( , )1, .

Solution: We have

y x x yx xCoth coth1

Therefore

dx
dy

y

y

cosech

sinh

2

2

1

( )

sinh

coth

2 2

2

2

2

1

1

y

y

x

Therefore

dy
dx x

1

1 2

So

d
dx x

( )x1

2

1

1

QUICK LOOK 2

Example  2.30

Find the derivative of y xSech 1 0, (x , )1

Solution: We have

y x x yx xSech sech1

Therefore

dx
dy

y ysech tanh

Though the domains of Tanh 1x and Coth 1x are, respectively, ( 1, 1) and � ( 1 1, ),  but their derivatives are 

same.
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Example  2.31

Find the derivative of y xCosech 1 , x 0.

Solution: We have

y x x yx xCosech cosech1

Now

dx
dy

y y

yy

cosech coth

cosech ( )( ycosech2

because for any real x, cosech x 0 ( )0 according as 

x 0( )0 . Therefore

dx
dy

x( )x2

and hence

dy
dx x x

1

1 2

QUICK LOOK 3

1. Sinh 1 2 1x x xg( )

2. Cosh 1 2 1x x xg( )

3. Tanh 1 1

2

1

1
1x

x
x

xlo (g
1

1

x
)

The following are illustrative examples of the rules of differential of sum of two functions, product of two functions, 

quotient rule, chain rule using the derivative of standard functions, derivatives of inverse trigonometric functions, 

hyperbolic functions and their inverses.

Example 2.32

Find the derivate of xex.

Solution: Let y x2ex. Take f x g ex( )x ( )x .g(xx2 and

Therefore

y f (x)g(x)

Therefore by product rule [see (ii) of Theorem 2.2]

dy
dx

f g f g

e xx xxex

( )x ( )x ( )x ( )x

( )x( )x ( )exe2 See Examples 2.6 and 2.8 

ex ( )x x2

Example 2.33

Find the derivative of x xlog sx in .

Solution: Let y x xx log sxx in . Take f x( )x , g(x)

log x  and h x( )x sin .x  Therefore using parts (i), (ii) of 

Theorem 2.2 and referring to the derivatives of standard 

functions (Examples 2.6–2.14) we get

dy
dx

d
dx

( )fg hfg ( )x

d
dx

d
dx

x

f g f g h

x x
x

( )fg ( )x ( (h ))

( )x ( )x ( )x ( )x ( )x

log1
1

cos

log ccos

x

xcos1

sech sechy y

x x

1

1

2

2

So

dy
dx x x

1

1 2
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Example 2.35

Find the derivative of y x x xx5 lxx og sin .x

Solution: We have

dy
dx

d
dx

d x
dx

x
dx

f g

x( )x (log ) (d sin )x

[ ( ) ]f g

5 5
1x

x
x

x
x

d
dx

ax a

g (sin cx x os )

( )xa
log ,a∵

Example 2.36

Find the derivative of the function y ( )x xx .2 2)

Solution: If y x n( (f ))  then we know that by chain

rule

dy
dx

n x fn( (f )) ( )x1

2
1

1

2

1

2

1

2
2

2

2 2

2

2

( )1 2 ( )1 2

( )1 2

1
x

x

y

xTherefore

y

dy
dx x

y

( )x xx

( )x x ( )x2(x 1
1

2 1

2 2)

2

2

So

dy
dx

y

x

2

1 2

Example 2.37

If y xlog( ),Sin  then find dy d/ .yy dxd

Solution: Note that Sin 1x must belong to ( , / ), //// so

that x ( , ).1,  Therefore, using chain rule we get

dy
dx x

d
dx

x x

1

1 1

1

1
1

1 2

Sin

Sin

( )x1Sin

Example 2.38

Find the derivative of e xx ex .

Solution: Let y e xx ex . Then

dy
dx

e x e exeex e x eexee xx ex 1

e x
e
x

y
e
x

x ex 1

1

Find the derivative of y  log
7
 (tan x) whenever defined.

Solution: We have

y x x eelog (tan ) log (tan ) log7 7

Therefore using chain rule, we get

dy
dx

e
x

x

e
x x

(log )
tan

(sec )

sin cos

7
2

7

1

1
(log )

Example   2.34 
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Example 2.40

Find the derivative of y xlog( ).cosh 3

Solution: Put u  cosh 3x so that y log .u  Therefore

du
dx

( )( ))x (

Now

dy
dx u

du
dx

x

x

1

1

3

3 3

cosh

h

( )x3 3i h

Example 2.41

If y log ,x then show that
dy
dx x

1
.

Solution: Since x 0 0xf ll ,  the domain of the

function is � { }}.

Case I: Suppose x 0. Therefore

y xlog lxxx og

Taking derivative we get

dy
dx x

1

Case II: Suppose x < 0. Then

y log lxxx og( )x

Taking derivative and using chain rule we get

dy
dx x

1 1

( )x
( )1

Therefore

dy
dx x

x
1

0f

or
xd

dx x

(log ) 1

Example   2.39 

Find the derivative of

y
x x

x

Sin 1

21

Solution: Let f x x x g x x( ) , ( ) .Sin 1 21   

Therefore

y
f
g

Hence

dy
dx

f x g x f x g x

g x

( ) ( ) ( ) ( )

( ( ))2

Now

f x
d
dx

x x

x
x

x

( ) ( )

( )

Sin

Sin Product Rule

1

1

21

g x
d
dx

x

x x

x

x

( ) ( )

( ) ( )/

1

1

2
1 0 2

1

2

2 1 2

2

Therefore

dy
dx

x
x

x
x x x

x

x

x

Sin Sin
1

2

2 1

2

2 2

1
1

1

1

1

( )

( )

x x x
x x

x
x

2 1
2 1

2

2

1

1

Sin
Sin

( )

( )

( )

/

/

1 1

1

1

1

2 1 2 2 1

2 3 2

1 2

2 3

x x x x x x

x

x x x

x

Sin Sin

Sin
22



164 Chapter 2   Derivative and Differentiability

Find the derivative of y xSin 1( )ex .

Solution: We have Sin  wherey uSin u exwhereuSin u1 . Therefore

(using chain rule or substitution) we have

dy
dx

dy
du

du
dx u

e
e

e

x
x

x

1

1 1u2 2e1

Example 2.42

If y log(log )x ,  then find 
dy
dx

.

Solution: Put log . Then y ulog so that

dy
dx

dy
du

du
dx u x x x

1 1 1

log

Example 2.43

If y Sin 1(sin )x , then show that 
dy
dx

x
x

cos
.

Solution: Put u  sin x so that 1 u 1 and du/dx
cos x. Now

dy
dx u

x

x

x

x
x

1

1

1

1

2

2

cos

cos

sin

cos
Justify the signs

Example 2.44

Example 2.45

Find dy dx/y dd where y xTanh 1( )ex .

Solution: Put u ex so that du/dx exee . Now,

y  Tanh 1 u

Therefore

dy
dx

dy
du

du
dx

u
e

e

e

x

x

x

1

1

1

2

2
(see Example 2.28)

If y x xlog(sec txx an ), then show that 
dy
dx

sec .x

Solution: Put u xc txx an  so that

du
dx

x x

x x

x

x

sec txx sec

sec xx tan

2

Now

y u

dy
dx

dy
du

du
dx

y

log

1

1

u
x x

u
u

x

sec (sec tx an )

(sec )x

sec

Example 2.46
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2.3 Special Methods of Differentiation

Sometimes the usual rules of differentiation may be a cumbersome process for finding derivatives of some typical 

functions. In such cases we need special methods which we are going to discuss in this section.

2.3.1 Substitution Methods

The chain rule (Theorem 2.3) is also called substitution method. However, some functions need a suitable substitution 

to compute the derivative elegantly. This is illustrated in the following examples.

Example 2.47

If

y
x
x

Tan 1 1

1

where x 1,  then find dy/dx.

Solution: Put x cos , ( , ).,  Then

1

1

1

1 2

2x
x

cos

cos
tan2

This implies

1

1 2

x
x

tan

so that

y Tan 1

2 2
tan

Therefore

dy
dx

dy
d

d
dx

dy
d

dx
d

d
d

d d

1

2

1

1

2

1

1

1

2 1

2

2

( sin )

cos

)

x

Example 2.48

If y
a x x

a
Tan 1

2 3x x
2 2

3

( )a x2 2x3
, then show that

dy
dx

a

a x

3
2 2x

Solution: Put x a tan so that

dx
d

a

a x

a

a x
a

d
sec2

2

2

2 2x

1

Now

y Tan

Tan

1
3

2

1

3

1 3

3 3

tan

tan

(tan )

3tan

3)

Therefore

dy
dx

d
dx

3
d

dx d
3

d/dd

3

3

2 2

2 2

( )2 2 /2 a//

a

a x2

 2.3 Special Methods of Differentiation
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2.3.2 Logarithmic Differentiation

Use of logarithms will be advantageous in computing the derivatives of functions of the form ( ( )) .( )x( g( More precisely, 

let f andf g be defined and differentiable on an interval I. Let II h x g( )x ( (f )) ( )x  so that

log ( ( ))( ( )) ( ) (( ( f (((log

Differentiating both sides with respect to x, we get

h
h

g f x
f
f

( )x
( )x

( )x log( ( )x ) (g )
( )x
( )x

g f( )x log( )x )

Hence

h h g f
g f

f
( )x ( )x ( )x log( ( )x )

( )x ( )x
( )x

Now replace h f g( )x ( )x ) .g( )xx with (ff

Note: If y x g( (f )) ,( )x  then

dy
dx

y g f
g f

f
( )x log( ( )x )

( )x ( )x
( )x

We illustrate the above-stated theory with some examples now.

Example 2.50

If y x dy dx xx, /dyy dd .i d where 0

Solution: Taking logarithm on both sides of y xx

we get

log log x

Differentiating both sides w.r.t. x we obtain

1
1

y
dy
dx

x
x
x

xx xlog log

Therefore

dy
dx

x xxx xx (log )1

If y
x x

x x
log

2

2

1

1
, then show that

dy
dx x

2

1 2

Solution: Put x tan  so that

dx
d

xsec2 21

Now

y log
sec tan

sec tan

log(sec tan )

log(sec tan ) sec tan )

2

2 (∵

Therefore

dy
dx

dy
d

dx
d

2 2
2(sec tan sec )

(sec tan )
sec

2

2

1 2

sec

x

Example   2.49 Example   2.49 
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Example 2.52

Let y x( )xx /2 for x 0 1x, .1x  Then find dy d/ .yy dxd

Solution: Taking logarithm on both sides we get

log log( )
x

log(
2

Differentiating both sides w.r.t. x we get

1 1
1

2y
dy
dx

x
x

x

x

xlog( )

Therefore

dy
dx

y

x

x
x

xx
2

1
1

2
log( )

2.3.3 Parametric Differentiation

Suppose x and y are functions of a parameter t, say x f ( )t  and y g( )t in any interval. Further assume that f is inver-f
tible and f g f,g 1  are differentiable in the relevant intervals. Then to find dy d/ ,yy dxd  we proceed as follows:

y g g xg( )tt ( (f )) ( )g f ( )xx1 1( )) (g ff

Hence

dy
dx

g x f x( (f( f )( ) ( )1fx1 1ffx( )(

dy
dt

dx
dt

dy
dt

f

g
f

( )t

( )t
( )t

This process is called parametric differentiation or differentiation of one function g w.r.t. another function f. We

illustrate the above-stated theory with some examples now.

Example 2.53

If x acos t and t y asin t, for 0 2/22  and a 0, find

dy/dx.

Solution: Write x f (t) and y g(t) in ( , / ), //// and note 

that f, ff g are differentiable in g ( , / ), //// and f 1  exists in

(0, 1) and is differentiable. Hence using parametric dif-

ferentiation, we get

dy
dx

g
f

a t
a t

x
y

x
y

( )t
( )t

i

Example   2.51 

If y x dy dxx(tan) , ( , / ), / .sin 0 2  then find 

Solution: Taking logarithm on both sides we get

log y  (sin x) log (tan x)

Note that both tan x and sin x are positive for x ( , / ).0 2

Differentiating both sides w.r.t. x we get

1 2

y
dy
dx

x x x
x
x

x x

(cos ) log(tan ) sin
sec

tan

(cos ) log(tan ) sec x

Therefore
dy
dx

y x x x(cos log(tan ) sec )



168 Chapter 2   Derivative and Differentiability

2.3.4 Differentiation of Implicit Functions

Suppose y is a function of x, y is not explicitly in terms of x, but x and y are connected through a relation F.FF Write

F y( ,x ) . Here y is a function of x, say, y f ( )x , but x and y are connected through the relation F y( ,x ) , that is

F f( ,x ( )x ) . If this be the case, we say that y is an implicit function of t x. The following are illustrative examples.

Example   2.55 

If x sec cos  and y n nsec cos ,  then show 

that

( ) ( )x
dy
dx

n y2
2

2 24 4

Solution: We have

dx
d

sec tan sin

and 
dy
d

n n

n n

n n

n n

sec (sec tan ) cos ( sin )

sec tan cos

1 1

( 11 sin )

Therefore

dy
dx

dy
d

dx
d

n

n

n n

n

tan (sec cos )

tan (sec cos )

(sec coos )

sec cos

n

From this we have

dy
dx

n

n

n n

n n

2 2 2

2

2 2

[sec cos ]

(sec cos )

[(sec cos ) 4

4

4

4

2

2 2

2

]

(sec cos )

( )n y

x

Hence

( ) ( )x
dy
dx

n y2
2

2 24 4

Example   2.54 

If f t t t( ) log sin and g t e tt( ) cos in ( , / )0 2 , then 

find dg df/ .

Solution: Since

df
dt t

t

dg
dt

e tt

1
sin

sin

and                              
df
dt

0

we have

dg
df

dg
dt

df
dt

e t
t t

t e t
t t

t

t

sin

( / ) cos

( sin )

cos

1

1

Example    

Suppose y f x x a b( ), [ , ]  and x y x a b2 2 1 [ , ].

In this case f (x) may not be known explicitly, but we may 

compute f (x) using the relation

x f x2 2 1( ( ))

Then

f x x f x x( ) ( )1 12 2or

Note: In Example 2.53, x and y are functions of t and we computed the derivative of the function y w.r.t. another 

function x.
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Example 2.56

If y is an implicit function of x, and x and y are connected

through the relation x y xy3 3 3 0xyy3y 3xy , find y or dy/dx.

Solution: On differentiating x y xy3 3 3xyy3y 3  w.r.t. x
we get

3 3 02 23

2 2

2

2

x y3 y 3

y y x

y
y x

y x2

323y33 y 3( )y xy

( )2y x2y2

Example 2.57

If ax hxy bx y gx fgg y cff2 2h bb 2y2h y by 0fy cff2hxyxhxyx gxgg2 , then find dy/dx 
where all the coefficients are constants and at least one

of a, h, b is not zero.

Solution: Differentiating the given equation w.r.t. x
we get

2 2 2

2 0

ax h y x
dy
dx

by
dy
dx

g f2
dy
dx

dy
dx

ax h

2g

ax( )hx by fby y gyy

dy
dx hx by c

g

by

0

y ( )ax hy ghy

Finally, we conclude this theory part of differentiation with the derivatives of second order, third order, etc.

2.4 Successive Derivatives of a Function

DEFINITION 2.4 Suppose f a: ( , )b � is a function and is differentiable in (a, b). Then the derived function

f  can be regarded as a function on (a, b). That is, f a: ( , )b � is also a function. Suppose

f  is differentiable in (a, b) with derived function ( ) ( ),)) () then this function is denoted by

f ( )x and is called the second derivative of f in (f a, b).

If further f  is differentiable in (a, b), then its derived function ( ) ( )) ( is denoted by

f ( )x and is called the third derivative of f in (f a, b). In general, the (n + 1)th derivative of f isf
the derivative of f (n) (x) (if exists), n  1, 2, 3, ….

Note: Even though the nth derivative of a function is explained, as per the scope of the syllabus, we restrict to second-

and third-order derivatives. If y f ( )x , then f ( )n ( )x  is also denoted by d yn ny d/ .yy dxny dxd

The following are some illustrative examples.

If y is an implicit function of x and x and y are con-

nected through a relation F x y( , ) ,0 it is possible, 

sometimes,to find y f x( ), by differentiating F x y( , ) 0

on both sides w.r.t. x.  Here, x y2 2 1.  On differentiating 

both sides w.r.t. x, since y is a function of x, say y  f (x), 

we get

2 2 0x yy

Here y f x( ).  Hence

y
x

y
x

f x( )
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Example 2.58

If x cos sin , y sin cos , then find d y2 2y d/ .yy dx2y dxd

Solution: From the given equations,

dx
d

dy
d

d

d

sin i

cos ( i ) si

Now

dy
dx

dy
d

dx
dd d

i
tan

Therefore

d y

dx

d
dx

2

2

2
2 3

(sec )2 sec
)

d 2sec

cos

Example 2.59

If y sin(sin )x , then show that

d y

dx
x

dy
dx

x
2

2

2 0x(tan ) c
dy
d

y
y

os

Solution: Differentiating y sin(sin )x  we get

dy
dx

x xcos(sin )(cos )

Again

d y

dx
x

y x

2

2

2

2

2

y 2

si (sin )xxxx s cxxx2 x os(sin )xx ( sin )

cxx2 os(sin )x cosoo
sin

cos

cos

x
x

x

y xcos
dy
dx

ycos tan x2

Therefore

d y

dx
x

dy
dx

x
2

2

2 0x(tan ) c
dy
d

y
y

os

Examples  

1. Let f x x( ) 2  in (0, 1).  For the given function

f x x

f x

( )

( )

2

2

and f xn( )( ) 0  for n 3

2. Let f x xn( )  where n is a positive integer. Then

f x nx f x n n x

f x n n n x

n n

n

( ) , ( ) ( )

( ) ( )( )

1 2

3

1

1 2

and in general

f(n)(x)  n!

In this case f x f xn n( ) ( )( ) , ( ) , .1 20 0

3. If f x x( ) sin ( , / ), in 0 2  then

f x x f x x( ) cos , ( ) sin

f x x f x x( ) cos , ( ) sin( )4

and in general

f x

x n k

x nn( )( )

cos

sin

if  is of the form 4

if  is of the fo

1

rrm 

if  is of the form 4

if  is of the fo

4 2

3

k

x n k

x n

cos

sin rrm 4k

Note: One can see that if f (x)  sin x, then its nth 

derivative is

f x
n

x nn( )( ) sin , , ,
2

1 2 3for

4. If f x e x( ) , then f x e f xn n x n( )( ) ( ).

5. If f x x( ) log ,  then f x
n

x
n

n

n
( )( )

( ) ( )
.

1 11
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171 Worked-Out Problems

Note: Before going to Worked-Out Problems, we recall 

the concepts of continuity and differentiability of a

function at x a.

1. Left limit at x a is denoted by f (a 0) and is given 

by

f a h
h
h

( )a lim (f ))
0

0

2. Right limit at x a is denoted by f (a 0) and is

given by

f a h
h
h

( )a lim (f ))
0

0

3. f is continuous at x a if and only if f ( )a  and 

f ( )a  exist finitely and are equal to f (a).

4. Left derivative at x a is denoted by f ( )a  and 

is given by

f
f f

hh
h

( )a lim
( )a h ( )a

0

0

5. Right derivative at x a is denoted by ff (a 0) and is

given by

f
f f

hh
h

( )a lim
( )a h ( )a

0

0

6. Derivative at x a is denoted by a f ( )a  and is given by

f
f f

hh
( )a lim

( )a h ( )a
0

7. f (x) is differentiable at x a if and only if both

f ( )a and f ( )a exist finitely and are equal.

The common value is f ( )a .

8. f is continuous on a set of real numbers (interval) 

implies that there are no breaks on the graph of 

y f (x).

9. f is not differentiable at a pointf x x
0
 implies that

there is sharp bend like “ ” or “ ” at (x
0
, y

0
) where

y
0

f (x
0
) on the graph of y f (x).

10. If f is discontinuous at f x a, then f is not differenf -

tiable at x a.

WORKED-OUT PROBLEMS

Single Correct Choice Type Questions
1. Let f and g be differentiable functions such thatg

f (3) 5, g(3) 7, f ( ) ,1) 3 g ( ) ,6) f ( ) 2) and

g ( ) .0) If h( )x ( )f g ( )x ,  then h ( ) is equal to

(A) 14 (B) 6

(C) 12 (D) 10

Solution: By chain rule

h f gx( )x ( (g )) ( )x

Therefore

h f g

f

( ) ( (g )) ( )

( )

3f ( (g

6)

2 6

12

Answer: (C)

2. Let f x( )x /( )2 1/(x/(/ and g x( )x .3 It is given that 

( )( ) ( )( ).) ( )()( ) (0 0) ( )() ( )() ( Then ( ) ( )0 equals

(A) 32 (B)
32

3

(C)
32

9
(D)

32

3

Solution: We have

( )( ) ( )( )) ( )(
x

)( ) ( )( )((
2

3 1x
6

1

1

4

Therefore

x0

1

4

Now, 

f ( )x
( )x

2
2

 and g x( )x 3

Therefore, using chain rule we have

( ) ( ) ( ( )) ( )g) x( f (0 0) ( (g) x( 0

3
2

1

4
1

3

9

32

3

2

( )2 ( )16

Answer: (D)
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3. If f (x) and g(x) are two functions from �  to � such

that ( )( ) ( ) ,) (( 3 2 8 then gf ( ) ( )g ( is

(A) 8 (B) 16

(C) 12 (D) 24

Solution: We have

( )( ) ( )) (( 3 2 8

f x( )x 8 and g x x( )x x3 2x 2

Therefore

f ( ) 8) and g ( ) ( ) ( )3) 2) 1)

gf ( ) ( )g ( 8 1 8

Answer: (A)

4. If f x( )x ( )xx (x and g x( )x ,1 2 then ( ) ( )

is equal to

(A) 1 (B)
1

2

(C)
1

2
(D) 2

Solution: We have

( )( )

( ) ( )

x)

x

x

1

1

2

2

and hence

( ) ( )
1

2

Answer: (C)

5. The number of points at which the function f(ff x) 

x x1 1x  is not differentiable is

(A) 2 (B) 1

(C) 0 (D) infinite

Solution: We have

f

x x x

x( )x

( )x

( )x ( )x

( )x ( )x

(x

)x

)

1) 1x2x

) () 12 1

) (x)

i

i

2 122x xi

Now

f
f f

h

hh

h
h

hh h

( ) lim
( )h ( )

lim
( )h

lim

f)h (

2( 2

0

0

00

2
2

0

h
h

f ( )1 01

Therefore

ff ( ) ( )

Hence f is not differentiable at x 1. Similarly, 

f ( ) 0  and f ( ) .2 Therefore f is not differf -

entiable at x 1. Thus, f is not differentiable atf x 1, 1.

Answer: (A)

6. If x t y t t2 2t 2 2tts cttt os sy 2 i in ,t then dy dx/yy dd at 

t /6  is

(A) 3 (B)
1

3

(C) 2 1 (D) 1

Solution: We have

dx
dt

t2 2t 2sin stt i

and
dy
dt

t2 2t 2cos cttt

Therefore

dy
dx

dy
dt

dx
dt
t

t t

y

t2

2 2

(cos cos )t2

(sin st2 i )

2
3

2 2

2
3

2 2

3

2

sin sin

cos sin

tan

t t
i

t t
i

t

Hence

dy
dx t

6

3

2 6 4
1ta tn an

Answer: (D)

7. If 1 32 21x y11 ( )x y , then dy dx is equal

to

(A) ( )( )2 2)()()()()()( (B)
1

1

2

2

y

x

(C)
1

1

2

2

x

y
(D)

x y2 2y
2 2( )x21 x2x ( )y2y

Solution: The given relation is

1 32 21x y11 ( )x y

(This is differentiation of implicit function.) Put x sin

and y sin . Then

cos (sin )cos sin )cos 3
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2
2 2

3 2
2 2

co cs os co ss in

tan
2

1

3

2
1

3

1Tan

Si 1 1 12
1

3
x y T1 2y1 an

Differentiating both sides w.r.t. x we get

1

1

1
0

2 21x y12 1

dy
dx

dy
dx

y

x

1

1

2

2

Answer: (B)

8. If 

(sin ) ( ) tan (log( ))sin( / )) (sin( / ) xx( )x// ) 1/ )// )// )/ 3

2
2) 2 0))((( )) 2))

then dy dx at x 1 is

(A)
3

32
(B)

1

32

(C)
3

32
(D)

3

32

Solution: This problem also comes under implicit

function. On differentiating both sides w.r.t. x we get

(sin ) log(sin ) cos

sin (sin )

sin( / )

sin

) log(sinsin( / )

x

x x////

2 2

2

log(sin )log(sin

xx

x

y
dy
dx

x x

x

2
1

2

23

2

2

4x 1

2 2x

y

x

cos

( |2 |)

sec (222 log( ))))

log tan(log( ))

x
x

2

2 2logx log 0))))

(2.4)

From the given equation we have

x yy1
3

i

Therefore substituting x 1 and sin /y // in 

Eq. (2.4) we have

dy
dx x 1

2

2 2

3

1
3

3

3

Answer: (C)

9. If f x( )x sin2  and

y f
x

x

2 1x

12

then dy dx at x 1 is

(A)
1

4

1

2
sin (B)

1

4

1

2

2sin

(C) sin2 1

4
(D)

1

2

1

2

2sin

Solution: We have

y f
x

x
dy
dx

f
x

x

d
dx

x

x

y

2 1x

1

2 1x

1

2 1x

1

2

2 2dx x1

sin
( )( ( )

( )

sin

2

2

2

2 2)

2

2 1

1

2( 2 (

2 1

x

x

x) 2

x

x22

2

2 21

2 22 22 2x x22

( )2 1x

Therefore
dy
dx x 1

21

2

1

2
sin

Answer: (D)

10. If

y
ax bx c

x c

2

1
( )x aa ( )x bx ( )x c ( )x bb ( )x cx

then dy dx is equal to

(A)
y
x

a
x a

b
x b

c
x c

(B) 1

x
a

x a
b

x b
c

x c

(C)
y
x

a
x a

b
x b

c
x c

(D)
1

x
a

x a
b

x b
c

x c

Solution: We have

y
ax bx x

x c

ax

2

2

( )x aa ( )x bx ( )x c ( )x bb ( )x cx

( )x aa ( )x bx ( )x c
xx

x

2

3

( )x b ( )x c

( )x a ( )x b ( )x c

)b (x

)a (x

Therefore

log log log( ) log( ) log( )xlog x a x cxlog )a )
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Differentiating both sides w.r.t. x we get

1 3 1 1 1

1 1 1 1 1 1

y
dy
dx x xdd a x b x c

x x a x x b x x c

a
x

b
x

c
x( )x a ( )x b ( )x c

Therefore

dy
dx

y
x

a
x a

b
x b

c
x c

Answer: (A)

11. If f :� �� is an even function, then

(A) f ( ) 0) (B) f ( )x is an even function

(C) f ( ) 0) (D) nothing can be said

about f ( )x

Solution: y f (x) is an even function. Therefore

f f x( )x ( )x)x x �

Differentiating both sides w.r.t. x we get

f f( )x ( ) ( )x

f f( )x ( )x

Hence

f f f( ) ( ) ( )f ( 0)

Answer: (A)

12. If a function is represented parametrically by the

equations

x
t

y
t t

1 3t

2

2
3 2

y
t2

,

then

(A) x
dy
dx

dy
dx

2

1 (B) x
dy
dx

dy
dx

3

1

(C)
dy
dx

x
dy
dx

x
3

(D) x
dy
dx

x
dy
dx

3

1

Solution: We have

x
t t

y
t t

1 1 3

2

2
3 2t 2

,

Therefore

dx
dt t t

3 2
4 3t

and
dy
dt t t

3 2
3 2t

Therefore

dy
dx

dy
dt

dx
dt

t t t

t t t

t

y

1 3 2

1 3 2

2

2 2t

So

x
dy
dx

xt t
dy
dx

xt
3

3 1 1tt

Answer: (B)

13. If x 3 cos t, y  4 sin t, then dy dx at the point 

( / , )// ,/2// ,// ,/  is

(A)
2

3
(B)

2

3

(C)
4

3
(D)

4

3

Solution: We have

x t
3 2

2

1

2

and y t2 2
1

2
i

Now

dx
dt

dy
dt

t4t
dy

3 i c4t
y

osd

implies
dy
dx

dy
dt

dx
dt
t
t

y

4

3

4
1

2

3
1

2

4

3

cos

sin

Answer: (D)

14. If y
x

x x x
1 log

log
, then dy dx is equal to

(A)
x y

x

2 2y
2

1
(B)

x y

x

2 2y
2

1

2

(C)
xy

x
1

2
(D)

xy

x

1

2 2
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Solution: We have

y x x( lx x og ) logxx )

Differentiating both sides w.r.t. x we get

dy
dx

x
x

( lx x og ) (y log )xxlx og ) 1 log xlog x
1

dy
dx

x
y

y x
x

1 1
xy

log
logg

dy
dx

y
x

y x

x

y x
x x

2

1

log

log

( lxyx1 og )

( l1 og )
(2.5)

But by the hypothesis,

log x
xy
xy

1

1

Substituting the value of log x is Eq. (2.5), we get that

dy
dx

y

xy
xy
xy

x
xy
xy

y
x

1
1

1

1
1

1

2 2( )x y1 2 2y
22

1

2

2 2

2

xy

x y2

x
Answer: (B)

15. If f x
x

( )x ,/1
162 3// then f ( )  is

(A)
1

8
(B)

1

4

(C)
1

12
(D)

1

3

Solution: We have

f x
x

( )x /2

3

161 3//

2

Therefore

f ( ) ( )
( )

/2

3

161 3//

2

2

3

1

2

1

4

1

3

1

4

1

12

Answer: (C)

16. If y x x xx x , 0xx , then dy/dx at x 1 is

(A)
1

2 1 2

3 4 2

4 2
(B)

1

1 2

3 4 2

4 2

(C)
3 4 2

8 2
(D)

3 4 2

1 2

Solution: We have

dy
dx x x x x x x

xx

1

2

1
1

2
1

1

2

Therefore

dy
dx x 1

1

2 1 2
1

1

2 2

3

2

1

2 1 2

3 4 2

4 2

Answer: (A)

17. The number of values of x at which

f
x

x
( )x Sin 1

2

2

1

is not differentiable is

(A) 0 (B) 1

(C) 2 (D) 3

Solution: Since

d
dx x

x( )x (| | )1

2

1

1

we have

f
x

x

x x
( )x

[ ( ) (x )]

( )x

( )x

( )x

1

1
2

1

1( 2(x

2

2

2

2 2)

2

2 22

2

2 2

2

2 2

2

2

2

2

2

1
1

2

1

( )21

( )21

( )21

| |21 22 ( )2

| |

|2 (11

x

x

if

if || |x 1
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Therefore f ( )x  does not exist at | | 1 ( . ., )e. x 1

because f ( ) 1  and f ( ) 1 and f (1 0)

f ( ) .1

Answer: (C)

18. If f xe x( )x ,/2 2//  then f ( )  is

(A) 1 (B) 0

(C)
1

2
(D)

1

2

Solution: We have

f e xe
xxx( )x /xe xxe

2 2/ 2//xxe// x 2

2

e x2 2 2/22 ( )x2x

Therefore f ( ) .0)

Answer: (B)

19. The function f x( )x | log | is

(A) continuous and differentiable for 0 1

(B) differentiable for 0 1,  but not differen-

tiable at x 1

(C) discontinuous at x 1

(D) not differentiable for all x 0

Solution: We have

f
x

x x
( )x

log

log

xlog if

if

0 1x

1

and f x

x
x

( )x

1
0 1x

1
1

if

if

Therefore f ( ) 1 and f ( ) 1 and hence fff (1)

does not exist.

Answer: (B)

20. Let f (x) [x] where [t] is the greatest integer not 

exceeding t and t g( )x | |x . Then ( )( )  is

(A) differentiable at x 1 and ( ff º g)

(B) differentiable at x 1 and ( ) ( ) 1))

(C) differentiable at x 1 and ( ) ( ) 0))

(D) not differentiable at x 1

Solution: Let

H f x x( )x ( )f g ( )x( )x ( (g )) [| |])g (x( f

Now

H
H

h

h
h

h
h

h

h

( ) lim
( )h ( )

lim
[| |]

lim

H)h (

11 h |]

0
0

0

00

0

1

0

[ ]1

lim
[ ]1 1

h

hh

H
H

h

h
h

h
h

h

h

( ) lim
( )h ( )

lim
[| |]

lim
[

H)h (

11 h |]

0
0

0

0

1 111

0 1

0

h
h

hh

]

lim

Therefore H ( ) is finite H ( )  is infinite. Hence

H is not differentiable at H x 1.

Answer: (D)

21. If x
t

t
y

t

t

3

1

3

12

2

2
, ,y

1 2
 then dy dx at t 2 is

(A)
2

3
(B)

2

3

(C)
4

3
(D)

4

3

Solution: We have

dx
dt

3 32 2

2 2

2

2 2

( )t tt1 2 2t2

( )t1 2

( )t1 2

( )t1 2

dy
dt

t t t3 1 2tt 62 2

2 2 2 2

[ (t2 ) (tt2t )]

( )t1 2 ( )t1 2

Therefore

dy
dx

dy
dt

dx
dt

t

t

y 2

1 2

so that

dy
dx t 2

4

3

Answer: (C)

22. If x
t

t
y

t

t

3

1

3

12

2

2
, ,y

1 2
 then h(t) dy dx is

(A) exactly differentiable at t 1
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(B) not differentiable at t 1

(C) not differentiable at t 0

(D) not differentiable at more than two points

Solution: From Problem 21,

h
dy
dx

t

t
( )t

2

1 2

which is not defined at t 1. Hence h(t) in not differen-

tiable at t 1.

Answer: (B)

23. Let f (x) and g (x) be functions defined on �  as 

follows:

f
x

( )x
0 if 0x

if 0xf
and g

x x
( )x

0 0x

02

if

if

Then

(A) f is differentiable at x 0 and g is not differen-

tiable at x 0

(B) f is not differentiable at x 0, whereas g is dif-

ferentiable at x 0

(C) both f and g are not differentiable at x 0

(D) both f and g are differentiable at x 0

Solution: We have

f ( ) 0 and f ( ) 1

Therefore f is not differentiable at x 0. Again

g ( ) 0 and g ( ) ( )2( 0

Therefore g is differentiable at x 0.

Answer: (B)

24. Let f ( )x | |x  and g( )x | |x .3  Then

(A) both f and g are not differentiable at x 0

(B) both f and g are differentiable at g x 0

(C) f is differentiable at x 0 but g is not

(D) g is differentiable at x 0 but f is not

Solution: We have

f
x x

x x
( )x

x xif

if

0

0

and g
x x

x x
( )x

x x3

3

0

0

if

if

Clearly

ff ( ) ( )f ( 1)

g g( ) ( ) ( ) ( )3( 0 g ( 3) 0)d

Therefore f is not differentiable at f x 0 but g ( ) .0)

Answer: (D)

25. Let f a a a a( )x | |xx | |x | | .a | |xx a | |x0
3

1
2

2 3a| |x|x  Then

(A) f is differentiable at x 0 if a
2

0

(B) f is not differentiable at x 0, whatever be 
a a a a0 1a 2 3a,1a

(C) f is differentiable at x 0 if and only if a
2

 0

(D) If f is differentiable at x 0, then a
0

0 and

a
2

0

Solution: In Problem 24, we have seen that | |  is not

differentiable at x 0, whereas | |3  is differentiable at 

x 0. Also | | x|2 2x is differentiable for all real x. If 

a
2

0, then

f a a a( )x | |x | |xa | |x0
3

1
2

3

is differentiable at x 0. Conversely, if f (x) is differen-

tiable at x 0, then

a f a a a2 0f a 3
1

2
3| |xx x( )x | |x | |xff )xx a |x

is differentiable at x 0 which is possible when a
2

0.

Answer: (C)

26. Let f x( )x [ ]x where [x] denotes the integral part

of x. If x is not an integer, then f ( )x  is equal to

(A) [x] (B) 2[x]

(C) 2x (D) does not exist

Solution: Suppose x 0 and n x nx 1  where n 0

integer. Therefore

f x nx( )x [ ]x[ ]xx ]x

so that

f x n)x [ ]xn

If x 0 and ( ) x) n  where n 0 integer, then

f x( )x ( )n

so that

f ( )x ( )n [ ]x

Therefore when x is not an integer, then f ( )x [ ]x .

Answer: (A)

27. Let f e x ex xx e( )x , (gg )e x(g and h g x( )x ( (f )). Then 

h ( ) is equal to

(A)
1

e
(B) e

(C) 1 (D) 1

Solution: We have

h x g e ex ex
( )x ( )e xg )e

h e xx

( )x ( )e e ( )e xe
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Therefore

h
e

( ) ( )( )( )e (
11

Answer: (A)

28. Consider the function f x( )x | si | | cos |xx| sin | for 

0 2 .  Then

(A) f (x) is differentiable x ( , )2,

(B) f (x) is not differentiable at x / ,//  and 3 2/22

and differentiable at all other values in ( , )2,

(C) f (x) is not differentiable at x /2  and 3 2/22

and differentiable at all other values in ( , )2,

(D) f is discontinuous at x / ,// and 3 2/22

Solution: We have

f

x x

x x

x x
( )x

sin cx

sin cx

sin cx os

xcos

xcos

sin x x

if

if

if

0
2

2

3

2

sin cosx xcos xif
3

2
2

Therefore

f

x x

x x

x x
( )x

cos sx i

cos sx i

cos sx in

if

if

if

0
2

2

3

22

3

2
2cos sinx xsin xif

Now it is clear that

(i) ff f
2 2

0 1

(ii) f ( ) , (f (f )(f 10)

(iii) ff
3

2

3

2
0 1f

3

Therefore, ff is not differentiable at x / ,//  and 3 2/22 .

Answer: (B)

29. Let f ( )x | |x 3  and g x( )x 3 both being defined in 

the open interval ( 1, 1). Then

(A) f g( )x ( )x  for all x ( , )1,

(B) f g( )x ( )x for all x ( , )1,

(C) f x( )x | (g )| for all x ( , )1,

(D) g x( )x | (f )|  for all x ( , )1,

Solution: We have

f
x

x
( )x

x3

3

1 0xx

0 1xx

if

if

Therefore

f
x

x
( )x

3 1x 0

3 0x 1

2

2

i

if

Also

ff ( ) ( )f (

so that f is differentiable at x 0 and hence differentiable

for all x in ( 1, 1). But

g ( )x ( , )3x x ( 12

Therefore

g x x( )x | (f )| ( , )1,

Answer: (D)

30. Function f :� � satisfies the functional equation

f
f
f

( )x y
( )x
( )y

)y

If f p( )  and f q( )a , then f ( )a is

(A)
p
q

2

(B)
q
p

(C)
p
q

(D) q

Solution: We have

f f
f
f

f( ) ( )
( )

( )
( )f ( 0)f (

f ( )
or 1

If f (0)  0 then

0

0

fff
f
f

f x

( )00 ( )00 ( )x x
( )x
( )x

( )x

This is not possible, because

f
f
f

( )x y
( )x
( )y

)y

Therefore

f (0) 1 (2.6)
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Also

f f
f
f f

( )a ( )a
( )

( )a ( )a
)a )a

1)

f f( ) ( )a 1 (2.7)

Now

q f

f f
h

f a f
h

f h

h

h

h

( )a

lim
( )a hh ( )a

lim
( (h )) ( )a

lim

(

0

0

0

))

( )
( )

( ) lim
( )

[

f (
f (

h

f (
f (

hh 0

1
By Eq. (2.7)]

f
f f

hh
( )a lim

( )h ( )

0

[ f (0) 1 according to Eq. (2.6)]

f f

f

( )a ( )

( )a ( )p

Therefore

f
q
p

( )a
(2.8)

Now

f
f f

hh
( )a lim

( )a h ( )a
0

lim

( )

( ) ( )

h

f
f ( f (

h0

1

[By Eq. (2.7)]

1
0

0f
f f

hh( )a
lim

( )h ( )0
[ (f ) ]1

f
f

( )

( )a

p
p
q

[By Eq. (2.8)]

p
q

2

Answer: (A)

31. Let f :� �  be a function satisfying the relation

f
x y f f

2 2

( )x ( )y

for all x y .y �  If f (0) 1 and f ( )  exists and is

equal to 1, then f (2) is equal to

(A) 1 (B) 1

(C) 2 (D) 2

Solution: The given relation is

f
x y

x yx
2

1

2
( (f( (ff ) (f )) (2.9)

In Eq. (2.9), put y 0 and replace x with 2x. Then we 

have

f x( )x ( (f ) ) [ (f ) ]( f
1

2
)x) 0)

Therefore

f f( )x ( )x( )x2)x 1f )x2 (2.10)

Now,

f
f f

hh
( )x lim

( )x h ( )x
0

lim

( )

h

f
x h

f (

h0

2
2

lim

( )

h

f
x h

f (

h0

2
2

1

[By Eq. (2.10)]

lim

( ) ( )
( )

h

f ( f (
f (

h0

2
2

1

  [By Eq. (2.9)]

lim
( )

h

f (

h0

1

lim
( ) ( )

( ( ) )

( )

h

f ( f
h

f
0

0)

1 (By hypothesis)

Therefore, f ( )x 1 for all real x. So f x k( )x
where k is a constant. Again,

1 1f k0 k( )00

Therefore

f x( )x 1

or f ( ) 2) 1 11

Answer: (B)

32. Let f be real-valued function defined on �  as follows:

f

x x

x( )x ( )x ( )x

1 1x x

)x (x 1 2

2xx3 xx

for

f

x

Let m be the number of values of x at which f is disf - 

continuous and n be the number of values of x at 

which f is not differentiable. Then m n is equal to
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(A) 2 (B) 1

(C) 0 (D) 4

Solution: It is enough if we check the continuity and 

differentiability of f at f x 1 and 2 only.

(i) lim ( ) lim ( )
x x

f ( f ( f
1 0 1 0

1 1 0  is contin-

uous at x 1.

(ii) lim ( ) ( )( )
x

f ( ( )
2 0

0  and      

lim ( )
x

f ( f
2 0

3 2 1  is discontinuous at

x 2. Therefore m  1. Now

f

x

x

x

( )x

1 1

2 3x 1 2

1 2

o

for

fo

x

(iii) f ( ) 1 and f ( ) ( )2( 3 1.That is

f f f( ) ( ) 1 is differentiable at 

x 1 and f ( ) .1)

(iv) Since f is discontinuous atf x 2, it is not differen-

tiable at x 2. Therefore n 1. Hence m n 2.

Answer: (A)

33. Let f x( )x ( )x2  for all x  1. Then ( ) ( )1  is 

(1/k) log
2
e where the value of k is

(A) 4 (B) 8

(C) 9 (D) 12

Solution: Clearly f (x) 1  for x 1. Let y 1 and

y x2 ( )x 1 . Therefore

log ( )2
21x x)1 x(x x

This implies that x x y2
2 0x log  has real roots. 

Hence

x y
1

2
2(( l1 1 4 og )

Now

x y1
1

2
2x ( l1 1 41 og )

Therefore

f x1
2

1

2
( )x ( l1 1 4 og ) for x 1

( ) ( )
log

log

( log log

) (
x x

e

x xloge

1

2
2

2

1

2
0

1

2 1 4
0

4

log )2

So

( ) ( )
log

log

log

e

e

1

2
2

2

1

4 1 4 4log2

0
4

4

1

12

Answer: (D)

34. The derivative of the f x( )x si cx ,sin x4 4cosx 0 x 
2 is positive if

(A) 0
8

x (B)
4 2

x

(C)
2

5

8
x (D)

5

8

3

4

3
x

Solution: We have

f x x x( )x (sin cx ) sin cos(sin x2 2cosx 2 2sin 2

1 2

1
1

2
2

1
1

2

1 4

2

3

4

1

4
4

2 2

2

sin2

sin

cos

cos

x x2cos

x

x

x

Therefore

f x( )x i0 4si 0

i 4 0

4 24 2x

4 2
x

Answer: (B)

35. If the function

f
x x

x ax b x
( )x

, | |

, | |ax

2 1x x| |

12

is continuous for all real x, then

(A) a b 1bb, and f is differentiable for allf x

(B) a b 1b, and f is not differentiable at f x 1, 1

(C)  a b 1bb, and f is not differentiable at f x 1, 1

(D) a b 1b, and f is not differentiable at f x 1, 1

Solution: We have

f

x ax b x

x x

x ax b x

( )x

ax

ax

2

2

1

2 1x 1

1

for <x

for

x

f is continuous atf x f ffff f( )1 0 ( )1 0
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21 a b

a b 3 (2.11)

f is continuous atf x f ff f( )1 0 ( )1 0

a b 1 (2.12)

From Eqs. (2.11) and (2.12), a 2 and b 1. Now

f

x x x

x x

x x x

( )x

2

2

2 1x 1

12x

2 1x 1

if

i

if

x

Therefore

f

x x

x

x x

( )x

2 2x 1

12

2 2x 1

1

if

i

if

x

Now,

f ( ) ( )2( 2 0

and f ( ) 2

Therefore f is not differentiable atf x 1. Again

f ( ) 2

and f ( ) ( )2( 2 4

Hence f is not differentiable atf x 1.

Answer: (C)

36. Let

f
e xx

( )x
sin |x |cos

otherwise2

If m and p are, respectively, the number of points of 

discontinuity and the number of points at which f isf
not  differentiable, then

(A) m 0, p 2 (B) m 1, p 1

(C) m 2, p 1 (D) m 2, p 2

Solution: We have

f

x

e x x

x

x( )x sincos

1x2

1

1x2

i

if

i

x

Clearly

f ( ) 2

and f e( ) sin( ) se icos( ) csin(e ( ) 1 1) se in) e))1 1) csin( ) os) e

Therefore f is discontinuous at x 1 and hence f is not

differentiable at x 1. Also f e( ) sincos 11  and 

f ( ) 2)  so that f is discontinuous at f x 1 and there-

fore f is not differentiable atf x  1. Hence m 2, p 2.

Answer: (D)

37. The function f ( )x ( )x | |x cos(| |x )(x x2 2) ||x) |x
is not differentiable at

(A) 1 (B) 0

(C) 1 (D) 2

Solution: We have

|( )( )|

( )( )

( )( )

( )( )

x x)(

)( x

)( x

)(

(1 2)(x)(x)(

)()()( 1

)()( 1 2

)()()(

for

for x

foff r x 2

and cos(| |) c ( ) cos|) cos( xcos(cos(

Therefore

f

x x

x( )x

( )x ( )x ( )x

( )x ( )x ( )x

)(x

)(x

2

2

x)(xx 1) xxcos

x)(xx 1x) cos

o

fo x

x x( )x ( )x ( )x2 )(x 2)

2

)(xx xxcos fo

Now

f

x x

x

x x
( )x

( )x ( )x ( )x ( )x ( )x ( )x sin

(

2x(x ) ( x

1

2

2 2)( )x () (x

for

1 2 1 1 1

2

2

2 21 2)( ) ( )( ) ( )( ) sin

( )1 ( )2

xx 2) ( x x22) ( x x1) sin

x

x(

for 1 x

( )( ) ( )( ) sin)( )( x

x

2 2)( ) ()()()( )()(

2for

Clearly

f ( ) n (f )1(f 0

so that f is differentiable atf x 1 and

f ( ) ( )( ) sin sin2 3 2

and f ( ) ( )( ) sin sin2 3 2

Therefore ff ( ) ( )  and hence f is not differf -

entiable at x 2.

Answer: (D)

38. Let f xe xx( )x ,( )xxe xx ,( )x �  Then

(A) f ( )x ,0
1

2
1in (B) f ( )x ,0

1

2
1in

(C) f x( )x 0 � (D) f x( )x 0 �

Solution: We have

f e x ex( )x ( )x( ) ( )xx ex)x (

ex( )( )x x2)x ( xxx

ex( )x ( )x ( )xx
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Since e x( )x 0 for all real x,

f ( )x ( )x ( )x

,

0 ( )( 0

1

2
1

Answer: (A)

39. If f
x

x
e( )x

log (e )
,

3

3 2xx2
 then the domain of f ( )x is

(A) � { , }2, (B) ( , )

(C) � { , , }2, (D) ( , ) { , , }.1, ) {{ 2

Solution: Clearly loge(x 3) is defined when x 3.

That is

loge(x 3) is defined in ( , ) (2.13)

Also

x2 3 2x 0 1x 23x 0 , (2.14)

From Eqs. (2.13) and (2.14), the domain of f (x) is

( , ) { , }.1, ) {{  Now

f

x
x

xe

( )x
( ) log (e )

( )x

( )x ( )x

2

2 2)

2

3 2x
3

x 3

x

x ( )(( l g ( )

( )( )

3

)( 2 2)

x) log (

))(

e) log (x) log (

)()(

Therefore, f ( )x is defined for x 3  and x 2, 1. So 

domain of f ( )x is ( , ) { , }.1, ) {{

Answer: (D)

40. f : ( , )0 ) � is continuous. If F(FF x) is a differen-

tiable function such that F ( ) f) x( )x 0 and

F( ) x) x2 2)) 3x2x , then f (4) equals

(A)
5

4
(B) 7

(C) 4 (D) 2

Solution: We have

FF ( ) ( )f) F ( f( ) ( )x2 2) f (x (2.15)

Now, since

F( ) x) x2 2)) 3x2x

we get

F ( )( ) 2x x)(22 x x2 2)(2 ) 2x)(2 x

Therefore

F ( ) x)2 1
3

2
From Eq. (2.15) we get

f x( )x2 2) 1
3

2
1F ( )x2x

Put x 2 so that f ( ) .1) 3 41

Note: If we put x 2, then f ( ) 2)  which cannot be

done, because f is defined forf x 0 and F ( ) f) ( )x  for 

x 0. Also one can replace x with x  in F( ) x) x2 2)) 3x2x
so that F( ) x) xx 3 2/3 23 2  and hence

f x( )x F ( )x 1
3

2

Answer: (C)

41. Let f :� �  be a function defined by f (x) 

Max{ , }.x, 3 The set of all points where f (x) is not

differentiable is

(A) { 1, 1} (B) { 1, 0}

(C) {0, 1} (D) { 1, 0, 1}

Solution: Explicit form of f is

f

x x

x

x < x

x x

( )x

if

if

if 0

if

1

1 0x

1

1

3

3

See Fig. 2.1. The graphs y x3 and y x intersect in three 

points, namely (0, 0), ( 1, 1) and (1, 1). Therefore

FIGURE 2.1 Single correct choice type question 41: (a) Curve

of y x and y x3. (b) Graph of f (x) Max{x, x3}.

(a)

(b)

O

(1, 1)

(−1, −1)

1

1

−1

y

x

y =
x

y = x 3

O

(−1, −1)

(1, 1)

y

y 
= x

y =
x

y =
x

3
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f

x

x

x
( )x

1 1x

3 1x 0

1 0 1

3 1x x

2

2

if

i

i

i

Clearly

(i) f ( ) 1  and f ( ) 3

 (ii) f ( ) 0 and f ( ) 1

(iii) f ( ) 1 and f ( ) 3

Therefore f is not differentiable at x 1 0, and 1.

Answer: (D)

42. Which of the following function(s) is differentiable

at x 0?

(A) cos(| |) | |x|) | (B) cos(| |) | |x|) |

(C) sin(| |) | |x|) | (C) sin(| |) | |x|) |

Solution:

(A) We have

f x

x x x

x x x

1ff

0

0

( )x cos(| |) | |x

cos

cos

xcos(| |)

xx

xx

if

if

Differentiating w.r.t. x we get

f
x

x1ff
1 0x

1 0x
( )x

sin

si

i

i

This implies

f1ff 1( )0 0 and f1ff 1( )0 0

Therefore, f1ff ( )x is not differentiable at x 0. Hence

(A) is not correct.

(B) We have

f x

x x x

x x x

2ff

0

0

( )x cos(| |) | |x

cos

cos

xcos(|

xx

xx

if

if

Differentiating w.r.t. x we get

f
x x

x2ff
1

1 0x

x

x
( )x

si

sin

if < 0

i

This implies that

f2ff 1( )0 0 and f2ff 1( )0 0

Therefore, f2ff ( )x  is not differentiable at x 0. Hence

(B) is not correct.

(C) We have

f x

x x x

x x x

3ff

0

0

( )x sin(| |x ) | |

sin

sin

sin(| |x )

xsin

xx

if

if

Differentiating w.r.t. x we get

f
x

x3ff
1 0x

1 0x
( )x

cos

cos

i

i

Now,

f3ff 1 1 2( )0 0

and f3ff 1 1 2( )0 0

Therefore f
3

ff  is not differentiable at x 0. So (C) is

not correct.

(D) We have

f x

x x x

x x x

4ff

0

0

( )x sin(| |x ) | |

si

sin

sin(|x

xsin

xx

if

if

Differentiating w.r.t. x we get

f
x

x4ff
1 0x

1 0x
( )x

cos

cos

i

i

This implies

f 4ff 1 1 0( )0 0

and f 4ff 1 1 0( )0 0

Therefore f4ff ( )x is differentiable at x 0. Hence (D)

is correct.

Answer: (D)

43. Let f (x)  3 sin x 4 sin3 x. The length of the longest 

interval in which f ( )x 0  is

(A)
3

(B)
2

(C)
3

2
(D)

Solution: We have f x( )x sin , .sin 3 0,x,x 2  Differen-

tiating w.r.t. x we get

f x( )x 3 3cos 0

0 3
2

3

2
3 2xx 3

3

Therefore, length of the longest interval in which f ( )x 0

is

6

2

3 2 6 6 3

Answer: (A)
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44. Suppose that f ( )x ( )x(x 2  for x 1. If g(x) is the

function whose graph is the reflection of the graph

of f (x) with respect to the line y x, then g ( )x is

(A) x 1 0xx, (B)
1

2
0

x
x,

(C)
1

1 0
x

1, (D) 2 1 0x x1 x1,

Solution: By hypothesis g(x) is the inverse of f for x 0

(Fig. 2.2). If y 0 and y ( )xx 2 we get

x yy 1

Therefore

g f x( )x ( )x( )xf )x1 1 for x 0

So, for x 0

g
x

( )x
1

2

FIGURE 2.2 Single correct choice type question 44.

y = x

O

x =
(y 

+ 1)2

y =
(x 

+ 1)2

−1

11

−1

Answer: (B)

45. The domain of the derivative of the function

f
x

x
( )x

| |x

(| | ) | |x| ||x

Tan ix f

i

1 1

1

2
1) | |) | |xif

is

(A) � { } (B) � { }

(C) � { } (D) � { , }1,

Solution: We have

f

x

x x

x

( )x

( )x

( )x

x
1

2
1x)

1 1x

1

2
1) x)

1

i

Tan ix1 f

i

Clearly f is discontinuous at x 1 1,  and hence at 1, 1, 

the function f is not differentiable. Also

f

x

x
x

x

( )x

1

2
1

1

1
1 1x

1

2
1

2

if

if

if

Therefore domain of f ( )x is � { , }.1,

Answer: (D)

46. If y is a function of x and log( ) ,x y)y then

dy
dx x 0

 is

(A) 1 (B) –1

(C) 2 (D) 0

Solution: Differentiating the given equation w.r.t. x we

get

1
1 2 2

x y
dy
dx

y x2
dy
dx

2y (2.16)

From the given equation, x y0 1y . From Eq. (2.16),

dy
dx x y

x y
x y

1
2 2

1
y2

Therefore

dy
dx x 0

1

0 1
0 2

1

0 1
2 1 1( )1

So
dy
dx x 0

1

Answer: (A)

47. Let

f
xe x

x ax x x

ax

( )x
,

,ax

0

02 3x

where a is a positive constant. The interval in which

f ( )x ,0 is

(A)
a a

3

2

3
, (B)

a
a

2
,

(C)
2

3a
a

, (D)
a
3

,

Solution: We have

f e

f

( )

( )

( )

0e

0 a( 0

0

0

f (

Therefore f is continuous atf x 0. Now

f
e axe x

ax

ax ax

( )x
for

f

0

1 2 3 0x xfor2

Clearly

ef ( ) 0 10
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and af ( ) ( ) ( )3) 1)

So f is differentiable atf x 0 and f ( ) .1)  Hence f ( )x
exists for all real x. Now

f
ae x

a x

a x x

ax

( )x
( )ax 0x)ax

0x2a

2 6a 0

f

f

fo

Clearly af ( ) ( ).0 ( a For x 0,

f ax( )x 0 2 0

a
2

(2.17)

Again for x 0,

f a

a

( )x 0 2 6 0x

3
(2.18)

From Eqs. (2.17) and (2.18), f ( )x 0  in the interval
2

3a
a

, .

Answer: (C)

48. The function f : ,�
2 2

,  is given by

f x( )x ( )e( )ex( )e2
2

1Tan

Then

(A) f is even and f f ( )x 0  for x 0

(B) f is odd and f ( )x 0  for all x �
(C) f is odd and f ( )x 0  for all x �
(D) f is neither even nor odd, but f x( )x 0 �

Solution: We have

f x( )x ( )e( )ex( )e2
2

1Tan

Therefore

f x

x

x

( )x ( )e x

( )e( )ex

( )ex

)x

( )e

(2
2

2
2

2
2 2

1

1

1

Tan

Cot

Tan

∵TaTT n C1 1C tCCot
2

xCotCotCot x �

2
2 1Tan (1 )

( )

e

f (

x

Therefore f is an odd function. Also

f
e

e
x

x

x

x
( )x ( )x

2

1
0

1

12

1

2
� ∵

Therefore f is odd andf f x( )x .0 �
Answer: (B)

49. Let f
x

e x
x ea

a

( )x
log (a )

log (a )
x where a 1. Then

(A) f ( )x 0  for x 0

(B) f ( )x 0  for x 0

(C) f
e e

( )x , (f ) ,0 0i xf )( )f )

(D) f
e

f
e

( )x , ( )x ,0 0in an id f )x 0 n( ) id f ) 0

Solution: We have

f x
e x

e x( )x
log( ) log( )x

(log( )e x )

1 1
l ( )

2

x e xd 0

log( ) log( )

( log )

log(

x) log(

t a

x
a is increasing because 1

) l)) og( )

e x x

Therefore f ( )x 0 and x 0 .

Answer: (B)

50. Let f x( )x sin ,x cosMax{ }2 sin x2 1sin xsin x  for 0 x .  Then

the value of x at which f is not differentiable isf

(A) Cos 1 3

5
x (B) Sin 1 3

5

(C) Sin 1 3

5
(D) Cos 1 3

5

Solution: See Fig. 2.3. The two curves y x2sin  and 

y x1 cos  intersect at the point

x Cos 1 3

5

which can be obtained by solving the equation 2sinxnn
1 c1 os .xc1 os1 Also

f
xx

( )x
i

cos x

2 xsin
3

5

1
3

5

1

1

f r Cxx0 os

for Cos
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FIGURE 2.3 Single correct choice type question 50.

p
2

p
2 (p, 2)pp

y = 1 − cos x
y = 2 sinx

y

x

( (

3
5( (

pO

1

2

p −p Cos−1

, 2

Differentiating w.r.t. x we get

f

x

( )x

sin

2 xcos
3

5

3

5

1

1

for Cx0 os

for C xC

Therefore at x Cos 1 5( /33 ), we have

Left derivative 2
3

5

1cos Cos

2
3

5

6

5

At x Cos 1 5( /3 5),  we have

Right derivative sin Cos 1 3

5

sin

sin

Cos

Sin

1

1

3

5

4

5

4

5

Therefore, f ( ( / ))1 3// does not exist.

Answer: (D)

Note: In general, if the graph of a function is union of 

branches of intersecting curves, then at the points of 

intersection the function is not differentiable.

51. Let f ( )x sin ,x cos ,x }Max{ 0 for 0 2 .  Then, 

the number of points at which f is not differentiable f
in ( , )2, is

(A) 0 (B) 1

(C) 2 (D) 3

Solution: See Fig. 2.4 and note that the thick por-

tion is the graph of y f ( )x . Draw the graph of 

y x y xysin ,xx cos  so that

f

x x

xx

x

xx

( )x

cos

sin

cos

x

x

x

x

for

for

for

for

0
4

4

0
3

2

3

2
2

As said in the above note, there are three sharp points
on the graph at x / , , // , 2//  and hence f is not differf -

entiable at these points.

FIGURE 2.4 Single correct choice type question 51.

O

y

y = sinx

y = cosx

(E,EE l )

p
4
p
2

p 3p
2

x

Answer: (D)

52 f : ( , ) ( , )0, ) () ( is a twice differentiable function

and satisfies the functional relation f xf( )x ( )x)

for all positive x. If g f x( )x log( ( )),  then for any 

positive integer n,

g n g
1

2

1

2

(A) 4 1
1

9

1

25

1
2( )2 1

(B) 4 1
1

9

1

25

1
2( )2 1

(C) 4 1
1

9

1

25

1
2( )2 1

(D) 4 1
1

9

1

25

1
2( )2 1

Solution: Since g f x( )x log( ( )), we have

g f

xf

x x

x

( )x log( ( )x )

log( ( )x )

log lx g( (f ))

log (x g )

log x

log x

f) log( x)

Therefore, for all x 0 we have

g g x( )x ( )x log)

Replacing x with x xx( /( / ) ( / )2// 1// we have
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g x g x xxg x
1

2

1

2

1

2
log

Differentiating w.r.t. x we get

g x g x
x x

1

2

1

2

1

1

2

2

2 1x

Differentiating again, we get

g x g x
1

2

1

2

4
2( )x2 1x

(2.19)

Now, substituting x n1 2 3, , , , in Eq. (2.19) and

adding them, we get that

g n g
1

2

1

2
4 1

1

9

1

25

1
2( )n2 1n

Answer: (A)

53. Let f (x) be a polynomial function and g ex( )x . If 

h( )x ( )f g ( )x , then h ( )x  is

(A) f e fx x x( )ex ( )ex

(B) f e f ex x x( )ex ( )x2

(C) f x( )ex

(D) f e f ex x x xe( )ex ( )ex2

Solution: We have

h f x f x( )x ( )f g( )f g ( )x( )x ( (g )) ( )ex .( )f g (x

Differentiating w.r.t. x (using chain rule) we get

h f ex xe( )x ( )ex

Again differentiating we get

h f e e f e

f e f e

x xe x xf x

x x x xe

( )x ( )ex ( )exe

( )ex ( )ex2

Answer: (D)

54. If 

f x( )x ( (( (x )(2 1((x1 11Sin Sx11 x11

for 0 1 2/11 22 then f ( )x  is equal to

(A)
2

x( )1 x1
(B) 0

(C)
1 x

x
(D) x

x

1

( )x1

Solution: We have 0<x<1/2. This implies that

Sin 1 1 x  and Sin 1 1( (2 ))x1(

are defined because

1

2
1 1 1 1

4 1

4 02 24 1

1 1

4

4 11

x 1 x

x44

d (0 20 x0 20 )

( )11 x1

( )1 21 222

Therefore

f x
x

x x

xx

)x
( )x

( )

( )x ( )x
( )x

(

2
1 (

1
2 1

1
1 4

2
2 x(

1
1 ) ()) ) () ( )

( / )

( ) ( )

(
1 2

1 2 1
//2

1 1 0

x
x))) x

x( x(
Answer: (B)

55. If y P2 ( )x is a polynomial of degree 3, then

2 3
2

2

d
dx

y
d y2

dx

(A) P P( )x ( )x (B) P P( )x ( )x
(C) P P( )x ( )x (D) a constant

Solution: It is given that y P2 ( )x . In this problem, 

for comfort sake, we denote dy dx/yy dd  by y1  and d y dx2 2y dx/yy dy dd
by y

2
. Differentiating the given equation y P2 ( )x

w.r.t. x, we have

2 1yy P ( )x (2.20)

Again differentiating both sides w.r.t. x we get

2 21
2

2y y1 y P22y2 y2 ( )x (2.21)

Multiplying both sides of Eq. (2.21) with y2, we get

2 2
1
2 32 2

2y y y y y P2 P P2 32 2y y3 ( )x ( )x ( )x

Therefore

2 23
2

2
1
2y y y y2( )x( ) ( )x

P P x( )x ( )x ( (P ))
1

2

2

[By Eq. (2.20)]

So

2
1

2
23

2

d
dx

P P P P P P( )3
2y y3 ( )x( ) ( )x ( )x ( )x ( )x ( )xP( )x

P P( )x ( )x

Answer: (C)

56. If y m xsin( ),Sin 1 then 

( )2
2

2
)

d y2

dx
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(A) xy m y2 2y (B) x
dy
dx

m y2

(C) x
dy
dx

m y2 (D) x
dy
dx

my2

Solution: We have y m xsin( ).Sin 1 Differentiating

w.r.t. x we get

dy
dx

m x
m

x
m xcos( )Si 1

21

1 2 1x
dy
dx

mm x( )Sin

Again differentiating both sides w.r.t. x we get

1
1

2 1

1

2
2

2 2

1

2

2

2
x

d y2

dx x

dy
dx

m

x

( )2x

[ sin( )1m x1 ]m

m y

x

2

21

Therefore

( )

( )

2
2

2

2

2
2

2

)

)

d y2

dx
x

dy
dx

m y2

d y2

dx
x

dy
dx

m y2

Answer: (B)

57. If xy ax xax2 ( /b xx) , then

x
d y

dx

dy
dx

2

2
2

y
2

(A)
y
x

(B)
y

x

(C)
2y
x

(D)
2y
x

Solution: It is given that

xy ax
b
x

ax2

Differentiating both sides w.r.t. x we get

y x
dy
dx

ax
b

x
x

y
2

2
(2.22)

y x
dy
dx

ax b2 3x 32 (2.23)

Again differentiating both sides w.r.t. x we get

2 3 6

2 4 6

2 23 3
2

2
2

2 3
2

2
2

y dy
dx

x dy
dx

x d y2

dx
ax

y x dy
dx

x d y2

dx
ax

3
2x y

2xy 3
2x y

2 2 642 22 4 3
2

2
2 2b

x
dy
dx

d y2

dx
ax xy ax b

x

44 2

44 2

4 2

2 3
2

2
2

2
2

2 24

3

dy
dx

x d y2

dx
ax b

x

dy
dx

x d y2

dx
ax b

x
ax bb

x

x

2

3

2
2( )ax b32

2
2

2 3

x
x y x

dy
dx

[By Eq. (2.23)]

2 2y x2
dy
dx

Therefore

2 2

2
2

2
2

2

2

2

x
dy
dx

x
d y2

dx
y

x
d y2

dx

dy
dx

y
x

2
y

Answer: (C)

58. If 0 1, then 

1

1

2

1

4

1

8

12

3

4

7

8x
x

x

x

x

x

x

(A)
1

1 x
(B)

x
x1

(C)
x

x1
(D)

1

1

x
x

Solution:  Let

u
x

x
n

n n

n

2

1

1 2x1 2 1

2

1

1

Therefore

u

u
x

x

n

n

n n

n

x
n

1
2 1n 2

2

2 x2 1

1
0

1 1nn

( )x21

Combining Theorems 1.57 and 1.58 (i.e., applying

Cauchy’s Root Test and D’Alemberts Test), we get that

the given series is convergent. Now let
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y x
n

( )x ( )xx ( )xx ( )xx ( )x)x ( )x (2 4)( x 8 2) ( x
1

so that

( ) ( )( )( )( ) ( )

( )( )( )

1)( )( ) (2 4)( 2

2 2 4)( )()(

1

)( )()(

( )(

y)y)) x)( )()()( ) () (

x)( )()()( )()(

n

( )2 1n

Therefore, finally

( ) 1) 2y)))) x
n

and hence

y
x
x x

n
n

1

1

1

1

2

as

Therefore the infinite product

( )( )( )( ))( )(
1

1

2 4)( 8)()( x)( )()( )()()(
x

Using logarithmic differentiation, we have

1

1

2

1

4

1

8

1

1

12

3

4

7

8x
x

x

x

x

x

x x

Answer: (A)

Note: For more information about convergence of series

of positive terms, see pages 66 and 258 of Introduction To 
Real Analysis, Robert G. Bartle and Donald R. Sherbert, 

Wiley Student Edition, Wiley India.

59. Let f x( )x [ ]x sin( )  where [x] denotes the integer 

part of x. Then at x k k, being an integer, the left 

derivative of f(ff x) is

(A) ( ) ( )) () (k (B) ( ) ( )) () (1k

(C) ( ) ( )k (D) ( ) ( )1k

Solution: We have

f
f f

hh
h

( )k lim
( )k h ( )

0

0

lim
[ ]sin( ( ))

lim
( )sin( )

lim
(

h

h

h

h
k)sin( h

h

k

0

0

0

h

11 1)( ) s1 in( )k

h

lim( )( )
sin

( ) ( )

h

k

k

k
h
h0

1 1)(

) (k

Answer: (A)

60. Let f
x x

( )x
sin(log )x1

1

3
0

0 0x

2 if

if

Then

(A) f is discontinuous at f x 0

(B) f is differentiable at f x 0

(C) f is continuous and differentiable atf x 0

(D) f is continuous atf x 0, but not differentiable at 

x 0

Solution: Observe that

f
x x x

( )x
sin( log | |)1

1

3
2 0

0 0x

if

if

Since sin( log | |)2 x  is a bounded function, we have

lim sin( l g | |)
x

x sin(
0

2 0log | |)xlog |

Therefore

lim ( ) ( )
x

f ( f
0

0 0 0 (f

Also

f x
x

x
( )x sin( log | |) cos( l g | |)1

1

3
2

3

2
0xx2 log | |) f

and f ( )  does not exist.

Answer: (D)

61. Consider the following two statements:

Statement I: The function f
x

( )x
| |x1

 is differ-

entiable for real x.

Statement II: The function g x( )x | |x2  is thrice 

differentiable for all real x.

Then

(A) Both statements are true.

(B) Statement I is true but statement II is false.

(C) Statement I is false and statement II is true.

(D) Both statements are false.

Solution: We have

f
x

x
x

x

x
x

x

( )x
| |x1

1
0

0 0x

1
0

if

if

if

g x

x x

x x

( )x | |xx |x

x x
2

3

3

0

0 0x

0

if

if

if
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Clearly, f (x) is continuous for all x 0  and at x 0

f f f( ) ( ) ( )0 f ()

Hence f is continuous for all real f x. Also

f

x

x
( )x

( )x

( )x

1
0

1
0

2

2

if

if

and ff ( ) ( )f (

Therefore f is differentiable for all realf x. Thus, Statement

I is true. Now

g

gg

( )x

( ) ( )

3 0x x

3 0x x

0

2

2

if

if

and g

g g

( )x

( ) ( ))

6 0x xx x

6 0x x

0

But

g

g

( )x

( ) ; (g )

6 0xx

6 0x

6 0; (g 0 6))

Therefore g is not differentiable at x 0. Hence

g ( )x exists for all real x is false. So Statement II is 

false.

Answer: (B)

Multiple Correct Choice Type Questions

1. Let f x( )x [ ]x[ ]x 1 for x 3 where [x] de-

notes the integer part of x. Then

(A) In the open interval (–1, 3), f has three points of 

discontinuity

(B) f is right continuous atf x –1 and has right 

derivative at x –1

(C) f is left continuous atf x 3 and has left deri-

vative at x 3

(D) f has right derivative at f x –1 and is not diffe-

rentiable at x 0, 1, 2, 3.

Solution: We have

f

x x x

x x

x x x( )x

x

x

x fo

fo 0

fo

0

0 1xx 1

1 2x x xx for 1

2 322

3 5 3x

f

at

See Fig. 2.5 which shows the graph of y f ( )x . On the

graph clearly there are breaks at x 0 1 2 3, ,1 , .3

(i) At x  the function is right continuous.

(ii) At x f ( )x  is not left continuous.

(iii) At discontinuous points the function is not differ-

entiable.

Answers: (A), (B), (D)

FIGURE 2.5 Multiple correct choice type question 1.

1

2

−1 O 1 2 3 x

y

(2, 3)

(3, 5)

3

4

5

2. Let

f
x

x x

x

( )x
3 1x 1

4xx4 x of 1

Then

(A) f is discontinuous at f x 1

(B) f is continuous at f x 1

(C) f is differentiable at f x 1

(D) f is not differentiable atf x 1

Solution: See Fig. 2.6. We have f ( ) 1) and f ( ) .3)

The graph has no break in [  But at the point (1, 3), 

there is a sharp point. Now



f f( (1 3 4 11

Therefore f is continuous at x  1. Again

f f( log (1 3 1and

Therefore f is not differentiable at x  1.

FIGURE 2.6 Multiple correct choice type question 2.

1

O x1 4−1

3 (1, 3)

4

−1, 1
3

y

Answers: (B), (D)

 3. Let f x x( ) log . Then

 (A)  f is continuous at x  1

 (B) f is discontinuous at x  1

 (C) f is differentiable at x  1

 (D) f is not differentiable at x  1

Solution: We have

f x
x x

x x
( )

log

log

for 0

   for 1

1

Now

f ( log1 1 0

and f ( log1 1 0

Therefore f is continuous at x  1. Now

f x x
x

x
x

( )

1
1

1

for 0

 for 1

FIGURE 2.7 Multiple correct choice type question 3.

1 xO

y

y log x

Therefore

f (1
1

1

and f (1
1

1
1

Hence f is not differentiable at x  1. Also you can notice 

that (1, 0) is a sharp point on the graph in Fig. 2.7.

Answers: (A), (D)

 4. The function Sin 1(cos )x

 (A) has infinite number of discontinuities

 (B) has finite number of discontinuities

 (C) has no discontinuities

 (D)  has infinite number of points at which the func-

tion is not differentiable

Solution: Let f x x( ) (cos ).Sin 1  Since cos x and 

Sin 1 x are, respectively, continuous on their respective 

domains, it follows that f (x) is continuous for all real x. 

Also

f x
x

x
x

x
( )

cos
( sin )

sin

sin

1

1 2

Therefore, f x( )  does not exist at x n , where n �.

Answers: (C), (D)

 5. Let f x
x

x
x

x
( )

,

,

Tan 1 1
0

0 0

 Then f is

 (A) continuous at x  0

 (B) not continuous at x  0

 (C) continuous and differentiable at x  0

 (D) not differentiable at x  0

Solution: Put Tan 1 1 0( / ) , .x x  Therefore

1

x
tan

so that /2  as x  0. In this case

f x
x

x
( )

cot ,

,

0

0 0

which gives

cot 0
2

as

 lim ( ) ( )
x

f x f
0

0 0

Hence f is continuous at x  0.
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For x 0,

f x
x

x

x x

x x x

( )

( )

Tan

Tan

1

2 2

1

2

1

1

1

1 1

1

Therefore neither f ( )0 0  nor f ( )0 0  exist because of 

the presence of x in the denominator of the second term, 

whereas

lim
x x0 0

1 1
Tan

and lim
x x0 0

1 1
Tan

Hence f ( )0  does not exist.

Answers: (A), (D)

 6. Let g x
x

x
x

x

( )

1 1
0

0 0

if 

if 

 Then g is

 (A) continuous and differentiable at x  0

 (B) continuous and differentiable for all x > 0

 (C) continuous for all x > 0

 (D) not right differentiable at x  0

Solution: For x 0,

g x
x

x x

x

x

( )
( )1 1

1 1

Therefore, g is continuous and differentiable for all x 
and

lim ( ) ( )
x

g x g
0

0

1 1
0 0

So g is continuous at x  0. Now

g
h

h hh
h

( ) lim
( )

0 0
1 10

0

Neither g ( )0 0  nor g ( )0 0  exist finitely. Hence g is 

not differentiable at x  0.

Answers: (B), (C), (D)

 7. Let f x
x x x

x
( )

sin( / ),

,

2 1 0

0 0

 Then

 (A) f is continuous at x  0

 (B) f is differentiable at x  0

 (C) f ( )0  exists

 (D) f x( )  is not continuous at x  0

Solution: Since sin( / )1 x  is bounded and x2 0  as 

x 0,  we have

lim sin( / ) ( )
x

x x f
0

2 1 0 0

Thus f
 
is continuous at x  0. Also,

lim
( ) ( )

lim
sin

lim sin

h h

h

f h f
h

h
h

h

h
h

0 0

2

0

0 0
1

1

0

Therefore f ( )0  exists and f ( ) .0 0  Now

f x
x

x x
x

x
( )

sin cos2
1 1

0

0 0

for

for

Hence lim ( )
x

f x
0

 does not exist because lim cos ( / )
x

x
0

1  

does not exist. Thus f x( )  is not continuous at x  0.

Answers: (A), (B), (D)

 8. Suppose f :� �  is a function satisfying

  (i)  f x y f x f y( ) ( ) ( )  for all real x, y.

 (ii) f x xg x( ) ( )1  where lim ( ) .
x

g x
0

1

 Then

 (A) f is differentiable for all x

 (B) f is twice differentiable for all x and f ( )0 1

 (C) f is differentiable for all x and f x f x( ) ( )

 (D) f (0)  1

Solution: We have

f g( ) ( )0 1 0 0 1

So (D) is true. Now,

f x
f x h f x

h
f x f h f x

h

f x
f

h

h

h

( ) lim
( ) ( )

lim
( ) ( ) ( )

lim ( )
(

0

0

0

(( ) )h
h

1
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lim ( )
( ( ))

( ) lim ( )

( )

( )

h

h

f x
h g h

h
f x g h

f x

f x

0

0

1

Therefore f x( ) exists for all real x and f x f x( ) ( ).  

Hence (C) is true. Now

f x f x f x

f f

( ) ( ) ( )

( ) ( )0 0 1

So (B) is true.

Answers: (A), (B), (C), (D)

 9. f :� � is a function satisfying the relation

f x y f x f y x y( ) ( ) ( ) , �

 and f x x( ) 0 real

 Suppose the function is differentiable at x  0 and 

f ( ) .0 2  Then

 (A) f is differentiable for all x �
 (B) f x f x x( ) ( )2 �
 (C) 2 f x f x x( ) ( ) �
 (D) f ( )0 1

Solution: We have

 x y f f0 0 0 2( ) ( ( ))

f f( ) ( )0 0 0 1or

Now f (0)  0 contradicts the hypothesis that f (x) x. 
Therefore f ( ) .0 0  So f ( )0 1. Hence (D) is correct. 

Now

f x
f x h f x

h
f x f h f x

h

h

h

( ) lim
( ) ( )

lim
( ) ( ) ( )

0

0
        

        lim ( )
( ( ) )

h
f x

f h
h0

1

lim ( )
( ( ) ( ))

( ) ( )

( )

h
f x

f h f
h

f x f

f x

0

0

0

2

So (B) is true. Therefore f is differentiable for all x and 

f x f x( ) ( ).2

Answers: (A), (B), (D)

QUICK LOOK 

f x e x( ) 2

10. Let f x
x

e
x

x

x( ) /1
0

0 0

1
if

if

Then

 (A) f is continuous at x  0

 (B) f ( )0 0 1

 (C) f ( )0 0 0

 (D) f ( )0 1

Solution: We have e x1/  as x 0  and e x1 0/  

as x 0 . In any case, lim ( ) ( ).
x

f x f
0

0 0  Thus f is 

continuous at x  0. So (A) is true. Now

f
f h f

h

h

e

h
h

h

( ) lim
( ) ( )

lim

0 0
0 0

0

1

0
0

0

1             //

/
lim

h

h h

h

e

0

1

10 1

1

1 0
1

Thus f ( )0 0 1  and so (B) is true. Again

f
f h f

h

h

e
h

h
h

h
h

( ) lim
( ) ( )

lim

l

/

0 0
0 0

0

1
0

0
0

0

1

iim

( lim )

/

/

h h

h
h

h

e

e

0 1

0
0

1

1

1

0 ∵

Therefore (C) is true.

Answers: (A), (B), (C)

11. Let f :� �  be any function and g x f x( ) ( ) .  

Then which of following is/are not true?

 (A) If f is onto, then g is onto

 (B) If f is one-one, then g is one-one

 (C) If f is continuous, then g is continuous

 (D) If f is differentiable, then g is differentiable

Solution: f is onto f ( ) .� �  But g ( ) { }.� � 0  

Therefore (A) is not true. Now

f x f x g( ) ( ) is not one-one

 Worked-Out Problems
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Thus (B) is not true.

Suppose f is continuous at “a”.  Then to each 0,  there 

corresponds 0  such that

 f x f a x a( ) ( ) for  (2.24)

Now

 g x g a f x f a( ) ( ) ( ) ( )

  forf x f a x a( ) ( )

 [By Eq. (2.24)]

Therefore g(x) is continuous at a. Thus (C) is true. Now, 

f x x( )  is differentiable at x  0, but g x x( )  is not 

differentiable at x  0. Hence (D) is not true.

Answers: (A), (B), (D)

12. Let f x
x

x x
( )

0 0

02

for 

for 

 Then

 (A) f is continuous at x  0

 (B) f is differentiable at x  0

 (C) f x( ) is continuous on �
 (D) f x( ) exists for all x �

(a)

xx O

y

FIGURE 2.8 Multiple correct choice type question 12.

xx O

(b)

y  2x

y 

Solution: See Fig. 2.8(a). The graph of y f x( )  is the 

union of negative x-axis and the branch of the parabola 

y x2  in the first quadrant. Clearly

f f( ) (0 0 0 0

so that f is continuous at x  0. Hence (A) is true. Now

 lim
( ) ( )

lim
h
h

h

f h f
h h0

0
0

0 0 0
0

 f (0

and
 

lim
( ) ( )

lim

(

h
h

h

f h f
h

h
h

f

0
0

0

20 0
0

0

Therefore

f f( (0 0

So f is differentiable at x  0 and f ( ) .0 0  This implies 

that (B) is true. Now [see Fig. 2.8(b)]

f x
x

x x
( )

0 0

2 0

for

for

Clearly f x( ) is continuous at x  0 and hence f  is con-

tinuous on �.  Therefore (C) is true. Again

f x
x

x
( )

0 0

2 0

for

for

So f  is not continuous at x  0 and hence f ( )0  does 

not exist. So (D) is false.

Answers: (A), (B), (C)

1. In Fig. 2.8(a), even though at origin the point looks 

like a sharp point, but actually, at origin x-axis is a 

tangent to the curve y x2 .

2. The only sharp point on the graph of y f x( )  is at 

the origin so that f  is not differentiable at x  0.

QUICK LOOK

13. Let f be a function defined for all real x and let it 

satisfy the relation

f x y f x f y xy x y( ) ( ) ( ) ( )

If f ( ) ,0 1  then

 (A) f is differentiable for all real x

 (B) f  is differentiable for all real x

 (C) f ( )3 8

 (D) f  satisfies the relation

f x f
x

f x f
x

x( ) ( )
1 1

0

Solution: In the given relation, substituting x y 0,  

we have f ( ) .0 0  Also substituting y x,  we have 

f x f x( ) ( )  which reveals that f  is odd. Now,
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f x
f x h f x

h

f x f h hx x h f x
h

h

h

( ) lim
( ) ( )

lim
( ) ( ) ( ) ( )

0

0

lim
( )

( )
h

f h
h

x x h
0

lim
( ) ( )

( ) [ ( ) ]

( )

h

f h f
h

x x h f

f x

x

0

2

2

0
0 0

0

1

∵

Therefore f is differentiable, f  is differentiable, f ( ) .3 8
 

Also

f x f
x

x
x

x
x

( ) ( )
1

1
1

1
1

22

2

2

2

and 

 

f x f
x

x
x

x
x

x
x

f x

( ) ( )

(

1
1

1
1

1
1

1

2
1

2

2

2

2

2

2

)) f
x
1

Therefore (A), (B), (C) and (D) are all true.

Answers: (A), (B), (C), (D)

14. Let y f x( ) be a function defined parametrically 

by

x t t2 1

and y t t t2 2

Then f is

 (A) continuous at x  −1

 (B) continuous at x  2

 (C) differentiable at x  1

 (D) not differentiable at x  2

Solution:

Case I: t 0.  Then

x t t t2 1 3 1( )

and y t t t x2
1

9
12 2 2 2( )

Also t 0  implies

x t x1 3 0 1

Case II: 0 1t . Therefore

x t t t2 1 3 1( )

and

  y t t t x2 3
1

3
12 2 2 2( )

So

x t t3 1 3 1 2 0 1( )∵

Case III: t 1. Therefore

x t t t2 1 1 2( )

and  y t t t x2 3 3 12 2 2( )

Therefore

f x

x x

x x

x x

( )

( )

( )

( )

1

9
1 1

1

3
1 1 2

3 1 2

2

2

2

for

for

for

  (i) Clearly

and 

f

f

( ) ( )

( ) ( )

1 0
1

3
1 1 0

1 0
1

3
1 1 0

2

2

 

 

So f is continuous at x  1. Hence (A) is true.

 (ii) We have

and

 
f

f

( )

( ) ( )

2 0
1

3
9 3

2 0 3 2 1 32

Therefore f is continuous at x  2.

(iii) We have

and 

f

f

( ) ( )

( ) ( )

1 0
2

9
1 1 0

1 0
2

3
1 1 0

Therefore f is differentiable at x  –1. So (C) is true.

(iv) We have

and 

f

f

( ) ( )

( ) ( )

2 0
2

3
2 1 2

2 0 3 2 1 32

 

Therefore f is not differentiable at x  2. So (D) is 

true.

Answers: (A), (B), (C), (D)

 Worked-Out Problems
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15. Let f x( )  be a polynomial with positive degree satis-

fying the relation

f x f y f x f y f xy( ) ( ) ( ) ( ) ( ) 2

for all real x and y. Suppose f ( ) .4 65  Then

 (A) f x( ) is a polynomial of degree two

 (B)  roots of the equation f x x( ) 2 1 are real

 (C) xf x f x( ) [ ( ) ]3 1

 (D) f ( )1 3

Solution: We have

f x f y f x f y f xy( ) ( ) ( ) ( ) ( ) 2

for all real x and y. Substituting x y 1, we have

f f( ) ( )1 3 1 2 02

Therefore

f f( ) ( )1 1 1 2or

If f ( ) ,1 1  then

f x f f x f f x

f x x

( ) ( ) ( ) ( ) ( )

( )

1 1 2

1 real 

so that f(x) will be a constant polynomial which is a con-

tradiction. Therefore f ( )1 1 and hence f ( ) .1 2  Now 

replacing y with 1/x in the given relation we get

f x f
x

f x f
x

f

f x f
x

f

( ) ( ) ( )

( ) (

1 1
1 2

1
1   [∵ )) ]2

We know that any polynomial satisfying the relation

f x f x f x f x x( ) ( / ) ( ) ( / )1 1 0

must be a polynomial of the form x xn n1 1or
 
where 

n is its degree (Problem 19, page 61, Vol. 1). Therefore

f x x xn n( ) 1 1or

But

f f x x( ) ( )4 65 13

Therefore

f x x( ) 3 2

Answers: (A), (B), (C), (D)

16. The function

f x
x x

x x
x

( )

,

,

3 1

4

3

2

13

4

2

is

 (A) continuous at x  1

 (B) differentiable at x  1

 (C) continuous at x  3

 (D)  differentiable at x  3

Solution: We can write the given function as

f x

x x
x

x x

x x

( )

2

4

3

2

13

4
1

3 3

3

for

for 1

for 3

Now

f ( )1 0
1

4

3

2

13

4

1 6 13

4

8

4
2

f ( )1 0 3 1 2

Therefore f is continuous at x  1. Now

f x

x
x

x

x

( )
2

3

2
1

1 1 3

1 3

for

    for

        for

Therefore

f ( )1 0
1

2

3

2
1

and f ( )1 0 1

So f is differentiable at x  1. Actually, the line y x3  is 

a tangent to the parabola

y
x x2

4

3

2
13

FIGURE 2.9 Multiple correct choice type question 16.

21O
−1

−2

−3

1

2 (1, 2)

3

3 x

y

y = 3−x y =
 x 

− 3
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at the point (1, 2) (this fact will be realized in the next 

chapter). See Fig. 2.9. Therefore f is continuous and dif-

ferentiable at x  1 and so (A) and (B) are true. Now,

f f( ) ( )3 0 3 0 0

This implies f is continuous at x  3 and so (C) is true.

Again

f f( ) ( )3 0 1 3 0 1and

imply f is not differentiable at x  3.

Answers: (A), (B), (C)

17. Which of the following is/are correct?

 (A)  The function 

f x
x

x
x

x x
x

x x
( )

( )( ) ( )( )1 1 1 2 1 2 1 3
 

is discontinuous at x  0

 (B)  Sinf x
x

x
( ) 1

2

2

1
 is not differentiable at 

two points which are 1

 (C)  f x x x( ) log  is not differentiable for 

0 1x

 (D) f x
x

x

x x x
( )

sin

[ ]

2
1

2 3 1

for

for

where [x] denotes part of x continuous at x  1

Solution:

(A) Let

s x
x

x
x

x x
x

n x n x

x

n( )
( )( ) ( )( ( ) )1 1 1 2 1 1 1

1
1

1

11

1

1

1 2

1

1 2

1

1 3

1

1

1

1 1

x x x x

n x n x( )

1
1

1 1( )n x

Now n  implies

1

1 1
0

( )n x

Therefore

lim ( )
n

ns x 1

So

f x
x

x
( )

1 0

0 0

if

if

Therefore f is discontinuous at x  0. This implies 

(A) is true.

(B) We have

f x
x

x

x x

x x

( ) Sin

Tan for

Tan for

1

2

1

1

2

1

2 1 1

2 1

2 TTan for1 1x x

Therefore

f ( )1 0 2
4

2

2

 

f ( ) ( )1 0 2 1

2
4

2

1Tan

Therefore f is continuous at x 1. Similarly

f ( ) ( )1 0 2 1 2
4 2

1Tan

and f ( ) ( )1 0 2 1
2 2

1Tan

So f is continuous at x  1. Now

f x

x
x

x
x

x
x

( )

2

1
1

2

1
1 1

2

1
1

2

2

2

for

for

for

Therefore

f f( ) , ( )1 0 1 1 0 1

and f f( ) , ( )1 0 1 1 0 1

So f is not differentiable at x 1. Hence (B) is 

true.

 Worked-Out Problems
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(C) We have

and 

f x x x x

f x x

( ) log

( ) log

for

 

0

1

Therefore (C) is false.

(D) We have

  

for

for

for

f x

x
x

x

x x

( )

sin
2

1

1 1

3 2 1
3

2

Now

f ( ) sin /1 0 2 1

f ( )1 0 3 2 1

and f ( )1 1

Therefore f is continuous at x  1 and so (D) is 

true.

Answers: (A), (B), (D)

18. Let f x
x x

x
x

( )
log

1 1 1 1

1
1

1

2 for

for

 Then

 (A) f is continuous at x  1

 (B) f is not differentiable at x  1

 (C) f is continuous and differentiable at x  1

 (D) f x( ) exists for all x ( , )0 1

Solution: We have

f ( )1 0 1 1 1 1

and f ( ) log1 0 1 1 1

Therefore f is continuous at x  1. Hence (A) is true.

Now

f x
x

x
( )

1 2

for 0 1x  and at x f1 1 0, ( )  does not exist. Hence 

f is not differentiable at x  1. Therefore (B) is true. 

Also f x( ) exists for all x ( , )0 1  and so (D) is true.

Answers: (A), (B), (D)

19. Which of the following are true?

 (A)  f x
x

x
( )

sin
 is not defined at x  0, but lim ( )

x
f x

0
 

exists

 (B)  g x
x

x
( )  is not defined at x  0 and lim ( )

x
f x

0
 

does not exist

 (C)  h x

x x

x x

( )

1

2
0

1

2

1

2

1

2
1

2

for

for

is continuous at x  1/2, but not differentiable at 

x  1/2

 (D)  Q x x x( ) 1 2  is continuous for all x � , 

but not differentiable at x  1, 2

Solution: Clearly (A) is true because

lim
sin

x

x
x0

1

Let

g x
x

x
( )

1 0

1 0

if

if

g is not defined at x  0 and also g( )0 0 1 and g(0  0)

1  which shows that lim ( )
x

g x
0

 does not exist. So (B) is 

true. For the function given in (C)

h
1

2
0

1

2

1

2
0

and h
1

2
0

1

2

1

2
0

2

so that h is continuous at x 1 2/ . Further

h x
x

x x
( )

1 0
1

2

2
1

2

1

2
1

for

for

so that

h
1

2
0 1

and h
1

2
0 0

Thus (C) is true. For the function given in (D), we have

Q x

x x

x

x x

( )

3 2 1

1 1 2

2 3 2

for

for

for
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Therefore Q is continuous at x  1 and 2, but  Q  (1  0)  

2 1 0 0, ( ) .Q  Also Q ( )2 0 0 and Q ( ) .2 0 2  

Hence Q is not differentiable at x 1 2, . This implies that 

(D) is true.

Answers: (A), (B), (C), (D)

20. Consider the function f x x x( ) ( )[ ]1  for 1 2x  

where [x] is the integral part of x. Then f is

 (A) right continuous at x  –1

 (B) not continuous at x  0

 (C) continuous at x  1

 (D) not left continuous at x  2

Solution: We have

f x

x

x x

x

x

x x

x

( )

0 1

1 1 0

0 1

2 1

1 1 2

6 2

at

for

for 0

at

for

at

FIGURE 2.10 Multiple correct choice type question 20.

1

1

(1, 2)

(2, 3)

2O−1 x

y
(2, 6)

See Fig. 2.10

  (i) f f( ) ( ).1 0 1 1 0 1  Therefore f is right 

continuous at x 1.  So (A) is true.

 (ii) f ( )0 0 1 and f ( ) .0 0 0  Therefore f is not con-

tinuous at x  0 and so (B) is true.

(iii) f f( ) , ( ) .1 0 0 1 0 2  Therefore f is not continu-

ous at x  1. So (C) is false.

(iv)  f f( ) ( ).2 0 3 2  Hence f is not left continuous at 

x  2 and so (D) is true.

Answers: (A), (B), (D)

Matrix-Match Type Questions
1. Match the items of Column I with those of Column 

II.

Column I Column II

(A)  f x
x

x < x

x

( )
3 1 1

4 4

for

for 1
 is

(p)  continuous at 

x  1

(q)  differentiable 

at x  1

(r)  not differen-

tiable at x  1

(s) 1

(t)  continuous for 

all x in their 

respective 

domains

(B)  If g(x)  Min{x, x3} then 

g x( ) 1 for all x greater than

(C)  The function 

h x
x x

x x
( )

,

,

0 1

2 1
 is

(D)  The function 

Max{ }Q x x x( ) , 3  is

Solution:

(A) We have

f ( )1 0 3 31

and f ( )1 0 4 1 3

Therefore f is continuous at x  1.  Also

f x
x

x

x

( )
log ,

,

3 3 1 1

1 1 4

Hence

f ( ) log1 0 3 3

and f ( )1 0 1

Thus f is not differentiable at x  1.

Answer: (A)  (p), (r), (t)

(B) See Fig. 2.11(a). We have

g x x x

x x

x x

x x

x x

( ) { , }Min

for

for

for

for

3

3

3

1

1 0

0 1

1

Clearly g x x( ) .1 for 1

Answer: (B)  (s)
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FIGURE 2.11 Matrix-match type question 1: (a) Graph of 

g(x)  Min{x, x3}; (b) graph of Q(x)  Max{x, x3}.

(a)

−1
y 

= x

y 
= x

y = x3

1

1

(b)

(1, 1)

(−1, −1)

−1

−1

y 
= x

y 
= x

y = x 3

y = x 3

(C) We have

 
 for 0

 for
h x

x x

x x
( )

1

2 1

h h( ) ( )1 0 1 1 0 2 1 1and

Therefore h is continuous at x  1. Further h (1 0) 1  

whereas h ( )1 0 1. So h is not differentiable at 

x  1.

Answer: (C)  (p), (r), (t)

(D) We have [see Fig. 2.11(b)]

Q x

x x

x x

x x

x x

( )

  for

 for

 for

 for

1

1 0

0 1

1

3

3

Now

Q Q( ) ( )1 0 1 1 0 1and

 Q Q( ) ( )0 0 0 0 0 0and

 Q Q( ) ( )1 0 1 1 0 1and

 Q Q( ) ( )1 0 1 1 0 3and

Answer: (D)  (p), (r), (t)

2. Match the items of Column I with those of Column 

II.

Column I Column II

(A)  If f (x) is a polynomial satisfying the 

relation

f x f x x( ) ( )2 5 182

then f ( )1  equals

(p) 0

(B)  Let y  x3 – 2 
 
and x z3 52 .  Then 

the value of dy/dz at z  0 is

(q) 1

(C)  If f x x x( ) ,2 4  then f x  is not 

differentiable at x equals

(r) 2

(D)  Suppose that f and g are dif-

ferentiable functions such that 

 f x g x( ) ( )  and g x f x( ) ( ).  

Let h x f x g x( ) ( ( )) ( ( )) .2 2  Then 

h ( )2  equals

(s) 4

(t) 3

Solution:

(A)  Let f x ax bx c( ) 2  (Why?). By hypothesis,

( ) ( )ax bx c ax bx c x2 2 24 2 5 18

Solving we get

5 5 1

3 0 0

2 18 9

a a

b b

c c

Therefore

f x x( ) 2 9

So

f ( )1 2

Answer: (A)  (r)

(B) We have

y x x z3 22 3 5,

Differentiating we get

dy
dx

x
dx
dz

z3 62 and
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So

dy
dz

dy
dx

dx
dz

x z z z3 6 3 3 5 62 2 2( ) ( )

Therefore

dy
dz z 0

0

Answer: (B)  (p)

(C)  Figure 2.12(a) is the graph of y f x( )  and Fig. 

2.12(b) is the graph of y f x( ) .  Now

f x x x

x x x

x x x

x x x

( ) ( )4

4 0

4 0 4

4 4

2

2

2

for

for

for

Therefore

f f( ) ( )0 0 4 0 0 4and

Also

f ( ) ( )4 0 4 2 4 8

and

f ( ) ( )4 0 2 4 4 8

Therefore f is not differentiable at x  0, 4. Observe 

that the portion of the graph of y f x( )  below the 

x-axis is reflected through x-axis for y f x( ) .

FIGURE 2.12 Matrix-match type question 2: (a) Graph of y   

f (x); (b) graph of y f x( ) .

(a) (b)

(2, −4)

2 4 x

y

(2, 4)

OO 2 4 x

y

Answer: (C)  (p), (s)

(D) We have

h x f x f x g x g x

g x g x g x g x

( ) ( ) ( ) ( ) ( )

( ( ))( ( )) ( ) ( )

2 2

2 2 0

Therefore

h ( )2 0

Answer: (D)  (p)

3.    Match the items of Column I with those of Column II.

Column I Column II

(A)  The function sin( [ )x]  

where [x] is the integer 

part of x is

(p)  continuous every-

where

(B)  x x  is (q)  differentiable  

everywhere

(C)   The function 

x x2 2  is

(r)  not differentiable 

at exactly one 

point

(D)  The function 

f x x x( ) { , , }Min 1 2 3
(s)  not differentiable 

exactly at two 

points

Solution:

(A)  Since [x] is an integer, sin ( [ ])x 0  for all x �.  

Hence the function is continuous and differentiable 

for all real x.

Answer: (A)  (p), (q)

(B) We have

x x
x x

x x

for

 for

0

02

Hence it is continuous and differentiable for all real 

x [see Fig.  2.13(a)].

Answer: (B)  (p), (q)

(C) We have

f x

x x

x

x x

( )

2 2

2 2

2

for

 4 for

 2 for

Answer: (C)  (p), (s)

FIGURE 2.13 Matrix-match type question 3.

(a) 

O

y = −x2

y = x2

x

y
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FIGURE 2.13 (Continued)

(b)

(1, 1)

O

1

y = x3

y = x3

y = 1 y = 1

y = x3y = x2

y = x2

(D) We have

 f x x x( ) { , , }Min 1 2 3

See Fig. 2.13(b). Now

f x
x x

x
( )

3 1

1 1

for

for

So f is continuous for all x and is differentiable for 

all x except at x  1.

Answer: (D)  (p), (r)

4. Functions are given in Column I and their derived 

functions are given in Column II. Match them.

Column I Column II

(A) y x a x a
x
a

2 2 2 1Sin (p) Sin 1

21
x

x

x

(B) y
x

x
Tan

sin

cos
1 4

3 5
(q) 

x

x

2

41

(C) y
x
x

xlog
/

1

1

1

2

1 4
1Tan  (r) 

4

5 3cos x

(D) y x xSin 1
(s) 2 a x2 2

Solution:

(A) We have

y x a x a
x
a

2 2 2 1Sin

Put x a sin  so that

dx
d

a a
x

a
a xcos 1

2

2

2 2

Now

y a a2 2sin cos

Therefore

dy
d

a a

a

a

a x

a

2
2

2

2 2

2
2

2

2
2 2

1 2

2

2 1

cos

cos

cos

( )

2 2 2( )a x

Now

dy
dx

dy
d

dx
d

a x

a x
a x

2
2

2 2

2 2

2 2( )

Answer: (A)  (s)

(B) We have

y
x

x
Tan 1 4

3 5

sin

cos

Put

u
x

x
4

3 5

sin

cos

Therefore

du
dx

x x x x

x

4 3 5 5

3 5 2

cos cos sin sin

cos

( ) ( )

( )

 
4 3 5

3 5 2

( )

( )

cos

cos

x

x
 (2.25)

Also

y uTan 1

Differentiating w.r.t. u, we get

dy
du u

x

x

x

x x

1

1

1

1
16

3 5

3 5

9 30 25

2

2

2

2

2

sin

cos

cos

cos cos

( )

( )

16 2sin x

 

( )

( )

( )

3 5

9 30 16 9

3 5

5 3

2

2

2

2

cos

cos cos

cos

cos

x

x x

x

x
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Therefore from Eqs. (2.24) and (2.25), we get

dy
dx

dy
du

du
dx x

4

5 3cos

Answer: (B)  (r)

(C) We have

y
x
x

x

x
x

x

log

log

/
1

1

1

2

1

4

1

1

1

2

1 4
1

1

Tan

Tan forr x 1

Differentiating w.r.t. x, we get

dy
dx

x
x

x x

x x

1

4

1

1

1 1

1

1

2

1

1

1

2 2

( ) ( )

( )

22

1

1

1

1

1

2 2

2

4

x x

x

x

Answer: (C)  (q)

(D) We have

y x xSin 1

Differentiating w.r.t. x, we get

dy
dx

x
x

x
Sin 1

21

Answer: (D)  (p)

5. Match the items of Column I with those of Column 

II.

Column I Column II

(A)  Let y f u
u u

( )
1

22
 where 

u
x

1

1
.  Then y has a removable 

discontinuity at x equals

(p) 3

(q) 0

(r) 1

(s) 4

(t) 2

(B)  If f x
x

( ) ,
1

1
 then the number 

of removable discontinuities of 

y f f f x( ( ( )))   is

(C)  If x y e x y,  then at ( / , / )1 2 1 2  

the value of dy/dx is 

(D)  If f x y z f x f y f z( ) ( ) ( ) ( )  for all 

x, y, and z f, ( ) ,2 4  and f ( ) ,0 1  

and f ( ) .0 0  Then f ( )2  is

Solution:

(A) We have

y f u
u u u u

( )
( )( )

1

2

1

2 12

Now u  1 and u  2 are points of discontinuity:

u
x

x

u
x

x x

1
1

1
1 2

2
1

1
2 2 2 1

1

2

Originally x  1 is a point of discontinuity for 

u x1 1/( ). Therefore x 2 1 2, /  and 1 are points 

of discontinuity for the composite function y f u( )  

where u x1 1/( ). Now x u1  and hence 

lim ( ) .
u

f u 0  By defining

y f u u u
u

x
x

x
( )

,
1

2

1

1
1

1

2
where

0 when

we get that y is continuous at x  1.

Answer: (A)  (r)

(B) We have  y f f f x( ( ( )))  where

f x
x

f f
x

f
x

( )
1

1

1

1

1

1
1

1

f
x

x
x

x
x

x

1
0

1

1
1

when

x  1 is a discontinuity of f x( )  and x  0 is a point 

of discontinuity of f f x( ( )). Hence x  0 and 1 are 

discontinuities of f f f x( ( ( ))).  Now by defining

Q x

f f f x x

x

x

( )

( ( ( ))) if and

if

if

0 1

0 0

1 1

we get that Q x( ) is continuous at x  0, 1.

Answer: (B)  (t)
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(C) We have

x y e x y+

Therefore

log +( )x y x y  

Differentiating both sides w.r.t. x, we get

1
1

1

+

+

+ + +

dy
dx

x y
dy
dx

dy
dx

x y x y
dy
dx

( )

dy
dx

x y x y

dy
dx

x y
x y

( )+ + +

+

+ +

1 1

1

1

Therefore

dy
dx ( / , / )1 2 1 2

0

Answer: (C)  (q)

(D) We have

  

[ )

f f

f f

( ) ( ( ))

( ) ( ]

0 0

0 1 0 0

3

∵

Therefore

f x f x

f x f f

f x

( ) ( )

( ) ( ) ( )

( )

+ + +2 2 0

2 0

4

Now

f
f h f

h
f f h f f

h
f

h

h

h

( ) lim
( ) ( )

lim
( ) ( ) ( ) ( )

lim

2
2 2

2 0 2

4

0

0

0

+

(( ) ( )
[ ( ) , ( )

( )

[ ( ) ]

h f
h

f f

f

f

0
0 0 2 4

4 0

4 0 1

∵

∵

]

  

Answer: (D)  (s)

Comprehension-Type Questions

1.  Passage: Let f be a real-valued function defined on a 

closed interval [ , ]a b  and c a b( , ).  Then

 (a)  f is continuous at c if and only if lim ( )
h
h

f c h
0

0

  

and lim ( )
h
h

f c h
0

0

 exist, are equal, and in turn are 

equal to f (c).

 (b) f is differentiable at c if and only if

lim
( ) ( )

lim
( ) ( )

h
h

h
h

f c h f c
h

f c h f c
h0

0
0

0

and exist

 and are equal or

 lim
( ) ( )

h

f c h f c
h0

(h may be positive or negative) exists finitely.

Answer the following questions.

(i)  If f x
ax b b x

bx ax c x
( )

,2

2

0 1

1

for 

for 

is continuous and differentiable at x  1, then

 (A) c  0, a  2b

 (B)  a  b, and c is real number

 (C) a  b, c  0

 (D) a  b and c ≠ 0

 (ii)  Suppose f x y f x f y( ) ( ) ( )  for all real num-

bers x, y and f f( ) , ( ) ,3 3 0 11  then f ( )3  is 

equal to

 (A) 22 (B) 28

 (C) 44 (D) 33

 (iii)  Suppose f x y f x f y( ) ( ) ( )  and  f (x) = x2 g (x) 

where g(x) is continuous, then f x( )  equals

 (A) 0 (B) g(x)

 (C) g(0) (D) g(x)  g(0) 

Solution:

(i) By hypothesis

lim ( ) lim ( )
h
h

h
h

f h f h
0

0
0

0

1 1

Therefore
a b b a c

c 0

Again f is differentiable at x  1. Therefore

lim
( ) ( )

lim
( ) ( )

lim
( ) (

h h

h

f h f
h

f h f
h

a h b a

0 0

0

2

1 1 1 1

1 bb
h

b h a h a b
h

c
h

)

lim
( ) ( ) ( )

( )
0

21 1
0∵
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lim lim
h h

ah ah
h

bh bh ah
h

a b a

a b

0

2

0

22 2

2 2

2

Therefore a  2b and c  0.

Answer: (A)

(ii) We have

 

or 1

x y

f f

f

0

0 0

0 0

2( ) ( ( ))

( )

If f ( ) ,0 0  then

f x f x

f x f

f x

x

( ) ( )

( ) ( )

( )

0

0

0

0

   which cannot be, because f ( ) .3 3  Hence f (0)  1. 

Now

 

f
f h f

h
f f h f

h

h

h

( ) lim
( ) ( )

lim
( ) ( ) ( )

3
3 3

3 3

0

0

3
0

3 3 0 1

3 0

3 11

33

0
lim

( ) ( )
( ) , ( )

( )

h

f h f
h

f f

f

[ ]∵

Answer: (D)

(iii) We have

 f x
f x h f x

h
f x f h f x

h

h

h

( ) lim
( ) ( )

lim
( ) ( ) ( )

0

0

 

lim
( )

lim
( )

h

h

f h
h

h g h
h

0

0

2

 

lim ( )

( ) ( )

h
hg h

g g
0

0 0

0

∵  is continous

Answer: (A)

 2. Passage: Consider the function

g x

x x

x x

x x

( )

,2 0

2 1

1

2 , 0

,

Answer the following questions.

 

   (i)  The number of points at which g is discontinu-

ous is

(A) 0 (B) 1 (C) 2 (D) 3

  (ii)  The number of points where g is discontinu-

ous is

 (A) 0 (B) 1 (C) 2 (D) infinite

 (iii)  The number of points at which g  is not dif-

ferentiable is

 (A) 2 (B)  (C) 1 (D) 3

Solution:
We have

 (0 0) andg g2 0 0 2( )

This implies that g is discontinuous at x  0.

Also,

g g( ) ( )1 0 3 1 0 1and

This implies g is discontinuous at x  1. Thus g is discon-

tinuous at two points. Now

g x

x x

x x

x x

x x

x

( )

2 0

2 1

1

2 2

2

2

for 

for 0

for  

for 

ffor 

for 0

for 

2 0

2 1

1

2

x

x x

x x

From the graph of y g x( )  (Fig. 2.14), one can see that 

the answers for (ii) and (iii) are (B) and (D), respectively.

FIGURE 2.14 Comprehension-type question 2.

−1

−1−2

−2

1O

1

2

(1, 3)

y = x2 + 2

y =
 x

+2

y =
 x

y = −
x

−
2

3

2 3

Answer: (i)  (C), (ii)  (B), (iii)  (D)

 3. Passage:  For x > 0, let

f x
x x x

xn

n

n( ) lim
( )log sin2

1

2

2
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 Answer the following questions:

  (i) lim ( )
x

f x
0 0

 is equal to

 (A) 0 (B) log1

 (C) log2 (D) does not exist

 (ii) At x  1, f

 (A) is continuous

 (B) not continuous

 (C) both continuous and differentiable

 (D) continuous but not differentiable

 (iii)  In [ , / ],0 2  the number of points at which f van-

ishes is

 (A) 0 (B) 1 

 (C) 2 (D) 3

Solution:

Case I: 0 1x .  In this case

f x x x
n

n

( ) ( ) ( lim )log 2 02∵

Case II: At x f x1
1

2
3 1, ( ) ( )log sin

Case III: x  1. Then

lim
( )

lim

( )

n n

x x x

x

x

x
x

x

n

n

n
log sin

log
sin

2

1

2

1

2

2

2

22

2

1

1
0

n

nx
xn

sin ∵ lim

Therefore

f x

x x

x

x x

( )

( )

( )

log for 

log sin at 

sin for 

2 0 1

1

2
3 1 1

1

Hence

   (i) lim
x 0 0

2log

  (ii) lim ( )
x

f x
1 0

3log  and lim ( )
x

f x
1 0

1sin

 f is not continuous at x  1

 (iii)  Clearly f x( ) 0  for x [ , / ].0 2

Answers: (i)  (C), (ii)  (B), (iii)  (A)

Assertion–Reasoning Type Questions
In the following set of questions, a Statement I is given 

and a corresponding Statement II is given just below it. 

Mark the correct answer as:

(A)  Both Statements I and II are true and Statement II is 

a correct explanation for Statement I.

(B)  Both Statements I and II are true but Statement II is 

not a correct explanation for Statement I.

(C) Statement I is true and Statement II is false.

(D) Statement I is false and Statement II is true.

1.  Statement I: For 

 0 1
1 1 1 12

2

4

4

8
x

x

x

x

x

x

x

x
x

,

Statement II:  
x

x x x

n

n nn

2

2 2 1 2

1

1

1

1

1

1
 for 

n 1 2 3, , ,

Solution: Let

u
x

x x x
1 2 21

1

1

1

1

u
x

x x x

u
x

x x x

2

2

4 2 4

3

4

8 4 8

1

1

1

1

1

1

1

1

1

1

and so on. Therefore

s u u u u

x x

n n

n

1 2 3

2

1

1

1

1

Hence

lim
n

ns
x

x
x

1

1

1

1 0 1

Answer: (A)

2. Statement I: If f x
x

x
x( )

sin
,

2 4

2
0  is to be con-

tinuous at x  0, then f (0) is to be defined as −1/8.

Statement II:  lim
sin

x

x
x0

1



 Worked-Out Problems 207

Solution: We have

f x
x

x
x

x x

x

x x

x

( )
sin

( )

sin ( )

sin ( )

sin

2 4

2

4 4

2 2 4

2 2 4

1

2

22
2 2 4

x
x( )

Therefore

lim ( )
( )x

f x
0

1

1 2 2 0 4

1

8

Answer: (A)

3. Statement I: The function sin( )x is not differentiable 

at x  0.

 Statement II:  If f is differentiable at c and g is dif-

ferentiable at f(c), then g f�  is differentiable at c.

Solution: Statement II is a theorem (see Theorem 2.3)

sin
sin

sin
x

x x

x x

if 

if 

0

0

Therefore

f ( cos( )0 0 1

and f ( ) cos0 0 1

So at x x0, sin  is not differentiable.

Answer: (D)

4. Statement I:  The function

f x
x x x

x
( )

sin( / )2 1 0

0

if  

0 if 

  is differentiable at x  0, but the derivative is not con-

tinuous at x  0.

Statement II: If a function f (x) is differentiable at 

x  a, its derivative is continuous at x  a.

Solution: We have

f x
x x x

x
( )

sin( / )2 1 0

0

if

0 if

Now

f x
x

x x
x

x
( )

sin cos2
1 1

0

0

if

0 if

is discontinuous at x  0, because cos( / )1 x  
 
has no limit as 

x  0. Statement I is true. This example shows that State-

ment II is false.

Answer: (C)

f ( )0 0 because

lim
( ) ( )

lim sin
h h

f h f
h

h
h0 0

0 0 1
0

for

h h
h

h hsin
1

0where

and h h
h

hsin
1

 where h  0

so that by squeezing theorem

lim sin
h

h
h0

1
0

QUICK LOOK

5.  Statement I: Let f x x( ) cos  and g x x( ) sin  for 

0 2x / .  Then f x g x( ) ( )  for at least one point in 

( , / ).0 2

Statement II: If f and g are continuous on [a, b] and 

f a g a( ) ( )  and f b g b( ) ( ),  then f x g x( ) ( )0 0  for 

at least one x
0
 in [a, b].

Solution: Statement I is true because

f g
4 4

We prove that Statement II is also true and it is a correct 

explanation of Statement I. If either f a g a( ) ( )  or

f b g b( ) ( )  we are through. Suppose f a g a( ) ( )  and 

f b g b( ) ( ).  Define

Q x f x g x x a b( ) ( ) ( ) [ , ]for 

Since f and g are continuous, Q(x) is also continuous on 

[a, b]. Also

Q a Q b f a g a f b g b( ) ( ) [ ( ) ( )][ ( ) ( )] 0

Therefore Q(x) must vanish at some point x a b0 ( , )  

(see Corollary 1.10). So

f x g x x a b( ) ( ) ( , )0 0 0of some

Now, Statement I is true if we take f x x g x( ) cos , ( )   

sin x and [ , ] [ , / ].a b 0 2

Answer: (A)
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Integer Answer Type Questions

1.  If f x x x( ) ( ),Sin 1 33 4  then f ( )0  equals 

___________.

Solution: Put x sin  so that

dx
d

xcos 1 2

Therefore

f x( ) (sin )Sin 1 3 3

Differentiating we get

f x
d
dx x

( ) 3
3

1 2

So

f ( )0 3

Answer: 3

2.  Let f : [ , ] [ , ]0 1 0 1  be continuous function. Then 

the number of fixed points of f is at least _________.

Solution: If f ( )0 0  or f ( ) ,1 1  the purpose is served. 

Assume that f ( )0 0  and f ( ) .1 1  Let

h x f x x x( ) ( ) [ , ]for 0 1

Therefore

h f( ) ( )0 0 0

and h f( ) ( )1 1 1 0

So

h h f f( ) ( ) ( )( ( ) )0 1 0 1 1 0

Therefore h x( ) 0  for at least one x ( , ).0 1  Thus 

f (x)  x for at least one x ( , ).0 1

Answer: 1

3. f (x) is a real-valued function defined on �  such that

f x f y x y( ) ( )
1

3

  for all x, y. Then the number of fixed points of f is 

_________.

Solution: See Integer Answer Type Question 1 (Chap-

ter 1, Worked-Out Problems) and take 1 3/ .

Answer: 1

4. Let f g, :� � be differentiable functions. If 

f a f a g a( ) , ( ) , ( )2 1 1  and g a( ) ,2  then

lim
( ) ( ) ( ) ( )

x a

g x f a g a f x
x a

= 

Solution: We have

g x f a g a f x
x a

g x g a f a g a f x f a
x a

( ) ( ) ( ) ( ) ( ( ) ( )) ( ) ( )( ( ) ( ))

Therefore

lim
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

x a

g x f a g a f x
x a

g a f a g a f a

2 2 (( )( )1 1 5

Answer: 5

 5. Suppose f is twice differentiable function satisfy-

ing f x f x( ) ( ).  Define two functions g(x) and 

h(x) by g x f x( ) ( )  and h x f x g x( ) ( ( )) ( ( )) .2 2  If 

h(5)  5, then h(10) is equal to _________.

Solution: We have

h x f x f x g x g x

f x f x f x f x x

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

2 2 0

Therefore h(x) is a constant function. Hence

h h( ) ( )5 5 10 5

Answer: 5

 6. If f :� �  is a function satisfying f x f x( ) ( )  

for all real x and is differentiable at x  0, then f ( )0  

equals _________.

Solution: We have

f
f h f

h

f h f
h

f h f h

h

h

( ) lim
( ) ( )

lim
( ) ( )

( ) ( ))

l

0
0 0

0

0

0
(∵

iim
( ) ( )

( ) ( )

h

f h f
h

f f

0

0

0 0 0

Therefore f ( ) .0 0

Answer: 0

 7. The only integer at which f x x x( ) [ ] [ ]2 2  where [ ] 

denotes the integer part is continuous is _________.

Solution: Let n be a positive integer. For small positive 

values of h,
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[ ] ( ) ; ( )

[( ) ]

n h n n n h n

n h n

2 2 2 2 2

2 2

1 1

1

Therefore

f n n h n h

n n

n

h
h

( ) lim ([( ) ] [ ] )

( )

0

1 1

2 2

0
0

2 2

2 2

Again for small positive values of h,

n n h n h n2 2 2 2( ) [( ) ]

Now

f n n h n h

n n

h
h

( ) lim ([( ) ] [ ] )0

0

0
0

2 2

2 2

f n f n

n

n

( ) ( )0 0

2 2 0

1

Therefore the only integer at which f is continuous is 1.

Answer: 1

8. Let f x
x x

x

x

x

( )

( )

sin log

,

,

4 1

4
1

3

0

0

3

2

 If f is to be continuous at x  0, then 12(log )a b  

where a  b is equal to _________.

Solution: We have

( )

sin log sin lo

4 1

4
1

3

4 1

4

4

3

2

3

x

x

x x

x

x

x

gg 1
3

3

12
2

2

x

x

Therefore

lim ( )
(log )

x
f x

0

34 12

1 1

This gives a  4 and b  3, so that a  b  7.

Answer: 7

 9. Let f x
x x x

x

p

( )
cos( / ),

,

1 0

0 0

Then, the minimum value of p for which f is differentia-

ble at x  0, where p is a positive integer, is _________.

Solution: If p  1, then f x x x( ) cos( / )1  is continuous 

at x  0, because

h h
h

h hcos
1

0when

and h h
h

hcos
1

   when h  0

so that

h h
h

hcosh
1

and hence

lim cos ( )
h

h
h

f
0

1
0 0

Therefore f is continuous at x  0. Now

f
f h f

h

h

h

h

( ) lim
( ) ( )

lim cos

0
0 0

1

0

0
does not exist

This implies that f is not differentiable at x  0 when p  1. 

Now, let p  2. Therefore

lim
( ) ( )

lim
cos

lim cos

h h

h

f h f
h

h
h

h

h
h

0 0

2

0

0 0
1

1
0

So f ( )0  exists when p  2. Hence minimum value of p  

is 2.

Answer: 2

10. Let

f x
x x x x

x x x
( )

cos ( [ ]) ]

( [ ])

4
1 0

4

if  and [  is even

sin if 00 and [  is oddx]

where [ ] denotes the integral part of x. In the inter-

val (0, 5), if m is the number of points of discontinu-

ity of f and n is the number of points where f is 

differentiable, then m  n equals _________.
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Solution: We have

f x

x x

x x

x x( )

cos ( )

sin ( )

( )

4
1 1

4
1

4
3

if 0

if 1 < 2

cos if 2 < 3

siin if 3

4

4
3 4

4
5 5

( )

cos ( )

x x

x x

Clearly f is discontinuous at x  1 and 3 and f is continu-

ous at x  2, 4. Also

f ( ) cos ( )2 0
4 4

2 1
4 2

and  f ( ) sin ( )2 0
4 4

3 2
4 2

Therefore f is differentiable at x  2. Similarly f is differ-

entiable at x  4. Hence m  2 and n  2.

Answer: 4

In (0, ), f is continuous and differentiable at even 

integers and not continuous and not differentiable at 

odd numbers.

QUICK LOOK

11.  Let f x
x

x x
( )

0

2

if  is rational 

if  is irrational

  Then, the number of points at which f is differentia-

ble is ________.

Solution: Let a  0. Now

f x f a
x a

a
x a

x a

x

( ) ( )

0 2

2

if  is rational and  is irrational

0

2

2

x a
x a

a
x a

x
x a

if  irrational and  is rational

Therefore

lim
( ) ( )

x a

f x f a
x a

When a  0

lim
( ) ( )

lim
( )

lim lim

x a x

x x

f x f a
x a

f x
x

x
0

0 0

0

0

0 or

In any case

lim
( ) ( )

x

f x f
x0

0

0
0

Therefore f ( )0  exists and is equal to 0.

Answer: 1

Note : The result is same if

f x
x x

x
( )

2 if  is rational

0 if  is irrational

12. In the open interval (−2, 2), the number of points 

at which f x x( ) [ ]2 1  ([ ] denotes integral part) is 

_________.

Solution: First observe that 1 1 32x  for 

2 2x  and also x2 1 assumes integer values at 

x 3 2, , 1, 0 1 2, ,  and 3. Now, we write explicit 

form of f (x).

 

f x

x x

x x

( )

2 2 3 2 1 3

1 3 2 1 1 2

2

2

if because 

if because 

00 2 1 1 1

1 1 0 1 1 0

1

2

2

if because 0

if because 

x x

x x

iif 0 because 

0 if 1 because 0

1 if 

x x

x x

x

1 1 1 0

2 1 1

2

2

2

3 1 2

3 2 1 3

2

2

because 1

2 if because 2

x

x x

From the above, we can see that f is continuous at x  0 

and at other 6 points f is discontinuous.

Advice: The reader can draw the graph and check it.

Answer: 6
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2.1 Derivative: Suppose f a b IR: [ , ]  is a function 

and a < c < b. If lim
( ) ( )

x c

f x f c
x c

 exists, then we say 

that f is differentiable at “c” and this limit is denoted 

by f  (c) derivative or differential coefficient at c. 

If we write y  f (x), then f  (c) is also denoted by 

( / ) .dy dx x c  If f is differentiable at each point of (a, 

b) then we say that f is differentiable in (a, b) and 

f  (x) or ( / )dy dx  is called derivative or derived func-

tion of f (x).

lim
( ) ( )

x c

f x f c
x c

 exists and is equivalent to 

lim
( ) ( )

h

f c h f c
h0

QUICK LOOK

2.2  Left and Right Derivatives: f is defined on [a, b] 

and a < c < b.

 (i)  If lim
( ) ( )

h
h

f c h f c
h0

0

exists, then this limit is 

called the left derivative of f at c and is denoted 

by f c( ).0

 (ii)  If lim
( ) ( )

h
h

f c h f c
h0

0

exists, then this limit is 

called the right derivative of f at c and is denoted 

by f c( ).0

1.  lim
( ) ( )

h

f c h f c
h0

 (without mentioning h > 0, i.e., 

h > 0 or h < 0) then this limit is f c( ).

2.  f c( )  exists f c( )0  and f c( )0  exist and are 

equal.

QUICK LOOK 

2.3 If f a b: [ , ] �  is differentiable at c a b( , ),  then f 
is continuous at c.

Note: 

1.  f is differentiable at the end points a and b means 

f a( )0  and f b( )0  exist.

2.  The converse of Theorem 2.3 is not true; for ex-

ample, take f x x( ) | |  at c = 0.

3.  The function f :� �  defined by 

f x x
n

n

n

( ) cos( )
1

2
3

0

 

is continuous for all real x, but not differentiable 

at any x �.

2.4 Suppose f and g are differentiable at c, and  and  

be any two real numbers. Then

 (i) f g  is differentiable at c and

( ) ( ) ( ) ( )f g c f c g c

 (ii) fg is differentiable at c and

( ) ( ) ( ) ( ) ( ) ( )fg c f c g c g c f c

 (iii) If g c( ) ,0  then f/g is differentiable at c and

f
g

c
f c g c g c f c

g c
( )

( ) ( ) ( ) ( )

( ( ))2

2.5 Differentiation of a Function or Chain Rule: If f is 

differentiable at c and g is differentiable at f (c), then 

g f�  is differentiable at c and

( ) ( ) ( ( )) ( )g f c g f c f c�

Note: If y  g(u) where u  f (x), then

dy
dx

dg
du

du
dxx c u f c x c( )

2.6 Carathéodory Theorem: Suppose f a b: [ , ] �  is a 

function and c a b( , ).  Then f is differentiable at c 

if and only if

 (i) f is continuous at c.

 (ii)  There exists a function g a b: [ , ] �  such that 

g is continuous at c and f (x)  f (c) =  (x  c)

g x( ) for all x a b[ , ].  In this case f c g c( ) ( ).

 Example    

If f x x x( ) ,3 �  and a is a real number then the func-

tion g(x) in the above theorem is g x x ax a( ) .2 2

2.7 Differentiability of 1/f: Suppose f a b: [ , ] �  

and f x x a b( ) [ , ].0  Let c a b( , )  and suppose 

SUMMARY
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f is differentiable at c. Then the function g f1/  is 

differentiable at c and

g c
f c

f c
( )

( )

( ( ))2

2.8 Suppose f a b c d: [ , ] [ , ]  is a bijection and g f 1.  

If f is differentiable at x a b0 ( , )  and f x( ) ,0 0  

and g is continuous at f (x
0
), then g is differentiable 

at f (x
0
) and

g f x
f x

( ( ))
( )

0
0

1

Note: If y  f (x) is a bijection and is differentiable, 

then x f y1( )  is differentiable and

( ) ( )
/

f y
dy dx

1 1

which we denote by dx/dy so that

dy
dx

dx
dy

f x f y( )( ) ( )1 1

It is in this context that we write dx/dy for 1/(dy/dx).

2.9  Increasing and Decreasing Functions: Let A be a 

subset of �  and f A: �  be a function. Then

 (i)  f is called increasing or monotonically increas-

ing if f x f y( ) ( )  whenever x < y and x y A, . 

If f (x) < f (y) whenever x < y, then f is called 

strictly increasing

 (ii)  f is called decreasing or monotonically de-

creasing if f x f y( ) ( )  whenever x < y. If 

f x f y( ) ( )  whenever x < y, then f is called 

strictly decreasing.

2.10  Suppose f a b: [ , ] �  is continues and strictly 

increasing. Write f a( )  and f b( )  so that 

f 1 exists, is continuous and strictly increasing 

on [ , ].  If a < c < b, f is differentiable at c and 

f c( ) ,0  then f 1 is differentiable at f (c) and

( ) ( )
( )

f c
f c

1 1

Note:

 (i)  The above result is valid if f is continuous and 

strictly decreasing.

 (ii)  The above result is not valid if f c( ) .0  For 

example, take f x x( ) 3  and c  0, so that 

f x x1 3( )  , In this case f is not differen-

tiable at c  0.

2.11 List of derivatives of some standard functions:

S. No. Function Derivative 

 1. x x( 0 and is real) x 1

 2. log ( )x x 0
1

x
 3. a a xx ( ,0  is real) a ax

elog

 4. ex ex

 5. sin x cos x

 6. cos x sin x

 7. tan ( ) ,x x n n2 1
2

� sec2 x

 8. cot ( , )x x n n � cosec2 x

 9. sec ( ) ,x x n n2 1
2

� sec x tan x

10. cosec x x n n( , )� cosec x cot x

11. Sin 1 1 1x x( )
1

1 2x

12. Cos 1 1 1x x( )
1

1 2x

13. Tan 1x x( )� 1

1 2x

(Continued )
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S. No. Function Derivative 

14. Cot 1x x( )� 1

1 2x

15. Sec or1 1 1x x x( )

1

1
1

1

1
1

1

1
1

2

2

2

x x
x

x x
x

x x
x

,

,

,

16. Cosec 1 x 1

1
1

2x x
x,

17. sinhx e ex x

2
cosh x e ex x

2

18. cosh x sinh x

19. tanh x sech2 x

20. coth x  cosech2 x

21. sech x  sech x tanh x

22. cosech x  cosech x coth x

23. Sinh 1x 1

1 2x

24. Cosh 1 x 1

12x

25.

 

Tanh 1x 1

1 2x

26. Coth 1x 1

1 2x

27. Sech 1 0 1x x( ) 1

1 2x x

28. Cosech 1x 1

1 2x x

Special Methods of Differentiation

2.12  Substitution Method or Chain Rule or Com-
posite Function: If y is a function of u and u is 

function of x, then

dy
dx

dy
du

du
dx

.

That is, y g f x g u( ( )) ( )  where u  f (x). This implies

dy
dx

g u u x
dy
du

du
dx

( ) ( ) .
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2.13 Logarithmic Differentiation

 (i)  If h x f x g x( ) ( ( )) ( )  where f (x) is a positive 

function then

log ( ) ( ) log ( )h x g x f x

Hence differentiating w.r.t. x, we have

1

h x
h x g x f x

g x
f x

f x
( )

( ) ( ) log ( )
( )

( )
( )

so that we can obtain h (x).

 (ii)  If h x f x f x f xn( ) ( ) ( ) ( )1 2  where f xj ( ) 0 , 

then take logarithms on both sides and differ-

entiate both sides w.r.t. x.

2.14  Parametric Differentiation: Suppose x and y are 

functions of a parameter t, say x  f (t) and y  g(t) in 

any interval. Further assume that f is invertible and 

f, g, f 1 are differentiable in their relevant intervals. 

Then to find dy/dx, we proceed as follows:

y g t g f x g f x( ) ( ( )) ( )( )1 1�

so that

dy
dx

g f x f x

dy
dt

dx
dt

g t
f t

( ( ))( )

( )

( )

1 1

2.15  Implicit Function: Suppose y is a function of x 

which is not explicitly in terms of x, but x and y are 

connected through a relation F(x, y)  0. Then by 

differentiating the equation F(x, y)  0 w.r.t. x, we 

can find dy/dx.

2.16  Differentiation of a Function w.r.t. Another Func-
tion: Suppose u  f (x) and v  g(x). Then

du
dv

du
dx

dv
dx

f x
g x

( )

( )

EXERCISES

Single Correct Choice Type Questions

 1. In the interval [0, 3], the number of points at which 

the function [x2] sin  x ( [ ]  is the usual integral part) 

is discontinuous are

 (A) 4 (B) 5

 (C) 6 (D) 8

 2. If f x
e

e

x

x
( ) ,

1

1
 then f ( )0  equals

 (A) 1 (B) 2

 (C) 1/4 (D) 1/2

 3. If f x
x

x
( )

sin

cos
,Tan 1 4

3 5
 then f ( / )2  is

 (A) 4/5 (B) 2/5

 (C) 3/5 (D) 1

 4. If y x ycos( ),  then dy/dx 

 (A) 
sin( )

sin( )

x y
x y1

  (B) 
sin( )

sin( )

x y
x y1

 (C) 
cos( )

cos( )

x y
x y1

 (D) 
cos( )

cos( )

x y
x y1

 5. If y x x

x x

x

x
log ,

1 2

1 2
2

2

1

2

2

1

2
Tan  then at 

x  0, dy/dx 

 (A) 4 (B) 4 2

 (C) 2 2  (D) 2

 6. If cos( ) ,xy x then dy/dx 

 (A) 
1 y xy

x xy
sin( )

sin( )
 (B) 

1 y xy
x xy

sin( )

sin

 (C) 
1 y xy

xy
sin( )

sin( )
 (D) 

1 sin( )

sin( )

xy
x xy

 7. If x a t y b tcos , sin ,3 3  then at the point 

a a

2 2 2 2
, , dy/dx 

 (A) b/a (B)  b/a

 (C) a/b (D)   a/b

 8. If a function f (x) is continuous, f (1) > 0 and satisfies 

the relation f (x) < f (y) whenever x < y for all positive 

x and y, then f (x) has

 (A) exactly one root (B) exactly two roots

 (C) more than two roots (D) no roots
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 9. Let f x x x( ) { , }Max 3 4  for 1 < x < 1. Then f (x)

 (A) is differentiable at x  0

 (B) is not differentiable at x  0

 (C) has exactly one point of discontinuity

 (D) has exactly two points of non-differentiability

10. Consider the following two statements:

 P: If f (x) is differential at x  a and g(x) is not differ-

entiable at x  a, then f (x)  g(x) is differentiable at 

x  a.
 Q: If f (x) and g(x) are not differentiable at x  a, then 

f (x)  g(x) is not differentiable at x  a.

 (A) both P at Q are true 

 (B) both P at Q are false

 (C) P is true and Q is false

 (D) P is false and Q is true

11. If y xy2 2 ,  then y  is

 (A) 0 (B) 
x y
x y

 (C) x/y (D) y/x

12. If x a t y b tcos , sin ,2 2  then at ( a, b), d y dx2 2/  is 

equal to

 (A) 1 (B) 1/2

 (C) 0 (D) 1 2/

13. If x y y x x y1 1 0 1 ( ), ,  then 
dy
dx x 1

is

 (A) 1/4 (B)  1/4

 (C) 1/2 (D)  1/2

14. If x y2 2 1,  then

 (A) yy y2 1 02( )  (B) yy y( )2 1 0

 (C) yy y( )2 1 0  (D) yy y2 1 02( )

15. Let f (x) and g(x) be twice differentiable functions 

such that f x g x c( ) ( ) . If h x f x g x( ) ( ) ( ),  then h h/  

is equal to

 (A) 
f
f

g
g

c
fg
2

 (B) 
f
f

g
g

c2

 (C) 
f
f

g
g

c
fg

 (D) 
f
f

g
g

c

16. If f x x
x

( ) log (log ),2  then f e( ) is equal to

 (A) 0 (B) 1

 (C) 1/e (D) 1/2e

17. Let y e a x b xx ( cos sin ),  then y my ny 0  

where m  n value is

 (A) 1 (B) 4

 (C)  2 (D) 0

18. If y
x

x
Tan 1

1

2

1 2
,  then 

dy
dx x 0

 is

 (A) 1 (B) 2

 (C) log 2 (D) 
1

10
2log

19. If x  4t and y t2 2 ,  then 
d y

dx

2

2
 at x 1 2/  is

 (A) 1/2 (B) 1/4

 (C) 2 (D) 4

20. If x
t

y
t

t
Cos  and Sin1

2

1

2

1

1 1
,  then 

dy
dx

 

is equal to

 (A) 1 (B) Tan 1t

 (C) 0 (D)  /2

21. If y x x

x
Tan 1

3 21 /
,  then 

dy
dx x 1

 is

 (A)  1/4 (B)  1/2

 (C) 1/4 (D) 1/2

22. If

f x
x x x x

( ) Tan Tan1

2

1

2

1

1

1

3 3

 x x
...Tan 1

2

1

5 7  

upto 10 terms, then f ( )1  is equal to

 (A) 30/61 (B)  30/61

 (C) 40/61 (D)  40/61

23. If y
x

x

1

1

4

4
,  then 

dy
dx

dx
dy

.  is equal to

 (A) 1 (B) xy

 (C) does not exist (D) 
x y
xy

24. The number of points at which the function 

f x x x x( ) , , = Min{ }2 2 1  is not differential is

 (A) 2 (B) 3

 (C) 4 (D) 5

25. If f
x y f x f y2

3

2

3

( ) ( )
 for all x y, �  and 

f ( ) ,0 1  then f ( )1  is equal to

 (A) 1 (B) 0

 (C) 2 (D)  1

 Exercises
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 1. Which of the following are correct?

 (A) If x y x ym n m n( ) ,  then x
dy
dx

  y

 (B) If y x xtan( / ),2  then 
dy
dx

x x
x

sin

cos1

 (C)  If f x
e

e
x

x

x

x( )
,

,

/

/

5 2

3
0

0 0

1

1

then f (x) is differential at x  0

 (D) If

 f x
x

x x
( )

,

,

2 3 0

2 0 3

 and g x f x f x( ) ( )

 then the number of points at which g is not 

differential for  3 < x < 3 is two.

 2. Which of the following functions are continuous at 

the specified points?

 (A) f x
x

x
x

x
( )

sin ,

,

2 1
0

0 0

  at x  0

 (B) f x
x x x

xn

n

n
( )

log( ) sin
lim

2

1

2

2
 at x  1

 (C) f x
e

e
x

x

x

x( )
,

,

/

/

1

1

1

1
0

1 0

 at x  0

 (D)  If f x x x x

x xn

n

n n
( ) lim

cos sin( )2

2 1 2

1

1
 then f is 

continuous at x  1

 3. Which of the following are true?

 (A) If u xtan( )Sin 1 , then 
du
dx

 is 
sec ( )2 1

21

Sin x

x

 (B)  The derivative of x xCos 1

w.r.t. x is 

x
x

x
x

x

xCos 1 Cos 1

21

log
 where 0 < x  1

 (C) If y xTan 1 1 ,  then 
dy
dx

 at x  0 is 
1

4

 (D)  The function [ ] [ ]x x x  where [x] is the 

integral part of x is continuous at all integers 

which are positive.

 4. Let f x
x x x

( ) tan tan tan .
1

2 2

1

2 2

1

2 22 2 3 3
 

Then

 (A) f x
x

x( ) cot
1

 (B) f x x x( ) tan

 (C) f ( ) tan1 1
2

1   (D) f ( )1 1 12cosec

 5. Which of the following are not true?

 (A)  Every continuous function defined on an open 

interval is bounded.

 (B)  If the function is differentiable at a point then 

its derivative is continuous at that point.

 (C)  The function f x x( ) 23
 is continuous for all 

real x and is not differentiable at x  0.

 (D)  If a function is differentiable at infinite number 

of points, then it should not have infinite num-

ber of points of discontinuity.

 6. Let y
x

x
Sin 1

2

2

1
.  Then 

dy
dx

 is equal to

 (A) 
2

1 2x
 for all x

 (B) 
2

1 2x
 for x 1

 (C) does not exist at x 1

 (D) 
2

1 2x
 for 1 < x< 1

 7. If f x x x f xf f( ) ( ) ( ) ( )3 2 1 2 3  for all real x, 

then

 (A) f ( )1 5  (B) f ( )2 2

 (C) f ( )3 6  (D) f ( )0 6

 8. Let f x

x

x
x n

x n

( )

[tan ]

tan

2

2

1

1 4

0
4

if

if

 

 Then

 (A) f (x) is discontinuous at x
4

 (B) f (x) is continuous at x
4

 (C) f  is not differentiable at x
4

 (D) f is discontinuous at x n n( ) ,2 1
2

�

 9. Let f :� �  be a function satisfying the following 

relations:

  (i) f x y f x f y x y( ) ( ) ( ) , �
 (ii) f(x)  1  xg(x) where lim ( )

x
g x

0
1

Multiple Correct Choice Type Questions
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 Then

 (A) f (x) is continuous for all real x

 (B) f (x) is differentiable for all real x

 (C) lim ( )
x

f x
0

1

 (D) lim ( )
x

f x 0

 [Hint: If Q x Q x( ) ( ) , then Q(x)  Kex.]

10. Let f :� � be a function satisfying the following 

conditions:

 (i)  f
x y z f x f y f z

3 3

( ) ( ) ( )
 for all 

x y z, , �

 (ii) f (0)  3 and f ( )0 3

 Then

 (A) the graph of y  f (x) is a straight line

 (B)  the graph of y  f (x) is represented by the equa-

tion x y2 2 9

 (C) f (x) is unbounded

 (D) f (x) is differentiable for all x in �

 Exercises

Matrix-Match Type Questions

In each of the following questions, statements are given 

in two columns, which have to be matched. The state-

ments in column I are labeled as (A), (B), (C) and (D), 
while those in column II are labeled as (p), (q), (r), (s) 

and (t). Any given statement in column I can have cor-

rect matching with one or more statements in column II. 

The appropriate bubbles corresponding to the answers 

to these questions have to be darkened as illustrated in 

the following example.

Example: If the correct matches are (A) p) s) B)( , ( , (  
q) s) t) C) r) D) r) t)( , ( , ( , ( ( , ( ( , ( , that is if the matches 

are (A) p) and s) B) q) s) and t) C) r)( ( ; ( ( , ( ( ; ( ( ;  
and D) r)( ( , then the correct darkening of bubbles 

will look as follows:

p

A

B

C

D

q r s t

1.  In Column I, functions are given and in Column II their 

corresponding derivatives are given. Match them. 

Column I Column II

(A) log tan 
4 2

x
(p) 

2 4

x
xsin log( )

(B) sin (log )2 2x (q) 
2

12

y

x

(C) log

/

1

1

2

2

1 2

x x

x x
(r) sec x

(D) ( )x x2 21 (s) 
1

1 2x

2. Match the items of Column I with those of Column II. 

Column I Column II

(A)  f (x)  [x] where [ ]  is the  

integral part and

 g x
x

x x
( )

0
2

 if  is an integer

if is not an integer

 then ( )( )f g x�  is continuous at x 

(p) 1

(B) f x x
x

x

x
( )

sin2 1
0

0 0

if 

if 

  Then f is continuous and  

differentiable at x 

(q) 1/2

(C) The function

 f x
x x x nx

n
n( )

[ ] [ ] [ ] [ ]lim 1 2 3
2

 

  (where [ ]  has the usual meaning) is 

differentiable at x  

(r) 3/2

(D) f x
x

x x

x

( )
2 1 1

3 1 2

if

if
. 

  Then f is continuous and  

differentiable at x 

(s) 3

(t) 0

3. Let

f x

x
x

x x x

x x

( )

,

,

,

2

2

2
0 1

2 3
3

2
1 2

3 2 3

 In the interval (0, 3), match the items of Column I 

with those in Column II.
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Column I Column II

(A) f is discontinuous at x (p) 1

(B) f is differentiable at x (q) 1/2

(C) f  is continuous at x (r) 3/2

(D) f  does not exist at x (s) 2

4. Match the functions in Column I with the properties 

given in Column II.

Column I Column II

(A) x x (p) Continuous in ( 1, 1)

(B) x (q) Differentiable in ( 1, 1)

(C) x x[ ] (r) Derivative is positive in ( 1, 1)

(D) x x1 1 (s)  Not differentiable at least at 

one point in ( 1, 1)

Comprehension-Type Questions
 1. Passage: Let f be a function defined in a neighbour-

hood of a �.  Then

 (a)  f is continuous at a if and only if left limit at a 

[denoted by f (a  0)]  Right limit at a [denoted 

by f (a  0)  f (a)]

 (b)  f is differentiable at a if and only if

Left derivative f a( )0  Right derivative f a( )0

Answer the following questions

 (i)  If f x x x( ) cos [ ]
2

3  for 1 < x < 2 where [x] 

is the integral part of x, then

(A) f
2

1 3/

 exists and is equal to 0

(B) f
2

1 3/

 exists and is equal to 1

(C) f
2

1 3/

 does not exist

(D)  at 
2

1 3/

,  the left derivative exists, but the 

right derivative does not exist

 (ii) Which of the following is not true?

(A)  If f(x) and g(x) are differentiable at x  a, 
then their sum f(x)  g(x) is differentiable 

at x  a.

(B)  If f(x) and g(x) are not differential at x  a, 
then their sum is not differentiable at 

x  a.

(C)  If f x

x
x

x

x
( )

sin
,

,

0

1

2
0

  

and g x
x

x
x

x
( )

sin
,

,

0

2 0

then f x g x( ) ( ) is continuous at x  0.

(D)  If a function is differentiable for all real x 

and f f( ) ( ) ,0 0 0  then f (x) need not 

be zero for all real x.

(iii)  Let f x x x x( ) [ ] [ ]  where [x] denotes the 

integer part of x. Then

(A) f is continuous at all integers

(B) f is discontinues at all integers

(C) f is a discontinues at x  0

(D) f is a bounded function

 2. Passage: Let f (x) be a function defined in a neigh-

bourhood of a �.  Then

 (a) f is continuous at a if and only if

lim ( ) ( ) lim ( )
h
h

h
h

f a h f a f a h
0

0
0

0

 (b) f is differentiable at a if and only if

lim
( ) ( )

lim
( ) ( )

h
h

h
h

f a h f a
h

f a h f a
h0

0
0

0

 or lim
( ) ( )

h

f a h f a
h0

 exists finitely.

Answer the following questions.

(i)  If a function is differentiable at a point x  a, then 

its derivative is continuous at x  a. An example 

of a function contradicting this statement is

(A) f x x x( ) 3 �

(B) f x
x

x
x

x
( )

sin ,

,

2 1
0

0 0

(C) f x
x x

x x
( )

2

2

0

0

if

if

(D) f x
x x

x x
( )

1 1

2 2

2 if 0

if 1< 
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(ii)  Let f (x) > 0 be a function defined for all x > 0 

and differentiable for x > 0. Suppose

g x
f x n

f xn

n

( ) lim
( ( / ))

( )

1

Then g(x)

(A)  has infinitely many points of discontinuities

(B) is discontinuous at x  0

(C) is not differentiable at x  1

(D)  is continuous and differentiable for all x > 0

 [Hint: Show that g x e f x f x( ) .( )/ ( ) ]

(iii) Let

f x

x x x x

x x x x
x

x

x

( )

( )

( )
,

2

2
0 1

1

3
0

3 1

3 3

3 3
if

if  

if

  Then the number of points at which f is discon-

tinuous is

 (A) 0  (B) 1

 (C) 2 (D) infinitely many

 3. Let f x e xx x( ) (tan ) .sin  Answer the following 

questions.

(i) f
4

 is equal to

 (A) 
e1 2

2 2

/

 (B) e1 2 2
2

/

 (C) 
e 2

2 4
 (D) e 2 2

4

(ii) f
3

 is

 (A) 2 3
3

2

3

3 2 3e / ( ) log tan

 (B) 
1

2
3 3

4

3 3

3 2 3e /
( ) log

 (C) 
1

2
3 3

2

3 3

3 2 3e / ( ) log

 (D) 
1

2
3 3

4

3 3

3 2 3e / ( ) log

(iii) f
6

 equals

 (A) 
3

2

1

3
3

2 3

1 3

e
/

log

 (B) 
3

2

1

3
3

3

1 2
3

e
/

log

 (C) 
2

3

1

3
3

3

1 2
1 3

e
/

/

log

 (D) 
3

2

1

3

1

2
3

3

3 2
1 3

e
/

/

log

 Exercises

Assertion–Reasoning Type Questions

In the following set of questions, a Statement I is given 

and a corresponding Statement II is given just below it. 

Mark the correct answer as:

(A)  Both Statements I and II are true and Statement II 

is a correct explanation for Statement I.

(B)  Both Statements I and II are true but Statement II is 

not a correct explanation for Statement I.

(C)  Statement I is true and Statement II is false.

(D)  Statement I is false and Statement II is true.

1.  Statement I: The function

f x
x

x
x

x
( )

sin ,

,

1
0

0 0

is differentiable at x  0.

Statement II: cos x is differentiable for all x.

2.  Statement I: f x x( ) 2  is a differentiable function for 

all x � .

Statement II: Every continuous function defined on a 

closed interval is differentiable.

3.  Statement I: f x
x x

x x
( )

,

,

1 1 2

3 2 3
 is not differ-

entiable at x  2.

Statement II: If a function is discontinuous at point, 

then the function is not differentiable at that point.

4. Statement I: f x

x x

b x

e x

a x

x x

( )

( sin ) ,

,

,

/ sin

tan /tan

1
6

0

0

0
6

2 3
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 If f (x) is to be continuous at x  0, then a  2/3 and 

b  e2/3.

Statement II: A function is continuous at a point if 

and only if the left and right limits at that point exist 

and are equal as well as are equal to functional value 

at that point.

5. Statement I: If both functions f(x) and g(x) are not 

differentiable at x  a, then the function f(x)  g(x) 

may be differentiable at x  a. 

Statement II: f(x) = [x] (integral part of x) and g(x) = 
x – [x] are not differentiable at any integer, but f(x) + 
g(x) is differentiable at all real x.

Integer Answer Type Questions

The answer to each of the questions in this section is a 

non-negative integer. The appropriate bubbles below the 

respective question numbers have to be darkened. For 

example, as shown in the figure, if the correct answer to 

the question number Y is 246, then the bubbles under Y 

labeled as 2, 4, 6 are to be darkened.

0 0 0 0

X Y Z W

1111

222

3333

444

5555

666

7777

8888

9999

 1.  Consider the function y  f(x) defined parametrically 

by x t t y t t t t2 2, , .�  Then in the interval 

1 1x ,  the number of points at which f(x) is not 

differentiable is _______.

 2.  The function x3  is not differentiable at x  _______.

 3.  The function

f x
x

x
x

x

p

( )
cos ,

,

1
0

0 0

is twice differentiable, but second derivative is not 

continuous if p equals _______.

 4.  Let f x

ax ax b x

x x

cx dx x

( )

,

,

,

2

2

1

1 1 3

2 3

be continuous for all x, then b d c( / )  is equal to 

_______.

 5.  Let f x

x x

x

x
x

( )

2 0

1 0 1

1
1

for

for

for

The number of points at which f is not differentiable 

is _______.

 6.  Let f x

x x

x x

x x x

( )

,

,

,

0

0 1

1 1

2

3

The number of points at which f is continuous but not 

differentiable is _______.

 7.  In the interval (0, ), the number of points at 

which the function integral part of sin x  cos x is 

not continuous is _______.

 8.  Let m be the value of the left derivative at x  2 of the 

function f (x)  [x]sin(  x) ( [ ]  is the usual symbol), 

then [m] is equal to _______.

 9.  Let f x
x x n x

nn
( ) lim

[ ] [ ] [ ]1 22 2 2

3
 where []  

denotes integer part, then 3( f (1) f  (1)) is _______.

10.  If f x e e x xx x( ) ( )cos ,2  then f f( ) ( )0 0  is 

_______.

ANSWERS

 1. (C)

 2. (D)

 3. (A)

 4. (B)



221 Answers

 5. (B)

 6. (A)

 7. (B)

 8. (D)

 9. (A)

10. (B)

11. (A)

12. (C)

13. (B)

14. (B)

15. (A)

16. (D)

17. (D)

18. (D)

19. (B)

20. (A)

21. (C)

22. (B)

23. (A)

24. (D)

25. (A)

Multiple Correct Choice Type Questions

 1. (A), (B), (D)

 2. (A), (D)

 3. (A), (B), (C), (D)

 4. (A), (B), (D)

 5. (A), (b), (D)

 6. (B), (C), (D)

 7. (A), (B), (C), (D)

 8. (A), (C), (D)

 9. (A), (B), (D)

10. (A), (C), (D)

Matrix-Match Type Questions

 1.  (A)  (r); (B)  (p); (C)  (s); (D)  (q)

 2.  (A)  (t); (B)  (t); (C)  (p),(q), (r), (s), (t);  

(D)  (p), (q), (r), (t)

 3.  (A)  (s); (B)  (p), (q), (r); (C)  (p), (q), (r); 

(D)  (s)

 4.  (A)  (p), (q); (B)  (p), (s); (C)  (r), (s);  

(D)  (p), (q)

Comprehension Type Questions

 1. (i) (A); (ii) (B); (iii) (A)

 2. (i) (B); (ii) (D); (iii) (C)

 3. (i) (A); (ii) (B); (iii) (A)

Assertion–Reasoning Type Questions

 1. (B)

 2. (C)

 3. (A)

 4. (A)

 5. (A)

Integer Answer Type Questions

 1. 0

 2. 0

 3. 3

 4. 3

 5. 2

 6. 1

 7. 3

 8. 3

 9. 2

10. 0
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The concept of a line tangent to a circle was introduced by ancient Greeks who used the same to some special curves. 

Greeks’ concept of a tangent to a circle is as follows: A line having just one point lying on a circle and all its other points 
outside the circle is considered to be a tangent. This concept worked well in deriving many properties of tangent lines

to a circle. However, it faced rough weather when extending it for more general curves where a tangent line to a curve

at a point may intersect the curve at some more points. At this juncture people used the derivative to describe tangent

and felt that this is far more satisfactory.

In this chapter we will discuss the geometric meaning of the derivative and study tangents and normals to curves.

Further we will study the Mean Value Theorems, Maxima Minima, Increasing and Decreasing functions, and

L’Hospital’s Rule which determine the limits of indeterminate forms.

3.1 Tangents and Normals

In this section, we describe a tangent to a curve represented by a differentiable function y f (x) and obtain the equa-

tions of tangents and normal. First, we begin with the following definition.

DEFINITION 3.1 Tangent to a Curve Let P be a fixed point on a curve andP Q be a neighbouring point to P on P
the curve. As Q approaches point P along the curve, suppose the chordP QP approaches a fixed P
line and finally coincides with the fixed line when Q coincides with P. Then this fixed line is

called the tangent to the curve at the point P. (See Fig. 3.1.)

P

Q

FIGURE 3.1 Definition 3.1.

3.1.1 Geometric Meaning of the Derivative

Suppose y f (x) is a differentiable function. Consider Fig. 3.2. On the curve y f (x), let P(a, f (a)) and Q(a h, 

f (a h)) be two points. Draw PM and M QN perpendicular to N x-axis. Also draw PR perpendicular to QN. Suppose the 

tangent at P and the line P QP make anglesP and , respectively, with the positive direction of the x-axis. Since PR is

parallel to x-axis, we have that RPQ is equal to . Hence Q P along the curve, the chord P QP approaches the tanP -

gent PT at T P so thatP as Q P.

T O S Ma Na+h

Q (a + h, f (a + h))

q f

P R

y

x

FIGURE 3.2 Geometric meaning of the derivative.

Assume that chord QP is not vertical. Now from the right-angled triangleP PQR,

tan
( ) ( )QR

PR
f ( f))

h
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Q P along the curve implies that P h  0. Therefore

tan

( ) ( )

( )

lim tan

lim

Q P

h

f ( f))

h
f (

0

Thus f ( )a  is the slope of the tangent at P(a, f (a)).

Note:NN

1. f ( )a 0 The tangent at (a, f (a)) is horizontal.

2. f ( )a The tangent at (a, f (a)) is vertical.

3. The equation of the tangent at P(a, f (f a)) is

y f ff ( )aa ( )a ( )x a

4. The equation of the tangent to the curve y f (x) at a point (x1, y1) is

y y fy1 1f 1( )x1x ( )x x1

or y y
dy
dx x x

y 1d1

1

( )x x1x x

DEFINITION 3.2 Normal Let P be a point on a curve P y f (x), where f (x) is differentiable. The line perpen-

dicular to the tangent at P and passing throughP P is called normal to the curve atP P.

Note:NN

1. The slope of the normal at P(x1, y1) is

1 1

1

1

1
f dy

dx

dx
dy

x x

x x( )1x

2. Equation to the normal at P(x1, y1) is

y y
f

y1
1

1

1

( )x1

( )x x1

DEFINITION 3.3 Angle of Intersection of Curves Let C1 and C2CC be two curves and P be their point of intersecP -

tion. Then the angle between the tangents drawn to the curves at P is called P angle of intersec-
tion of C1 and C2CC . If the angle of intersection is a right angle, then the two curves are said to cut

each other orthogonally at P.

Note: NN Let y f(x) and y g(x) be two differentiable functions. Let C1 and C2CC be the corresponding curves. Let P(x1, y1)

be a common point of C1 and C2CC and m1 fff (x1), m2 g (x1). If is the angle of intersection of C1 and C2CC at P, then

1. tan
m m

m m
1 2m

1 2m1

2. C1 and C2CC cut orthogonally at ( , )y, m m1 1y, 1 2m 1

3. C1 and C2CC touch each other at P m m1 2m

DEFINITION 3.4 Let P be a point on C represented by a differentiable functionC y f (x) (Fig. 3.3). Let the 

tangent and normal to the curve at P meet the x-axis in T and T N, respectively. Draw PG
perpendicular to the x-axis. Then PT, PN, TG, and GN are, respectively, called the lengthsN
of tangent, the normal, the sub-tangent and the sub-normal at P.

 3.1 Tangents and Normals
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T G N x

P

q

q

O

y

FIGURE 3.3 Definition 3.4.

THEOREM 3.1 Suppose y f(x) is a differentiable curve and P(x1, y1) be a point on the curve in the xy-plane. Sup-

pose the tangent and normal at P meet theP x-axis in T andT N, respectively. Draw PG perpendicular

to x-axis. Let be the angle made by PT with the positive direction of theT x-axis (see Fig. 3.3).

Then

(i) Length of the tangent PT is given byT

| ( ) |
( ( ))

| |
( , )

x(
x(

y
dx
dy y,

1

1
2 1

2

1
1

1

1 1y,

| | 1

(ii) Length of the normal PN is given byN

| ( ) | ( ( )) | |
( , )

x( ( y
dy
dx y,

1 1) | ( (x( 2
1

2

1 1( )) | |x( 1( x( 2

1 1y,

1| |

(iii) Length of the sub-tangent TG is given by

f
f

y
dx
dy y

( )x
( )x ( ,x )

1

1
1

1 1y

(iv) Length of the sub-normal GN is given byN

f f y
dy
dx y

( )x ( )x
( ,x )

1 1f) (x 1

1 1y

PROOF See Fig. 3.3.

(i) From PGT,TT

PT
PG

y

y

y
dy
dx y

sin

| |yy cot

| |yy
tan

| |yy

( ,x

1
2

1 2

1

1

1
1

1
1

1 1y ))

( , )

| |

2

1

2

1

1 1

| | 1y
dx
dy y,,
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(ii) From PGN,

PN
PG

cos

| | ( )secy1

| | tan

| |
( , )

y

y
dy
dx y,

1
2

1

2

1

1
1 1y,

(iii) From PGT,TT

TG y
dx
d y

| cPGPG ot |
( ,x )

1

1 1yyd

(iv) Again from PGN,

GN y
dy
dx y

| tPGPG an |
( ,x )

1

1 1y

Note: From (iii) and (iv) we have (sub-tangent) (sub-normal) is equal to y1
2 . That is, sub-tangent, 

ordinate and sub-normal are in GP.

Example 3.1

Find the equations of tangent and normal to the curve 

y2 4ax at the point (x1, y1) and at (at2tt , 2at).

Solution: The given curve is y ax2 4 .

Equation of the tangent

Differentiating both sides w.r.t. x, we get

dy
dx

a
y

2

Therefore

dy
dx

a
y

y
y

y
( ,x )

,
1 1y

2
0

1
1provided

So the equation of the tangent at (x1, y1) is

y y
a

y
y1

1
1

2
( )x x1

yy y ax ax1 1y2
12 2ax

Now (x1, y1) lies on the curve. This implies that y ax1
2

14 .

Therefore, the equation of the tangent at (x1, y1) is

yy1 1a2aa2 ( )x1x xxx

In this equation, put x1 at2tt , y1 2at so that the equation t
of the tangent at (at2tt , 2at) is

ty x atx 2

This equation is called parametric form of the tangent. If 

y1 0, then the tangent at (0, 0) is the y-axis. 

Equation of the normal

Now, equation of the normal at (x1, y1) is

y y
y
a

y1
1

1
2

( )x x1

Substituting x at y at1
2

1 2at y1 in the above equation, we

get that the equation of the normal at (at 2, 2at) is

tx y at aty 2 3

This form is called the parametric form of the normal to 

y ax2 4 at ( , ).at2 2

Note: The parametric forms of the tangent and normal to y2 4ax at (at2tt , 2at) will be more useful in the chapter on 

“Parabola” (Vol. 4, Geometry).

 3.1 Tangents and Normals
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Example 3.2

Find the equations of the tangent and normal to the curve

x

a

y

b

2

2

2

2
1

y
2

at the point (x1, y1) and at the point (a cos , b sin ).

Solution:

Equation of the tangent

Differentiating both sides of the given equation w.r.t. x
we get

x

a

y

b

dy
dx2 2b

0
y y
2

and hence

dy
dx

b x

a y

2

2

Therefore

dy
dx

b x

a yy( ,x )1 1y

2
1

2
1

So the equation of the tangent at (x1, y1) is

y y
b x

a y
y1

2
1

2
1

1( )x xx 1

b a y y b x a y2
1

2
1

2
1
2 2a 1

2

Dividing by a2b2, we have

xx

a

yy

b

x

a

y

b
1

2
1

2
1
2

2
1
2

2
1

yy1
2

y1
2

[since (x1, y1) lies on the curve]. Therefore, the equation

of the tangent at (x1, y1) is

xx

a

yy

b
1

2
1

2
1

yy1
2

In the above equation, put x a y b1 1a yaacos i .y byyy sin  Then 

the equation of the tangent at (a cos , b sin ) is

x
a

y
b

cos i
y

si
y

s
y

in 1

This equation is called parametric equation of the tan-

gent to the given curve at (a cos , b sin ).

Equation of the normal

Now, equation of the normal at (x1, y1) is

y y
a y

b x
y1

2
1

2
1

1( )x x1

That is,

a
x

b
y

2
1

1

2
1

1

( )x x1 ( )y y1

In this equation if we put x1 a cos and y1 b sin , the 

equation of the normal is

ax by
a b

cos isin

2 2b

This equation is called parametric form of the normal.

Note: The equations of the tangent and normal at (x1, y1) and at (a cos , b sin ) will be utilized in the chapter on 

“Ellipse” (Vol. 4, Geometry).

Example 3.3

Show that the curves x xyx3 2xyx 2xyx  and 3 22 3x y y
cut orthogonally.

Solution: Suppose the curves

C x y1
3 23 2xy2xy3xy

and C x y y2
2 3 0x y y2 3y yy

cut at (x1, y1). Differentiating C1 w.r.t. x, we get

3 6 02 23x y33 xy
dy
dx

y3

Therefore

dy
dx

y x
x y

m
x y

y

1 1y
( )say1

2
1
2

1 1y 1
2
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Similarly, differentiating C2CC w.r.t. x, we have

dy
dx

x y

x y
m

x y1 1y
( )say

2 1 1y

1
2

1
2 2

Now

m m
x y

x y

x y

x y1 2m 1
2

1
2

1 1y
1 1y

1
2

1
2

2

2
1

By part (2) of the note under Definition 3.3, C1 and C2CC
cut orthogonally at (x1, y1).

Example 3.4

Find the length of the tangent, normal, sub-tangent and

sub-normal to the curve x a ( sin ), y a(1 cos )

at the point /2 [i.e., at the point ( ( / ), )]/ ),( ////////

where a 0.

Solution: Differentiating the two equations (given) 

we get

dx
d

a

dy
d

a

a( cos )

sin

Therefore

dy
dx

dy
d

dx
d

a
a

y
d

sin

( cos )

cot
2

So

dy
dx

2
4

1cot

Now

1. Length of the tangent is

| |y
dx
dy

a a
x y

1

2
211

dx
d

21 a2

1 1y,

1a

2. Length of the normal is

| |
( , )

y
dy
dx

a a
y,

1

2

11
dy

1 2a
1 1y,

1a

3. Length of the sub-tangent is

y
dx
dy

a
x y

1

1 1y

| |a 1a

4. Length of the sub-normal is

y
dy
dx

a
x y

1

1 1y
| |a 1a

3.2 Rate Measure

In Section 3.1, we have seen how the derivative of a function is useful in studying the properties of tangents. In this 

section we will discuss how the derivative of a function is also useful in the velocity problems or, more generally, the

rate of change of a function. We begin with the following definition.

DEFINITION 3.5 Let f be a function defined on an open interval (f a, b) and let c (a, b). Then the difference

f f
h

( )c h ( )ch

where h may take positive values or negative values is called average change or change of f in

the interval (c, c h). If

lim
( ) ( )

h

f f( ))

0 h

exists and is a finite number, which we denote by f ( )c , then f ( )c is called the rate of change 
of f atf c.

 3.2 Rate Measure
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THEOREM 3.2 Suppose a participle moving on a straight line covers a distance s(t) in time t. Then the velocity 

of the particle at time t is ds/dt.

PROOF Since the velocity of a particle is the rate of change in distance, we have, the velocity v at time t ist

lim
h

s
h0

( )t ( )s) (

which is nothing but s ( )t or ds/dt.

Note: The velocity v is also a function of t.

DEFINITION 3.6 Acceleration The rate of change of velocity is called acceleration. If v ds/dt, then the

acceleration is given by

dv
dt

d s

dt

2

2
or s ( )t

DEFINITION 3.7 Angular Velocity and Angular Acceleration If a particle P is a moving on a plane curve, theP
angle made by OP (P O being the origin) with the x-axis at time t is denoted byt (t). The rate at 

which the angle (t) is changing at time t is called the t angular velocity of the particle at time t
and is given by

d
dt

or ( )t

The rate at which the angular velocity is changing at time t is calledt angular acceleration and is

given by

d

dt

2

2
or ( )t

Example 3.5

Consider a particle moving on a straight line. Let s(t) be

the distance traveled by it in time t from a fixed point.t
Then s(t) sin( t), where  and are constants. If v(t)
is the velocity and a(t) is the acceleration of the particle

at time t, find

1. v a s2 a
2. da/ds

3. s
da
dt

Solution: We first find the velocity and the accelera-

tion. Now velocity is given by

v
ds
dt

t( )t cos( )t

The acceleration is given by

a
dv
dt

d s

dt

t

s

( )t

sin( )

( )t

2

2

2

2

2 t
2

and hence

da
dt

d
dt

t

ds
dt

v

[ (s )]

( )t

2

2

2

1. We have

v a s t a s

s s

2 2a s t
2 2 2 2

2 2

a t

s

[ (vvv )] ( )t ( )t

cos (2 ) [ ( )t( )tt ( )t ]

co

2 2 2ttt) [

2 2 s (ss ) s ( )2 2( ) 2 2

2 2

)) ((2i

2 2

)) sin (2sin

2. We have

da
ds

da
dt

ds
dt

v
v

2
2( )t

( )t

3. We have

s
da
dt

s t

v t

v a

s

v

( )t( )tt [ (v )]

( )tt [ (s )]

( )t ( )t

2

2
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Example 3.6

Consider Fig. 3.4. OAB is a right-angled triangle, right

angled at A. Suppose P is a moving point on P AB with

uniform velocity v. Find the angular velocity of P withP
respect to O.

BP
A

O

a
r (t )

f

vt

FIGURE 3.4 Example 3.6.

Solution: Since the point P is moving with uniform

velocity v we have AP vt (since ds vdt and t v is con-

stant, s vt). Let (t) be the angle made by OP with OA
at time t. Let OA a, OP rt andt AOP ( )t . Then

a r t( )t ( ( ))

and [ ( )]t( OP OA a v t2 2OP 2 2AP 2 2v 2OP OA AP2OP 2 2AP (3.1)

Differentiating both sides of Eq. (3.1) with respect to t, 
we get

22 2r
dr
dt

v t2( )t (3.2)

Differentiating both sides of the equation a r(t)cos( (t)),  

w.r.t. t we havet

0
dr
dt

d
dt

dr
dt

a
r

r
vt

r

cos( ( )) ( )( sin( ( )t )

( )t
( )t

( )t

t( )t ) (r )( sin(

d
dt

dr
dt

a
r

d
dt

a
r

v t
r

d
dt

( )t
( )vt

( )t ( )t
( )vt [

2

from Eq. (3.2)]

Therefore

d
dt

a

t
v t
vt

av

t

av

[ (r )]

( (r ))

( )OP

2

2

2

2

Thus the angular velocity of P w.r.t.P O is av/(OP)2.

3.3 Mean Value Theorems

Mean value theorem in differential calculus connects the values of a function to values of its derivative. It is one of the 

most useful tools in real analysis. Especially, a special case of mean value theorem, viz. Rolle’s Theorem established in 

1690 by Michel Rolle (1652 1719) a French mathematician, is useful for finding points on a curve where the tangents

are horizontal. This theorem gives the position of roots of derivatives of polynomial functions. Mean value theorem is 

also useful in deciding the intervals of monotonicity of functions and finally, in proving the most famous L’Hospital’s 

Rule. First we begin with Rolle’s theorem.

3.3.1 Rolle’s Theorem

THEOREM 3.3 Suppose a b f bb f b, ff [ ,aa ] � is continuous such that f (a) f (b). Further assume that f is differf -

entiable in the open interval (a, b). Then, there exists c (a, b) such that f (c) 0.

PROOF If f is a constant function, then f f (c) 0 for any c (a, b). Hence, we may assume that f is a non-

constant function so that f is bounded (see Theorem 1.31). Let

m f f
x b x b

fg
[ ,a ] [ ,a ]

( )xx ( )x

so that m < M. Then either f (a) m or f (a) M. Suppose f (a) M. Then

f M a b( )b [ (f ) (f )]M a(f

 3.3 Mean Value Theorems
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Hence, by Theorem 1.33, there exists c (a, b) such that f (c) M, so that

f f b( )c ( )x [ ,a ]M xf )x

Now, for x (a, c),

f f
x c

( )x ( )c
0

so that

f
f f

x cx c
( )c lim

( )x ( )c
0

Also, for x (c, b),

f f
x c

( )x ( )c
0

so that

f
f f

x cx c
( )c lim

( )x ( )c
0

Hence, f (c) 0.

Example

Let f x( )x 2  for x [ , ].1,  Then f is continuous on

[ 1, 1] and

f f( ) ( ) ( )2 2

Also f is differentiable in (  1, 1) and

f x x( )x ( , )2x x ( 1

Further f (0) 0 and 0 ( 1, 1).

Example

Consider the function f (x) sin x for x [0, ]. Obvi-

ously f is continuous on [0, ], differentiable in (0, )

and f (0)f f (f ) 0. Hence f (c) 0 for some c (0, ).

That is cos c 0 for some c (0, ). Clearly c /2.

Geometric Interpretation of Rolle’s Theorem

See Fig. 3.5.

1. Let y f (x) be a function satisfying the conditions of Rolle’s theorem on a closed interval [a, b]. Then f (c) 0

for at least one c (a, b). But f (c) is the slope of the tangent to the curve y f (x). That is, at the point (c, f (c)) the

tangent is parallel to the x-axis.

(a)

O

y

a

(a, f (a ))
(b, f (b ))

(c, f (c ))

b x

(b)

O

y

a

f (c ) 0

f (c ) 0
b x

FIGURE 3.5 Geometric meaning of Rolle’s theorem.

2. According to Rolle’s theorem, there exists a c (a, b) such that f (c) 0. But there may be more than one c at which

f (c) 0. For example, consider f x( )x ( )xx x2 2( )x  on the interval [ 1, 2] so that f (  1) 4 f (2). 
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Now

f x( )x ( )x ( )x

, ,

0 2 )( 0)

0
1

2
1

In this case c 0, 1/2, 1 (more than one value).

The following theorem which may be called Rolle’s theorem for polynomial functions gives the position of roots 

of the derivative polynomial of a given polynomial.

THEOREM 3.4 Let P(x) be a polynomial of degree n ( 2). Then between any two real roots of P(x) 0, there 

exists a root of P (x) 0.

PROOF Let a, b be two roots of P(x) 0. We may assume that a < b. Then, clearly P(a) 0 P(b). Also 

P(x) is continuous for all x in [a, b] and differentiable for all x in (a, b). Hence by Rolle’s theorem, 

P (c) 0 for some c (a, b). Thus P (x) 0 has a root c (a, b).

Note: In general, if f (f x) is continuous and differentiable and , are real roots of the equation f (x) 0, then f (x) 0

has a root in between and .

1. A function need not satisfy any one condition of 

the Rolle’s theorem on an interval, but the deriva-

tive may vanish at many points of the interval. For

example consider the function 

f ( )x
1

1

2

2
1

2
1

for 0

for

x

x

<

Then f satisfies none of the conditions of Rolle’s 

theorem, but f (x) 0 for all x 1/2 in [0, 1] and f is
discontinuous at 1/2.

2. In Theorem 3.4, if repeats t times as a root for

P(x) 0, then repeats t 1 times as a root for

P (x) 0 because (x )t is a factor of t P(x).

IMPORTANT NOTE

3.3.2 Lagrange’s Mean Value Theorem

THEOREM 3.5
(LAGRANGE’S

MEAN VALUE

THEOREM)

Suppose f a: [ , ]b � is continuous. Further, suppose f is differentiable in the open interval

(a, b). Then, there exists c (a, b) such that

f
f f

b a
( )c

( )b ( )a

PROOF Write

g f
b x
b a

b a( )x ( )x( ) [ (f ) (f )]f )x

Then g (x) is

1. Continuous on the closed interval [a, b]

2. Differentiable in the open interval (a, b)

3. g (a) g (b) ( f (b))

Hence by Rolle’s theorem, there exists c (a, b) such that g (c) 0. But it is given that

g f
f f

b a
( )x ( )x

( )b ( )a

 3.3 Mean Value Theorems
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Therefore

g f
f f

b a
( )c ( )c

( )b ( )a
0

Note:

1. If f (a) f (b), then Rolle’s theorem follows from Lagrange’s mean value theorem. But, we use Rolle’s theorem in

proving Lagrange’s mean value theorem. Hence, Rolle’s theorem cannot be considered as a corollary of Lagrange’s
mean value theorem.

2. Lagrange’s mean value theorem says that the mean or average value

f f
b a

( )b ( )a

of f in [f a, b] is equal to the derivative f (c) for some point c in (a, b).

Geometric Interpretation of Lagrange’s Mean Value Theorem

O

A

B
Tangent atTT c

(a, f (a))

(b, f (b))

(c, f (c))c

y

x

FIGURE 3.6 Geometric meaning of Lagrange’s mean value theorem.

See Fig. 3.6. Clearly,

f f
b a

( )b ( )a

is the gradient (slope) of the line joining the points (a, f (a)) and (b, f (b)) which lie on the curve of y f (x). Lagrange’s 

mean value theorem says that, for some c (a, b), the tangent at the point (c, f (c)) to the curve y f (x) is parallel to 

the line joining the points (a, f (a)) and (b, f (b)).

As immediate consequences of Lagrange’s mean value theorem we have the following results stated as corollaries.

COROLLARY 3.1 If ff isf continuous on the closed interval [a, b], differentiable in the open interval (a, b) and

f b( )x ( ,a ),0 x  then f is a constant on [f a, b].

PROOF Suppose a b.  Then f is continuous on [a, ] and differentiable in (a, ). Hence by Lagrange’s

mean value theorem, there exists c (a, ) such that

0 f
ff
a

( )c
( ) ( )

so that f f( )a ( ). Thus

f f b( ) ( ) [ ,a ]f ( )af ( )f ( )a

Hence f is a constant in [a, b].
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COROLLARY 3.2 Suppose f is differentiable in the open interval (a, b) with derivative f x b( )x ( ,a ).0  Then 

f is a constant in (a, b).

PROOF Suppose a b. Then, by hypothesis, f is continuous on [ , ], differentiable in ( , ) and

f x( )x ( , ).0 , )  Hence by Corollary 3.1, f is a constant in [ , ]. In particular, f f( ) ( ).f) ( )

This being true for all , (a, b), it follows that f is a constant over (a, b).

! Caution: Corollary 3.2 fails if the domain of definition of f is not an interval.

Example

Define f
x

x
( )x =

0, if (0, 1)

1, if (2, 3)

Then f is differentiable in ( , ) ( , )1, 2 with f (x) 0 

x ( , ) ( , ),1, 2, but f is not a constant over

( ) ( )) ( .

Another nice and important corollary of Lagrange’s mean value theorem is the following.

COROLLARY 3.3 Suppose f and g are continuous on [g a, b] and differentiable in (a, b). Further suppose that

f (x) g (x) for all x (a, b). Then there exists k such that f (x) g (g x) k for all x [a, b].

PROOF Write

h f g x b( )x ( )x ( )x [ ,a ]f )x x

Then, by hypothesis, h is continuous on [a, b], differentiable in (a, b) and

h f g x b( )x ( )x ( )x ( ,a )0

Hence by Corollary 3.1, h (x) is a constant say k x bx [ ,a ].  Hence,

f g h k x b( )x ( )x ( )x [ ,a ]g )x k .

Before going to some more consequences of Lagrange’s mean value theorem, we consider some examples on Lagrange’s

mean value theorem.

Example 3.7

Consider f (x) x (x–1)(x– 2) on the interval [0, 1/2].

Show that it satisfies Lagrange’s mean value theorem

and find the value of c.

Solution: The function f (x) being a polynomial func-

tion, is continuous and differentiable for all real values 

of x and hence in [0, 1/2]. Also

f f( )
1

2

3

8

Now,

f x x

f c

( )x

( )c

x3 2

2

3 2x2x

3 6cc2 2

But

f
ff

( )c
( )

1

2
1

2
0

3

8

1

2

3

4

Therefore

3 6 2
3

4

12 24 5 0

1
21

6

2

2

c c6

c24

6c6

12 2c2 5

c

 3.3 Mean Value Theorems
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But

c 1
21

6
0

1

2
,

Thus the value of c in the Lagrange’s mean value theo-

rem is 1 6( /21 ).

Example 3.8

Consider the function f Ax Bx C( )x .Ax2 Show that it

satisfies the Lagrange’s mean value theorem.

Solution: It is known that from the school stage that

y Ax Bx CAx2 represents a parabola. Let P(x1, y1) and

Q y( ,x )2 2y,  be two points on the curve y Ax Bx CAx2 .

Now consider

f Ax Bx C( )x Ax2

for x x[ ,x ].1 2x, Since f is continuous on [x1, x2] and dif-

ferentiable in (x1, x2), by Lagrange’s mean value theorem, 

there exists x x0 1 2( ,x1x ) such that

f
f f

x x
( )x

( )x ( )x
0

2 1f) (x

2 1x

This means

2 0
2
2

2 1
2

1

2 1

2
2

1
2

2 1

Ax B
x x2

A B
x

B
( )2

2
2Ax Bx C2Bx ( )1

2
1Ax B1

2 x C1Ax1
2

( )2
2

1
2x x1
2x1
2 ( )2 1x x2

2 122

2 1

x

A B( )2 12x x1

Therefore

x
x x

0
1 2x

2

Thus the abscissa of the point on the parabola where the

tangent is parallel to the chord PQ is the abscissa of the

midpoint of the chord joining P and P Q.

The following theorem relates to the monotonic nature (i.e., increasing or decreasing nature) of a function which is also 

a consequence of Lagrange’s mean value theorem. We recall that (Definition 2.3, Chapter 2) a function f defined on a

subset A of � is said to be increasing if f f( )x ( )x1 2f) (x  whenever x1, x2 are in A and x1 < x2.

THEOREM 3.6 Let f a: [ , ]b � be a function differentiable in (a, b). Then

(i) f is increasing on [g a, b] if and only if f (x) 0 for all x (a, b).

(ii) f is decreasing on [g a, b] if and only if f (x)  0 for all x (a, b).

PROOF (i) Suppose f x b( )x [ ,a ].0 Let x1, x2 belong to (a, b) and x1 < x2. Applying Lagrange’s

mean value theorem for f on the interval [x1, x2] we have

f f
x x

f
( )x ( )x

( )c2 1f) (x

2 1x

for some c (x1, x2). But f (c)  0 (by hypothesis). Since f (c) 0 and x2 x1 0, it follows

that

f x f
f x f x

)x )
)x )x

2 1f x) x

2 1f x) xx
0f )xf xx

f )x )

This being true for any arbitrary x1 and x2 (x1 < x2), it follows that f is increasing on [f a, b].

Conversely, suppose f is increasing on [f a, b] and differentiable. Let c (a, b). If x (a, b)

and x c, then either x c or x < c which implies that either f (x) f (c) or f (x) f (c) because

f is increasing. In any case

f f
x c

( )x ( )c
0

Hence

f
f f

x cx c
( )c lim

( )x ( )c
0

That is f (c)  0.
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(ii) We observe that

f is decreasing f is increasingf

( )( ) ( , ))( x ( b0

f x b

f x b

( )x ( ,a )

( )x ( ,a )

0

0

The argument given along the same lines of the proof 

of Theorem 3.6 can be used to prove that a function

having positive derivative on an interval is strictly

increasing and that having a negative derivative is

strictly decreasing. However the converse parts are

not true. For example, consider the functions f x( )x 3

and g x( )x 3  for x �.  The function f (x) is strictly

increasing with f ( ) 0)  and the function g(x) is

strictly decreasing in ( 1, 1) with g (0) 0.

This implies the following:

1. For a strictly increasing function which is differ-

entiable, the derivative need not be positive, but it

may be non-negative.

2. For a strictly decreasing function, the derivative

need not be negative, but it may be non-positive.

IMPORTANT NOTE

The following concept is related to the nature of the function which is strictly increasing (strictly decreasing) at a point

of its domain; however, this is different from the concept of strictly increasing (decreasing) in a neighbourhood of the 

point.

DEFINITION 3.8 Strictly Locally Increasing or Decreasing Let f be a function defined in a neighbourhood of f
a point c. If there exists 0 such that

1. c x c f fx ( )x ( )c
2. c x c f fc ( )x ( )c

then we say that f is strictly locally increasing at f c. Similarly, strictly locally decreasing at c can

be defined.

Strictly locally increasing at c need not imply that the

function is increasing in a neighbourhood of c. For

example, consider

1. f
x

x( )x
i ,

,

x xsin ,2
1

0

0 0x,

2

It is strictly locally increasing at 0 but in any neigh-

bourhood of 0, the function is not increasing.

2. g
x

x
x

( )x
sin ,

,

1
0

0 0x,

Here g is locally increasing (strictly) at 0, but notg
increasing in any neighbourhood of 0.

IMPORTANT NOTE

3.4 Maxima–Minima

DEFINITION 3.9 Let f a: [ , ]b �  be a function and a < c < b.

1. Suppose there exists 0 such that (c – , c )  [a, b] and

f f x( )x ( )c ( ,c )f )c (c c, )

 3.4 Maxima–Minima
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Then we say that f has local maximum at c. The point c is called point of local maximum and

f (c) is called the local maximum value.
2. Suppose there exists 0 such that (c – , c )  [a, b] and f (x) f (c) x c

c . Then we say that f hasf local minimum at c. The point c is called point of local mini-
mum and f (c) is called the local minimum value.

3. If f has either a local maximum or a local minimum at f c, then we say that f hasf local extre-
mum at c. In this case, c is called point of local extremum and f (c) is called the local extre-
mum value.

THEOREM 3.7
(NECESSARY

CONDIT ION FOR

EXTREMUM)

Suppose f a: [ , ]b � is a function and c (a, b). If f is differentiable atf c and c is a point of local 

extremum, then f (c) 0.

PROOF Case I: Suppose f has local maximum atf c. Let f (c) 0. Then

0 f
f f

x cx c
( )c lim

( )x ( )c

Let ( / ) ( ).2// c(  Since

lim
( ) ( )

( )
x c

f ( f (

x c
f (

there exists 0 such that c x cc , which implies

f f
x c

f f
( )x ( )c

( )c ( )c
1

2

Therefore

1

2

1

2
f

f f
x c

f f( )c
( )x ( )c

( )c ( )c

Taking the left-hand side inequality we get

f f
x c

f f f
( )x ( )c

( )c ( )c ( )c
1

2

1

2
0

So in the neighbourhood (c , c ),

f f
x c

( )x ( )c
0

f f( )x ( )c ( , ) ( )f )c 0x cc0 x ( ,c ) (x x) ())

f f x c( )x ( )c ( ,c )f )c c( ,c )

This contradicts the local maximum nature of c. Therefore f ( )c .0  Similarly f ( )c / .// 0 Hence

f (c) 0.

Case II: Suppose f has local minimum at c. Then

f has local maximum at f c

( ) ( ) ( )) ( 0 (

f ( )c 0

              f ( )c 0
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From Theorem 3.7, we conclude that if a function is 

differentiable at c of local extrema, then f (c) 0. The

following examples show that

1. A function having a local extremum at a point need 

not be differentiable at that point.

2. A function whose derivative is zero at a point need

not have local extremum at that point.

IMPORTANT NOTE

Examples 

1. Let f x( )x  for x [ 1, 1]. Then f has local minif -

mum at x 0, but f is not differentiable at 0.

2. Let f (f x) x3 for x [ 1, 1]. Then f (0) 0, but zero is

not a point of extremum of f, becauseff f (x) < 0 for x < 0

and f (x) 0 for x 0.

The following two theorems are on sufficient condition for a function to have a local extrema at an interior point of an

interval.

THEOREM 3.8
(FIRST

DERIVATIVE

TEST)

Suppose f a: [ , ]b � is continuous, a < c < b and f is differentiable in (a, c) and (c, b). Let 0 

be such that ( , ) ( , ).a,, )c, c, Then

(i) f has local maximum at c if f x( )x ( )c c0  and f x c( )x ( ,c ).0

(ii) f has local minimum atf c if f x( )x ( )c c0  and f x c( )x ( ,c ).0

PROOF (i) Let c x c0 . Using Lagrange’s mean value theorem for f (x) on the interval [x0, c], there

exists c cx0 0( ,x0 )  such that

f f f x( )c ( )x ( )c x ( )cxf )x0 0) (c x)
0

Since f x( )cx ,
0

0  we have f f( )x ( )c .0  Similarly, if c y cy0 , then again we have

c yy0 0( ,c )  such that

f f f y( )y ( )c ( )y c ( )cy0 0f) ( )c (y
0

f )cf )c

Now f y( )cy0
0  implies that f f( )c ( )y .0  Therefore

f f x( )x ( )c ( ,c )f )c (c c, )

so that f has local maximum at f c.

(ii) Proof is similar to (i).

1. f has local maximum at f c if f changes sign from posi-
tive to negative at c.

2. f has local minimum atf  c if f  changes sign from nega-
tive to positive.

3. If ff keeps the same sign at c, then c is not a point of 

extremum.

QUICK LOOK 1

The information in the following sub-section permits to formulate a rule in testing a differentiable function y f (x)

(may not be differentiable at a point or f is discontinuous) for a local extremum. Before, that we give the following

definition.

 3.4 Maxima–Minima
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DEFINITION 3.10 Critical Point A point x0 in the domain of a function f is called a f critical point oft ff if either f
f (x0) exists and is equal to zero or f (x0) does not exist [but f (x) exists at nearby points, so 

that at this point x0, f is discontinuous].

3.4.1 Testing a Differentiable Function for a Local Extremum with First Derivative

PROCEDURE

Step 1: Find the first derivative. That is f (x).

Step 2:
(a) Equate f (x) to zero and find the values of x.

(b) Find the values of x at which f (x) is discontinuous.

The values of x obtained by Steps 2(a) and 2(b) are the critical points.

Step 3: Now investigate the change of sign of the derivative f at a critical point.

From Quick Look 2, we can draw a table which gives point of extremum. Keep it in the mind so that not every critical 
point is a point of extremum.

Signs of derivative when passing critical point x x0

Character of critical point x < x0 x x0 x x0

f (x0) 0 or f is discontinuous at x0
Local maximum point

f (x0) 0 or f is discontinuous at x0
Local minimum point

f (x0) 0 or f (x) is discontinuous at x0

Neither maximum nor minimum (actually 

function increases)

f (x0) 0 or f is discontinuous at x0

Neither maximum nor minimum (function

decreases)

Example 3.9

Let f x( )x x3 29 1x2x 5 3xx . Find its critical points and 

mention its character at those points.

Solution: We have

f ( )x ( )x ( )3 1x 8 1x 5 3 )(x2

Now

f ( )x ,0 1x 5

Since f (x) is continuous for all real x, the only critical

points of f are 1, 5 only.f

1. For x < 1 we have fff (x(( ) 0 and for x 1 we have fff (x(( ) < 0.

That is at x 1, fff (x(( ) changes sign from to . Hence, 

at x 1, f has local maximum value and the maximumf
value of f isf f(1) 10.

2. For x < 5, f (x) ( ) ( ) < 0

For x 5, f (x) ( ) ( ) 0

Therefore at x 5, f has local minimum and the local f
minimum value is f (5)  22.

Example 3.10

Let f x( )x ( )x ./(x 2 3// Find its critical points and men-

tion its character at those points.

Solution: Differentiating the given function we get
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f x x

x

( )x ( )x/ /x( )x

/

2/ 1 3//

1 3//

2

3

5 2x

3

Now

f x( )x 0
2

5

Also f (0) does not exist, but f is continuous at x 0.

Therefore, the critical points of f are 2/5 and 0. We nowf
investigate the character of these points.

1. For x f5 0( )x .sign

For x f5 0( )x .sign

Therefore f is minimum atf x 2 5/22 5 and the minimum 

value of f isf

f
2

5

3

5

4

25

1 3/11

2. For x x, (f (ff ) .0

For x x, (f (ff ) .0

Therefore f is maximum at f x 0 and the maximum

value of f isf f (0)f 0.

Note: The maximum value at a point may be less than the minimum value at another point (see Fig. 3.7).

O x

y

FIGURE 3.7

THEOREM 3.9
(SECOND

DERIVATIVE

TEST)

Let f a: [ , ]b �  be a differentiable function and a x bx0 .  Suppose that f ( )x ,0 0 f ( )x0

exists and f ( )x .0 0  Then

(i) f has local maximum at f x0 if f ( )x .0 0

(ii) f has local minimum atf x0 if f ( )x0 0

[Assuming that f ( )x0  is continuous in some small neighbourhood of x0.]

PROOF (i) Suppose f (x0) < 0. Since f (x) is continuous in some small neighbourhood of x0, we can 

choose a small closed interval containing x0 and that is also contained in the small neigh-

bourhood of x0 in which f (x) < 0 at all points of this closed interval.

So, f (x) decreases in this closed interval (Theorem 3.6). But f (x0) 0. Therefore, f (x) 0 

for x < x0 and f (x) < 0 for x x0. Thus, the derivative f (x) changes sign for plus to minus at 

x0. Hence by the first derivative test, f is maximum at f x0.

(ii) Similarly, we can prove that f has minimum at f x0 if f (x0) 0.

1. f f( )x0 0  has local maximum at x0.

2. f f( )x0 0  has local minimum at x0.

3. If f (x0) 0, then nothing can be said about the char-

acter of x0.

QUICK LOOK 2

 3.4 Maxima–Minima
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Example 3.11

Let f
x

x( )x .x
3

2

3
2 3x2 1 Find its points of maximum

and minimum.

Solution: Differentiating the given function we get

f x( )x ( )x ( )2 4 3x )(x

Now

f ( )x , .0 1x 3

Again

f (x) 2x 4

Therefore

1. ff ( )  has maximum at x 1.

2. ff ( )  has minimum at x 3.

Example 3.12

Find the points of maximum and minimum for f (x)

x log x.

Solution: Note that f is defined for all f x 0. Differen-

tiating we get

f (x) log x 1

Now

f x
e

( )x 0
1

f
x

f
e

e( )x
1 1

0

Therefore, f has minimum atf x 1/e and the minimum

value of ff isf

f
e e e e
1 1 1 1

log

Example 3.13

Consider the function

f

x

x

x

x

( )x

2 1x 1 0xx

2 0xx

2 1x 1

if

if

if 0

Show that f has neither maximum nor minimum.

Solution: Note that f is discontinuous at x 0, because

lim ( ) ( )
x

f ( f
0 0

02 10 2 (f

Now, for 1 x < 0, we have f x( )x log2 2x l 0  so that f
is strictly increasing in ( 1, 0). For 0 1,

f x( )x log2 2x l 0

so that f is also strictly increasing in (f 1, 0). Hence f hasf
no extremum value in ( 1, 1).

Example 3.14

Suppose 1 2 ,2 , n are real numbers. Let f (x)

( )i
i

n
2

1

 for all x �.

Show that the only point of extremum of f isf

1 2 n

n

Solution: Differentiating the given function we get

f i
i

n

( )x ( )x i2

1

so that

f x
n

n( )x 0 1 21

Let

1 2 n

n
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It is easy to see that

1. x f ( )x 0

2. x f ( )x 0

3. f ( ) 0

This shows that f decreases in (f , 0) and increases in

(0, ). Thus f is minimum atf x .

DEFINITION 3.11 Absolute Maximum and Absolute Minimum

1. If a function f has a pointf in its domain such that f (x) f ( ) x in the domain, then f ( )

is called the absolute maximum value or greatest value of f.f

2. If f has a point f in its domain such that f (x) f ( ) x in the domain, then f ( ) is called

the absolute minimum value or the least value of f.f

THEOREM 3.10
(DARBOUX

THEOREM OR

INTERMEDIATE

VALUE

THEOREM FOR

THE

DERIVATIVE)

If f is differentiable on closed interval [f a, b], then f assumes every value between f a  and f b
Here we consider right derivative f a 0  at a and left derivative f b 0 at b.

PROOF We may suppose that f a f b  Let f a f b  Define g(x) x f (x) for all x [a, b]. 

Since g is continuous on [a, b], by Theorem 1.33, g assumes its maximum value at some g c [a, b]. 

Further,

g (x) f (x)

so that

g (a) f (a) 0

and                                                          g (b) f (b) < 0

Since

0 g
g g

x ax a
( )a lim

( )x ( )a

there exists 0 such that ( , ) ( , )a, a,))  and

x a
g g

x a
g g

a

g

( ,a(a )
( )x ( )a

( )x ( )a

) 0

Similarly, ( , ) ( , )b, b a,)b,  such that x g g( )b bb b ( )x ( )b . Hence neither a nor b is a

point of maximum for g. Therefore, there exists c (a, b) at which g is maximum. Thereforeg

g (c) 0 f (c) 0 or f (c)

Note: Darboux theorem can be used to find functions which are not derivatives of any functions. For this consider the 

following example.

Example

Define

g
x

x
( )x

/

/

x0 0 1 2//

1 1//2 1// x

if

i

We show that there exists no function f on [0, 1] such that

f (x) g (x) for all x [0, 1]. For this, suppose f is a funcf -

tion defined on [0, 1] such that f g. Since 0 1 11/ ,1 4 1411 4  by 

Darboux theorem

 3.4 Maxima–Minima
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f x( )x ( , )
1

4
1,for some

But

f g( )x ( )x 0 1

which is a contradiction.

COROLLARY 3.4 If f is differentiable on a closed interval [f a, b] and its derivative f  changes sign in [a, b], then

f (x) 0 for some x [a, b].

PROOF Suppose , [a, b] and f f( ) ( ) .f) ( ) 0 Since zero lies between f ( ) and f ( ),) by Darboux

theorem, there exists x between and such that f (x) 0.

Note: In an interval [a, b], the derivative of a function may not vanish at any point and hence the derivative keeps the 

same sign throughout the interval. Thus the function is either increasing or decreasing in the interval, so that maximum

and minimum values occur at the end points of the interval [a, b].

Keeping the above note in mind the preceding information about the extremum values of a function, in the follow-

ing subsection we formulate, how to find the greatest and least values of a function on a given interval.

3.4.2 Deriving the Greatest and Least Values of a Function on a Given Interval

PROCEDURE

Suppose a function f (x) is defined and continuous on a closed interval [a, b] where a and b are finite real numbers. To 

find the greatest and least values of the function, it is necessary to find all local maxima (local minima) of the function

f (x) in the open interval (a, b). Let x1, x2, x3, …, xn be all the critical points in (a, b) at which f (x) has extremum value.

To this list add a and b. Now let

S a f x x fn{ (f ), ( )x (f ), , (f ), ( )b }1 2x), (f

Then the greatest element of S is precisely the greatest value of f (x) on [a, b] and the least element of t S is precisely the

least value of f (x) on [a, b].

Example 3.15

Let f x( )x , [x , ].3 4x3x 1 2, [, x4 3x4 Find its greatest and

least values.

Solution: Since f is continuous and differentiable forf
all real x, it is continuous and differentiable on [ 2, 1].

Therefore, the only critical points of f are the roots of f
f (x) 0. So

f x( )x

,

0 12x 2 0x

0 1,

3 212

Now at x xx 1x2, (ff ) (x1 (2x2 ) keeps the same sign .

Hence x 0 is not a point of extremum.

Again at x x x 1x x2, (ff ) (xxx2 ) changes sign from 

minus to plus. Hence f is minimum atf x 1 and f ( 1) 0. 

Also f ( 2) 17 and f (1) 8. Now

S f{ (ff ) , ( ) , (f (f ) }2) ff, 1(ff

Therefore, the greatest value of f is 17 and the least value f
is zero on [ 2, 1].

Example 3.16

Let f x x x( )x , [x , ]., x24x x xx 0,3  Find the points of 

maxima and minima as well as the maximum and mini-

mum values.

Solution: We can write the given function as

f
x x x x x

x x x x x
( )x

( )x

( )x

x4x x(x( 2xx 0 2x

4x x(xx(x 2x xx

3 3( )xx( 4x 2

3 3( )x(x 4x 2

for

forrr 2 3

So, x 2 is a point of continuity of f. Nowff

f
x x

x x
( )x

12 2 2 0 2x

12 2 2 2 3x

2

2

for

for
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Note that at x 2, f is not differentiable but in everyf
neighbourhood of 2, contained in [0, 3], f is differentiable.f
Thus, 2 is a critical point of f. Also for 0ff x < 2,

f x( )xx , 0
1

2

1

3

But 1 0/ [2 , ]3 .  Therefore x 1 3/  is a critical point and

f
1

3
24

1

3
2 10 0

Hence f is minimum at f x 1/3 and

f
1

3

4

27

1

9

2

3

4 3 18

27

11

27

Also for x f 0( )x  which means f increasingf
from 1/3 to 3. Now

S f ffff ( ) , f ( )0)
1

3

11

27
105

Therefore f is minimum at x 1/3 and the minimum value

is 11/27 and f is maximum at f x 3 and the maximum

value is 105.

Note: Suppose F(FF x) g(f(( (ff x)) where f (x) and g(y) are continuous functions on [a, b] and [c, d], respectively. Let

c f d x
x b cb

Mdff ( )x( )xx , ad Mdd x (f ),
[ ,aa ] [xx , ]d

then

M Mi ( ) in ( )
[ , ] [ , ]

F( g(
x [ b]b] c,[ ,[ b]

and M Max ( ) ax ( )
[ , ] [ , ]x [ b] c,

F( g(
[ ,[ b]

That is we can put substitution f (x) y. See the following example.

Example 3.17

Let F
x

( )x
sin

sin[( / ) ]x
2

4////
 for x 0

2
, . Find the maxi-

mum and minimum values.

Solution: We have

F
x

x
( )x

sin cx os

(sin cx os )

2

1

2

Now put t sin x cos x, so that

2 sin x cos x t 2 1

Here f (x) sin x cos x so that

tx t0
2

2, [ ,1 ]

Therefore

F
t

( )x
( )t2(t2

where t sin x cos x f (x). Hence F(FF x) is of the form 

g(f(( (x)) where

f (x) t sin x cos x

and g
t

( )t
( )t2(t2

Now

g
t

( )t 2 1
1

0
2

so that g is increasing forg t [ , ].2,  Hence

M Max ( ) ax ( )

( )

( )

,
[ , ]x t

F( g(

g

0
2

2,

2(

2

1

and M Mi ( ) in ( )

( )

( )

,
[ , ]x t

( g(

g
0

2

2,

2(

1

0

 3.4 Maxima–Minima
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Example 3.18

Let f (x) tan x cot x, x [ / , / ]./ ,6 3, /, Find its least and 

greatest values.

Solution: The given function can be written as

f
x

x( )x
sin cx os

1
2 2cosec

Now,

f (x) 4 cosec 2x cot 2x 0

at x /4. Also

f (x) < 0 for 
6 4

x

and f (x) 0 for
4 3

x

Therefore f is locally minimum at f x /4 and f ( / ) .//4// )

Also

ff
6

1

3

4

3 3

Therefore f is maximum atf x /6 and /3 and maximum

of f ( )x / .4//

Hence on the interval [ / , / ],// ,6 3/ , /// , //  the least value of ff (x)

is 2 and the greatest value of f (x) is 4/ .3

Note: Sometimes, if the functional values are positive, the minimum value of a sum can be determined by using 

AM GM inequality. In the above case, since both tan x and cot x are positive in [ / , / ],// ,6 3/ , /// , // we have

tan tanx xcot x xcotcot xcot 2 2tan cot xcot

and the equality occurs when tan x cot x, which implies that x /4.

3.5 Convexity, Concavity and Points of Inflection

The following concepts and theorems will be useful in drawing the curves of continuous and differentiable functions. 

The validity of the theorems is to be assumed.

DEFINITION 3.12 Convex Let f(x) be a continuous function defined on an interval [a, b]. If the graph of f(x)

lies below the line segment joining the points (x, f(x)) and (y, f(y)) for all a x < y b, then f is f
said to be convex function on the interval [a, b] and the curve said to be convex. See Fig. 3.8.

DEFINITION 3.13 Concave If the curve always lies above the line segment joining (x, f (f x)) and (y, f (f y)), then f is f
said to be a concave function on the interval [a, b] and curve is said to be concave. See Fig. 3.9.

x

y

f (x )
f (y )

a yx b x

y

f (x )

f (y )

a yx b

FIGURE 3.8 Convex function and curve. FIGURE 3.9 Concave function and curve.

THEOREM 3.11
(DERIVATIVE TEST

FOR CONVEXITY)

Suppose f is continuous on [f a, b] and differentiable in (a, b). If f  is increasing on (a, b), then f is f
convex on [a, b]. In particular, f  exists and is positive (possibly at some points f may be zero)

in (a, b).

THEOREM 3.12 Suppose f is continuous on [f a, b] and is differentiable in (a, b). If f  is decreasing in (a, b), then f isf
concave in (a, b). In particular, f is negative (possibly at some points f  may be zero) in (a, b).

Note: If f is convex, thenf f is concave.f
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DEFINITION 3.14 Point of Inflection If f (a) 0 or f (a) does not exist and the second derivative f (x)

changes sign at x a, then a is called a point of inflection of f. Geometrically, point of inflecff -

tion means, the point which separates convex and concave parts of the curve (see Fig. 3.10).

O

(a) (b)

(c) (d)

O

OO

FIGURE 3.10 Various graphs to show points of inflection.

Example 3.19

Find out whether the following curves are convex or con-

cave or both.

1. f x( )x 3 2

2. f x( )x 3

3. f x( )x cos

4.. f (x) x4

Solution:

1. The given function is f x( )x .3 2 The second de    

rivative is

f (x) 2 < 0

Therefore, f is concave everywhere.f

2. The given function is f x( )x .3 The second derivative 

is

f x( )x 6

This implies

f ( )x 0x0 f

f (x) 0 for x 0

Thus f is concave forf x < 0 and convex for x 0. See

Fig. 3.11. Here, observe that ff (0) 0 and ff (x)

changes sign at x 0 and hence x 0 is a point of 

inflection also.

y = x 3

O

y

x

FIGURE 3.11 Part (2), Example 3.19.

3. The given function is f (x) cosx. The second

derivative is

f x( )x cos 0
2 2

fo

Therefore f (x) is concave in [ / , / ]// ,2 2// , //// , // . Now

f x( )x cos 0x
2

3

2
f

3

This implies f is convex inf [ / , / ].// , //2//// , 2//

4. The given function is f (x) x4. (See Fig. 3.12.) The

second derivative is

f x( )x 12 0 02

Hence the curve is convex on any interval. Further

f (x) 0, but f (x) does not change its sign at x 0.

Hence x 0 is not a point of inflection.

y = y x 4

xO

y

FIGURE 3.12 Part (4), Example 3.19.

 3.5 Convexity, Concavity and Points of Inflection
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3.6 Cauchy’s Mean Value Theorem and L’Hospital’s Rule

In this section we prove Cauchy’s mean value theorem which is an extension of Lagrange’s mean value theorem for

two functions and prove the most famous theorem L’Hospital’s rule.

3.6.1 Cauchy’s Mean Value Theorem

THEOREM 3.13
(CAUCHY’S

MEAN VALUE

THEOREM)

Suppose f andf g are two functions such thatg

 (i) both are continuous on [a, b] and differentiable in (a, b)

(ii) g (g a) g (g b)

(iii) f g x b( )x ( )x ( ,a )

Then, there exists c (a, b) such that

f
g

f f
g g

( )c
( )c

( )b ( )a
( )b ( )a

PROOF Let

h f
f f
g g

b x( )x ( )x
( )b ( )a
( )b ( )a

( (g ) (g ))f )x

Then h is continuous on [a, b] and differentiable in (a, b). Also h(a) f (b) h(b). Hence, by 

Rolle’s theorem, there exists c (a, b) such that h (c) 0. Therefore

f
f f
g g

c

f f
g g

( )c
( )b ( )a
( )b ( )a

[ (g )]

( )b ( )a
( )b ( )a

g ( )c

If g (c) 0, then f (c) 0 which contradicts hypotheses (iii). Therefore g ( )c .0  Hence

f
g

f f
g g

( )c
( )c

( )b ( )a
( )b ( )a

Note: Lagrange’s mean value theorem is a special case of Cauchy’s mean value theorem, if we take g (x) x x bx [ ,a ].

3.6.2 L’Hospital’s Rule

Suppose functions f andf g are defined in a neighbourhood of “g c”. If lim ( )
x c

f (  and lim ( )
x c

g(  are both either 0 or , 

then lim ( )/ ( )
x c

f ( x/ (/  is called an indeterminate form. This limit of the ratio may exist or may not exist.

DEFINITION 3.15 Suppose we write lim ( )
x c

f (  and lim ( ).
x c

g(

1. If 0 or  and , then we say that lim
( )

( )x c

f (

g(
 is the indeterminate form

0

0
or .

2. If , then we say that lim ( ( ) ( ))
x c

x( x(  is the indeterminate .

In the following theorem, we prove the most primitive form of L’Hospital’s rule which will be frequently used to find

the limit of the indeterminate
0

0
.
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THEOREM 3.14 Suppose lim ( ) lim ( ),
x a

f ( g(
a x

0 f (a) and g (a) exist and g (a) 0. Then lim ( )/ ( )
x a

f ( x/ (/  exists

and is equal to f a( )a / (g ).

PROOF Since f (a) and g (a) exist, f (x) and g (x) are continuous at a. Hence, by hypothesis

f (a) g (a) 0

Also

f
f f

x ax a
( )a lim

( )x ( )a

and g
g g

x ax a
( )a lim

( )x ( )a

Therefore

f
g

f
x a

x a
g

f f
x a

x a
g g

a g

( )x
( )x

( )x
( )x

( )x ( )a
( )x ( )a

[ (f ) ( )(( ]0

This implies

lim
( )

( )
lim

( ) ( )
lim

( ) ( )

( )

x a x a

f (

g(g(

f ( f (

x a
x a

g( g(

f (

) xa g(

g ( )a

One has to observe that

g
g
x ax a

( )a lim
( )x

and g (a) 0 implies that g(x) 0 for all x in a neighbourhood of a.

The following theorem is another form of L’Hospital’s rule which will be also useful in practical problems. In the first 

reading, the student may skip the proof and assume its validity.

THEOREM 3.15
(ANOTHER

FORM OF

L’HOSPITAL’S

RULE)

If f andf g are differentiable in a deleted neighbourhood of g a, are continuous at a, f (a) g (a) 0

and lim
( )

( )
,

x a

f (

g (
l then lim

( )

( )x a

f (

g(
 exists and is equal to l.

PROOF Since f x l( )x / (g )  as x a 0, there exists a positive number such that 0 < h < , both f and f
g are differentiable andg g (x) 0 for all x in (a, a h). If g g( )x ( )a( )a ( )g )a ( for some x in (a, a h), 

then by Rolle’s theorem g (x0) 0 for some x0 in (a, a h) which is a contradiction to the fact that

g (x) 0 in any (a, a h). Hence g(x) g(a) for any x (a, a h). Thus, f andf g satisfy the condig -

tions of Cauchy’s mean value theorem on [a, a h] so that there exists c in (a, a h) such that

f
g

f f
g g

f
g

( )c
( )c

( )a h ( )a
( )a h ( )a

( )a h
( )a h

(3.4)

Let 0. Since

f
g

l a
( )x
( )x

0

there exists a positive number  ( ) such that x aa( ,aa ( ))( ) and

 3.6 Cauchy’s Mean Value Theorem and L’Hospital’s Rule
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f
g

l
( )x
( )x

Choose n( ) . Therefore for any x (a,  ), by Eq. (3.4) we have

f
g

f
g

( )x
( )x

( )c
( )c

for some c in (a, x). Hence

f
g

l
f
g

l
( )x
( )x

( )c
( )c

l l

because 0 < c – a < x – a < Therefore

f
g

l a
( )x
( )x

l x 0

Similarly

f
g

l a
( )x
( )x

l x 0

Hence

lim
( )

( )x a

f (

g(
l

Now we state (without proofs) two theorems which comprise all forms of L’Hospital’s rule.

THEOREM 3.16
(L’HOSPITAL’S

RULE – I)

(i) Suppose f and g are differentiable in a right neighbourhoodg V (c, c ) of c, g (x) 0 in V,VV

lim ( ) lim ( )
x

f ( g(
c 0 0

( )
x

f (
c

0

Then

lim
( )

( )
lim

( )

( )x

f (

g (

f (

g(c 0 0( ) xg ( c

(Here the limit may be real number or or .)

Note: The above result is equally valid, if the right neighbourhood is replaced by left 

neighbourhood.

(ii) Suppose f and g are defined and differentiable in (g , b), g (x) 0 in ( , b) and

lim ( ) lim ( )
x

x( g(
x

Then

lim
( )

( )
lim

( )

( )x

f (

g (g (

f (

g() x)g (g ((

(Here the limit may be a real number or  or .)

(iii) Suppose f and g are defined and differentiable in (g a, ), g (x) 0 in (a, ) and

lim ( ) lim ( )
x x

f ( g(0
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Then

lim
( )

( )
lim

( )

( )x x)

f (

g ((

f (

g(

(Here the limit may be a real number or or .) 

THEOREM 3.17
(L’HOSPITAL’S

RULE – II)

 (i) Suppose f and g are differentiable in a neighbourhood g V (a , a ) of “a”, g x V( )x
and lim ( ) .

x a
g(  Then

lim
( )

( )
lim

( )

( )x a

f (

g (g (

f (

g()a xg (

(Here the limit may be a real number or  or .)

(ii) Suppose f and g are defined and differentiable in (g , b), g (x) 0 in ( , b) and 

lim ( ) .
x

g(  Then

lim
( )

( )
lim

( )

( )x

f (

g (g (

f (

g() x)g (g ((

(Here the limit may be a real number or  or .)

(iii) Suppose f and g are defined and differentiable in (g a, ), g (x) 0 in (a, ) and

lim ( ) .
x

g(  Then

lim
( )

( )
lim

( )

( )x x)

f (

g ((

f (

g(

(Here the limit may be a real number or  or .) 

Note: The indeterminate forms of types 1 00 0, ,0 ,  etc. can be reduced to the form 
0

0
 or  by using logarithms, 

exponentials, etc.

The following are few examples of the above results.

Example  3.20

Let f ex( )x e 1 and1 g(x(( ) x in [0, x ]. Find lim ( )/ ( )
x

x( g/ (
0

.

Solution: We have by L’Hospital’s rule  I, part (i),

lim
( )

( )
lim

( )

( )
lim

x x

xf (

g(

f (

g (

e
0 0( ) x)g(( 0 1

1

Note that lim
x

xe
x0

1
is in the indeterminate form 

0

0
.

 3.6 Cauchy’s Mean Value Theorem and L’Hospital’s Rule

Let f (f x) log x and g (x) x – 1 in (0, ). Find 

lim ( )/ ( ).
x

f ( x/ (/
1

Solution: By L’Hospital’s rule  I we have

lim
log

lim
( )

( )

lim
/

x

x

x
x

f (

g (

x

xx 1x1 x

1

11

0

00

1

form

11
1

Example   3.21 
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Example 3.22

Let f (x) log x and g (x) x for x (1, ). Find 

lim ( ) / ( ).
x

f ( x/ (/

Solution: By L’Hospital’s rule  II, we have

lim
( )

( )
lim

( )

( )

lim
/

x)x

x

f (

g(g((

f (

g (

x//
lim

1//

1
0

Example 3.23

Let f x( )x 2 and g ex( )x .  Find lim ( )/ ( ).
x

f ( x/ (/

Solution: By L’Hospital’s rule  II, we have

lim lim
( )

( )x x x

x

e

f (

g(

2

lim
( )

( )

lim

lim

x

x x

x x

f (

g (

x

e

e

2

2
(By L’Hospital’s rule)ee

0

Example 3.24

Find lim ( log )
x

xlog
0 0

Solution: This limit is of the form 0 ( ). Take

f (x) log x and g(x) 1/x//  so that

x x
f
g

log
( )x
( )x

Then,

lim ( log ) lim
( )

( )

lim
( )

( )

lim

x x

x

x

xlog
f (

g(

f (

g (

0 0 0 0

0 0

0 0 2

1

1

0

/11

/11

x//

x//

Example 3.25

Find lim ( ).
x

x

0 0

Solution: This of the form 00. We have

lim ( ) lim log

x

x

x

x xloge) lim
0 0 0 0

exp{ lim ( log )}

( . )

x
xlog

e

0 0

0 2. 4

1

Thus lim .
x

xx
0 0

1

Example 3.26

Find lim
sinx x xsin0 0

1 1
 for x 0

4
, .

Solution: This limit is of the form . Now

lim
sin

lim
sin

sinx xx xsinx xsinsin

x x
x xsin0 0 0 0

1 1 0

0

lim
(cos )

sin cosx

x
x0 0

1 0

0

lim
sin

cos sinx

x
x0 0 2

0

2
0
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Example 3.27

Show that lim
sin

.
x

x

x0 0
0

Solution: Write f (x) sin x and g x( )x , (x , ).x , x 0

By L’Hospital’s rule  II,

lim
sin

lim
( )

( )

lim
cos

/

xx

x

x

x

f (

g(

x

x

0 0 0 0

0 0 1 2//

lim ( cos )
x

x cos
0 0

2

0

Note

lim
sin

x

x
x0

1

while

lim
sin

x

x

x0 0
0

Example 3.28

Show that lim (cos ) ./

x
x)

0

1 1/ // 2//2

Solution: We have

lim ( ) ( )

exp{lim( / ) log(cos )}

/

x

x//

x x// ) log(cos
x

0

1//

2

2

0
//

exp lim
log(cos )

x x0 2

0

0

exp lim
tan

exp ( / ) lim
tan

x

x

x
x

x
x

0

0

2

0

0

2//

e 1 2/1 21 2

Example 3.29

Show that lim ( )
x xe x

)
0

1

1

1 1
( )

2

Solution: We have

lim lim
x x

x

xe x
x e

xe xe x

xe
0x xx0 xxe

1

11

1 1 0

0

lim
x

x

x x

e

e xx e0

1

1

0

0

lim
x

x

x x

e

e xx e0 2

1

2

Note that 2 0x x for x 2.

WORKED-OUT PROBLEMS

Single Correct Choice Type Questions

Tangents and Normals
1. If the line lx my 1 is normal to the curve y2 4ax, 

then l3 a  2alm2 is equal to

(A) m2 (B) m

(C) 2m (D) m2

Solution: Suppose the line lx my 1 is normal to the

curve at (x1, y1). Then

lx

y ax

1 1my

1
2

1

1

4

my1my
(3.5)

Differentiating y2  4ax, we get

dy
dx

a
y

2

 Worked-Out Problems
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Therefore

dy
dx

a
yy( ,x )1 1y

2

1

Equation of normal at (x1, y1) to y2 4ax is

y y
y
a

y1
1

1
2

( )x x1

that is

xy1 2ay  (2ay1 x1y1)  0

is normal at (x1, y1). But lx my  1 is normal at (x1, y1). 

Therefore

y
l

a
m

x y1 1a ay 1 1y2

1

ay1ay

Solving we get

y
al

m
x

l
a

al
l1 1x

2 1al
2

1 2
x1x a2and

From Eq. (3.5) we have y ax1
2

14 .  Therefore

4
4

2 2

2

a l2

m
a

l
( )1 2al

l3a m2 2alm2

l3a 2alm2 m2

Answer: (A)

2. The distance of any normal to the curve represented 

parametrically by the equations x a (cos  sin ), 

y a (sin cos ), a  0 from the origin is

(A)
a
2

(B) a2

(C) a (D)
a2

2

Solution: Differentiating the given equations we get

dx
d

aa( sin i ) ca

dy
d

aa((cos i ) sa i

We can suppose that cos  0 so that

dy
dx

dy
d

dx
d

y
d

tan

Therefore the equation of the normal is

y aa(sin cos ) c [ (x aa cos sin )]) cot

On simplification, we have xcos y sin a whose

distance from (0, 0) is a.

Answer: (C)

3. The sum of the intercepts made by a tangent to the 

curve x yy 2  on the axes of coordinates is

(A) 2 (B) 4

(C) 1 (D) 2 2

Solution: Observe that both x and y are positive. Dif-

ferentiating the given equation w.r.t. x, we have

dy
dx

y
x

Therefore

dy
dx

y
xy( ,x )1 1y

1

1

Now equation of the tangent at (x1, y1) is

y y
y
x

y1
1

1
1( )x xx 1

x

x

y

y1 1y
2

Therefore the sum of the intercepts is

2 2 2 2 2 41 1 1 1x1 2 1y22 2( )( )1 1x1

Answer: (B)

4. The number of points on the curve y2 x3 at which

the normal makes intercepts on coordinates whose

lengths are numerically equal, is

(A) 4 (B) 6

(C) 3 (D) 2

Solution: Suppose (x1, y1) is a point on the curve at

which the normal makes intercepts on the axes that are

numerically equal. Differentiating y2 x3  w.r.t. x we get

dy
dx

x
y

3

2

2

so that

dy
dx

x
yy( ,x )1 1y

3

2
1

2

1

Therefore

Slope of the normal at ( , )y,
y

x
1 1y, 1

1
2

2

3

Since the intercepts of the normal are numerically equal, 

we have slope  1. Therefore

2

3
11

1
2

y

x

2 31 1
2y x31 3
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2 3

4

9

1
23

1
2

1

x3/22

This gives

y1

8

27

Since the curve is symmetric about x-axis, the points are 
4

9

8

27
, or

4

9

8

27
, .

Answer: (D)

5. Let P be a point on the curve P y x2 x 1 and Q
be a point on the curve y x3 x2 2x  1. Suppose

the tangent at P to curve P y x2 x  1 is parallel to

the tangent at Q to the curve y x3 x2 2x  1. 

Then, the number of such ordered pair of points

(P, Q) is

(A) 2 (B) 4

(C) 3 (D) infinite

Solution: Differentiating y x2 − x 1 w.r.t. x, we get

dy
dx

x2 1xx

Therefore

dy
dx

x
P y( ,x )1 1y,

2 1x2xx1

From y x3 x2  2x 1,

dy
dx

x
Q y( ,x )2 2y,

3 2x3xx 22
2

2

Therefore

dy
dx

dy
dx

x x

P Qdx

2 3x 2 1xx1 2x3 2
2

3 2 02
2

2 1x2 ( )1 2 11 2x

So, there will be infinitely many values for x1 such that

the above quadratic equation in x2 has real solutions, 

because its discriminant

4 12 0
2

3
1 112 10( )1 2 11 000 f ll

Answer: (D)

6. The number of common points to the curves y
x

1

1
and y

x

1

1 2
at which the tangent to the second

curve is horizontal is

(A) 1 (B) 2

(C) infinite (D) 0

Solution: We have

1

1

1

1

0

0 1

2

22

x x

x2

,

Therefore the common points are (0, 1) and (1, 1/2). Now

y
x

dy
dx

y1

1

1
2( )x1

Therefore

dy
dx ( , )1,

1

Again

y
x

dy
dx

1

1
0

2
1( ,0 )

Therefore, at (0, 1) the tangent to the second curve is 

horizontal.

Answer: (A)

7. The length of the normal to the curve x a ( sin ), 

y a (1 cos ) at /2 is

(A) a (B) a 2

(C) 2a (D) a2

Solution: Differentiating the given equations we get

dx
d

a

dy
d

a

a( cos )

sin

Therefore

dy
dx

dy
d

dx
d

y
d

sin

cos1

So

dy
dx

2

1

and ordinate of the point / 2 is a. Therefore, length of 

the normal is

a
dy
dx

a a11
dy

1 2a

2

2

1a

Answer: (B)
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8. The tangent at (x0, y0) to the curve x3 y3 a3 meets 

the curve again at (x1, y1), then

x
x

y
y

1

0

1

0

y1

(A) 1 (B) 1

(C) a (D) a

Solution: The given equation is x3 y3 a3. Differentia-

ting both sides w.r.t. x, we have

dy
dx

x

y

2

2

Therefore

dy
dx

x

yy( ,x )0 0y

0
2

0
2

(3.6)

Equation of the tangent at (x0, y0) is

y y
x

y
y0

0
2

0
2 0( )x x0

x y y x y0
2

0
2

0
3

0
3

This passes through (x1, y1). Therefore

x x y x y

a

x y

0
2

1 0y2
1 0x3

0
3

3

1
3

1
3

y yy2
1

x3

as (x1, y1) lies on the curve. Hence

x y1 0
2

1
2

1 0
2

1
2( )x x0x2

1
2 ( )y y0y2

1
2x y1(yy

x

y

y y

x x
1 0 1

1 0 1

0 1y

0 1x

( )x x0x 1

( )y y0y 1

Slope of the line joining (x0, y0) and 

(x1, y1)

which is the slope of the tangent at (x(( 0, y0). So from Eq. 

(3.6)

x

y

x

y
1 0 1

1 0 1

0
2

0
2

( )x0x 1

( )y y0y 1

x x y x y y y x y x1 0x 0
2

1
2

0
2

1 0y 0
2

1
2

0
2x y1

2 2

x0 y0(x1y0 x0y1) (x1y0 x0y1) (x1y0 x0y1) (3.7)

Suppose x1y0 x0y1  0 so that

x

x

y

y
0

1

0

1

(say)

Hence, x0 x1, y0 y1 so that

a x y a3
0
3

0
3 3

1
3

1
3 3 3x0

3 33( )y1 1( 3 3x y1
3 3x1
3

which implies  1 and hence x0 x1 and y0 y1, a con-

tradiction. Therefore x1y0 x0y00 1  0. Hence from Eq.

(3.7),

x0 y0 (x1y0 x0y00 1)

Dividing both sides with x0y0, we have

x
x

y
y

1

0

1

0

1
y1

Answer: (B)

9. The distance of the point on the curve 3x2 4y2 72 

nearest to the line 3x 2y2 1  0 is

(A)
11

13
(B)

9

13

(C) 13 (D)
13

11

Solution: We have to find points on the curve at which the

tangents are parallel to the line 3x  2y2  1  0. Let (x(( 1, y1) be 

a point on the curve at which the tangent is parallel to the

given line. Differentiating the curve equation w.r.t. x we getx

6 8 0x y8
dy
dx

y8

Therefore
dy
dx

x
yy( ,x )1 1y

3

4
1

1

The tangent is parallel to the line 3x 2y2 1 0. This

implies

3

4

3

2
1

1

x
y

x1 2y2 1

(x1, y1) lies on the curve. This implies

3 4 721
2

1
2x y41 1y4

12 4 721
2

1
2y y41

y1 3

Therefore the points on the curve are (6, 3) and ( 6, 3) 

whose distances from the line 3x  2y  1  0, respec-

tively, are 13 and 11 1/ ./11 13  Therefore, the nearest point 

is ( 6, 3) and its distance from the given line is 11 1/ ./11 13

Answer: (A)

10. If the tangent at (4t2tt , 8t3tt ) to the curve y2 x3 is also nor-rr

mal to the curve at some other point, then t is equal tot
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(A)
2

3
(B)

3

2

(C)
2

3
(D)

3

2

Solution: Observe that x t2tt , y t3tt , t are parametric 

equations of the curve y2 x3. Now

2 3 2y
dy
dx

x

dy
dx

t

t
t

t( ,t )2 3t

3

2

3

2

4

3
(3.8)

and
dy
dx

t
t( , )

( )t

( )t,t

2 2)
3

2 3t8

3(

2(
3 (3.9)

Therefore, equation of the tangent at (4t2tt , 8t3tt ) is

y  8t3tt  3t (t x 4t2tt )

y 3tx  4t3tt

Putting this value of y in the curve equation, we have

(3tx 4t3tt )2 x3

x3 9t2tt x2 2 24t4tt x4 16t6  0

for which x  4t2tt  is a factor. Therefore

(x 4t2tt ) (x2  5t2tt x2 4t4tt )  0

(x  4t2tt ) (x 4t2tt ) (x t2tt ) 0

So, x  4t2tt is a repeated root and x t2tt is the other root.

Therefore the tangent at P(4t2tt , 8t3tt ) meets the curve again 

at (t2tt , t3tt ) and (t2tt , t3tt ). Now,

Slope of the normal at ( , )t,
t

2 3t
2

3
(3.10)

Equations (3.9) and (3.10) imply 3t 2/3t which is nott
true. Therefore the point (t2tt , t3tt ) is the point on the curve

at which the normal is the tangent at (4t2tt , 8t3tt ). So

3
2

3
2 9

2

3

2t
t

t9t 22 992/2 992 992 9

Answer: (C)

11. The equation of the normal to the curve

y  (1 x)y  Sin 1(sin2 x)

at x 0 is

(A) 2x y  1 (B) 2x y  1 0

(C) x y 1 0 (D) x y  1  0

Solution: x  0 y  1 so that the given point on the

curve is P(0, 1). Differentiating the curve equation w.r.t.

x, we have

dy
dx

dy
dx

x
y

x

x

x

y x( )x log( )
sin cx os

sin
1

1

2

1 4

Therefore

dy
dx ( , )

( )
1,

1( 0) 1

So normal equation at (0, 1) is

y  1 1 (x  0)

or x y  1

Answer: (D)

12. The sum of the ordinates of the points on the curve 

3x2 y2 x 2y2 0 at which the tangents are perpen-

dicular to the line 4x 2y2  1  0 is

(A) 2 (B) 2

(C) 1 (D) 1

Solution: Differentiating the curve equation we get

6 2 1 2 0x y2
dy
dx

dy
dx

2y2
y

2
y

dy
dx

( )

( )y
x

2(y

But the tangent is perpendicular to the line 4x  2y2  1 

0. Therefore

( )

( )2(

1

2
6y x6

Substituting the value of y  6x in the curve equation, 

we get

3x2  36x2 x 12x 0

39x2  13x  0

0
1

3
,

Thus, the points are (0, 0) and ( 1/3, 2). Sum of the ordi-

nates  0 2 2.

Answer: (B)

13. The angle of intersection of the curves x2 4y2  32 

and x2 y2  12 at any point of their intersection is

(A)
6

(B)
4

(C)
3

(D)
2

Solution: The given curves are

x2 4y2  32 (3.11)
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and x2 y2 12 (3.12)

Subtraction Eq. (3.12) from Eq. (3.11), we get

5y2  20 y 2

The points of intersection are (±4, ±2) (four points). 

Since both curves are symmetric about both axes, the

angle of intersection is same at any of these points. Now 

from Eq. (3.11),

dy
dx

x
y4

dy
dx ( , )2,

4

8

1

2

From Eq. (3.12),

dy
dx

x
y

dy
dx ( , )2,

4

2
2

Therefore product of the slopes of the tangents to the 

curves at (4, 2) is 1. Hence the angle of intersection of 

the curves is /2.

Answer: (D)

14. The area of the triangle formed by the coordinate

axes and the tangent to the curve y  logexe at (1, 0) is 

(in square unit)

(A) 1 (B)
1

2

(C) 2 (D)
3

2

Solution: We have

y x

dy
dx x

dy
dx

e

y

log

( , )

1

1
0,

Therefore equation of the tangent at (1, 0) is

y x 1

or x y 1

Area of the given triangle is

1

2

1

2
( )1 ( )1

Answer: (B)

15. If the two curves ax2 bx 1 and a x2 b y2 1 in-

tersect orthogonally, then

(A)
1 1 1 1

a a b b
(B)

1 1 1 1

a a b b

(C)
1 1 1 1

a b b a
(D)

1 1 1 1

a b b a

Solution: Suppose the curves

ax2 by2 1 (3.13)

and a x2 b y2 1 (3.14)

intersect orthogonally at (x1, y1). Now from Eq. (3.13),

dy
dx

ax
byy( ,x )1 1y

1

1

and from Eq. (3.14)

dy
dx

a x
b yy

a

( ,x )1 1y

1

1

By hypothesis

ax
by

a x
b y

1

1

1

1

1

and hence

aa
bb

x

y
1
2

1
2

1 (3.15)

Also from Eqs. (3.13) and (3.14)

x y1
2

1
2 0( )a a ( )b ba y1
2(b )

so that
x

y a a
1
2

1
2 a

( )b bb

From Eq. (3.15) we have

aa
bb

b b
a a

b
a

1

aa b aa b abb bb a

Dividing by aa bb , we get

1 1 1 1

1 1 1 1

b b a a

a a b b

Answer: (A)

16. The slope of the tangent at ( /4, 0) to the curve 1

16x2y2  tan(x  2y2 ) is

(A)
2

4
(B)

1

42

(C)
2

42
(D)

1

4
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Solution: Differentiating the curve equation w.r.t. x
we get

32 16 2 1 2
2 2xy x

dy
dx

x y2
dy
dx

16 2x
y

sec (2 )

Put x /4 and y  0 so that

16
16 4

0 1 2
2

4
0

2

4

dy
dx

dy
dx

,
,

sec
00

2

4
0

4
0

2 4
dy
dx

dy
dx, ,0

4

( )
,

2

4
0

2)
dy
dx

dy
dx

4
0

2

2

4,

Answer: (C)

17. The angle of intersection of the two curves 4x2  9y2

 45 and x2  4y4 2  5 at any of their common points 

is

(A)
2

(B)
4

(C) Tan 1(2) (D)
3

Solution: Since the two curves are symmetric about 

both axes, the angle of intersection is same at any of their

common points. We have

4x2  9y2  45 (3.16)

x2 4y2  5 (3.17)

Solving Eqs. (3.16) and (3.17), the points of intersection

are (± 3, ± 1). From Eq. (3.16)

dy
dx

x
y

dy
dx

4

9

4

31( ,3 )

From Eq. (3.17),

dy
dx

x
y

dy
dx

2

8

3

41( ,3 )

Product of the slopes of the tangents at (3, 1) 1. This

implies that the curves cut each other orthogonally.

Answer: (A)

18. The area of the triangle formed by the tangent to

the curve sin y x3 x5 at the point (1, 0) and the 

coordinate axes is

(A)
1

2
(B) 1

(C) 2 (D)
3

2

Solution: Differentiating the given equation

(cos )y
dy
dx

x3 5xx2 4x5

dy
dx ( , )0,

3 5 2

Equation of the tangent at (1, 0) is

y  2(x 1)

2 2
1 2

1x y
x y

or

So area of the triangle is

1

2
1( )1 ( )2

Answer: (B)

19. The number of points on the curve y x sin x at which

the line y x is a tangent is

(A) 2 (B) 4

(C) 0 (D) infinite

Solution: We know that x sin x x whenever x x
( )( / ), .2 n)( / ),)( / )2 n)( / ),2  Therefore the line y x meets the

curve y x sin x at infinite number of points. Also

y x
dy
dx

x x xx xi s
y

x i cos

When x dy dx( )n ( / ), /dn 1dy dx2), /ddwe have  which is also

the slope of the line y x. So y x touches the curve y
x sinx at infinite number of points.

Answer: (D)

20. The number of values of x at which the graph of y
sec x is horizontal are

(A) 2 (B) 0

(C) infinite (D) 4

Solution: We have

y x
dy
dx

x xx s
y

x ec tan

Horizontal tangent implies

dy
dx

0
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Now

sec x n nn0 0tan xtan

Therefore y  sec x has infinite number of horizontal tan-

gents.

Answer: (C)

21. The angle at which the curve 3y3 sin 3x crossesx x-axis is

(A) Tan 1( 2) (B) Tan 1( 1)

(C) Tan 1( )3 (D) Tan 1 1

3

Solution: The curve crosses the x-axis when

1

3
3 0

3
si ,n 3 0

3
y

n
n

Slope of the tangent at line is

dy
dx

xcos 3

and at x n /3 is

dy
dx

nncos 1

Therefore the slopes of the tangents at x n is ± 1. The

tangents at these points make /4 angle with x-axis

Answer: (B)

22.  Let c be the curve y3  3xy  2  0. Let m be the num-

ber of points on c at which tangents are horizontal 

and n be the number of points on c at which the tan-

gent is vertical. Then m n equals

(A) 1 (B) 2

(C) 3 (D) 4

Solution: From the curve equation we have

3 3 3 02y
dy
dx

y x3
dy
dx

3y

( )
dy
dx

y

dy
dx

y

y x

2

2

But y  0, otherwise 2  0. Therefore y2 x. This implies

y3  3y2  2  0

so that y  1 and x  1. Therefore m 0 and n  1. Thus, 

m n  1.

Answer: (A)

23. If the normal to the curve y f (x) at the point (3, 4) 

makes an angle 3 /4 with the positive direction of 

the x-axis, then f (3) is equal to

(A) 1 (B)
3

4

(C)
4

3
(D) 1

Solution: We know that

dy
dx

f

dy
dx

f

f

f

( )x

( )
( , )4,

By hypothesis the slope of the normal at (3, 4) is

1 3

4

1

f

f

( )3
tan

( )3

Answer: (D)

24. Which one of the following curves cuts the curve 

y2  4ax at right angles?

(A) x2 y2 a2 (B) y e x/2a

(C) y  ax (D) x2  4ay

Solution: We have

y a
dy
dx

a
y

m2 4
2

ax4 (suppose)

x y a
dy
dx

x
y

m2 2 2
1y2y

y
( )

y e
dy
dx a

e mx ae xx/ /dy
ea ( )2/ // /dy
ea xa dya

2

1

2

y a
dy
dx

a max a 3 ( )

x y
dy
dx

x
a

m2
44

2
ay4 ( )

Now

mm

x
a

a
y

y x

x y

4 1

2

2
1

0

y

x

[Since point lies on both the curves y2 4ax and x2  4ay, 

and the points are (0, 0) and (4a, 4a).] Therefore x2  4ay
cuts y2 4ax orthogonally at (0, 0).

We can check that mm1 1, mm2 1 and mm3 1 at

the points where the curves x2 y2 a2, y e x/2a and y ax
meet.

Answer: (D)
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Note: For the curve y2 4ax, the y-axis is tangent at (0, 0)

and for the curve x2 4ay, the x-axis is the tangent at

(0, 0).

25. The point(s) on the curve y3 3x2  12y2 where the

tangent(s) is vertical is (are)

(A)
4

3
2, (B)

11

3
1,

(C) (0, 0) (D)
4

3
2,

Solution: Differentiating the given equation we get

3 6 122y
dy
dx

x
dy
dx

6x

( )
dy
dx

x2 2)
dy

Now

Tangent is vertical y2 4  0

y 2

Therefore

y x2
4

3

y xx2
24 8

3

16

3
02

Therefore the points are
4

3
2, .

Answer: (D)

26. The number of points on the curve y cos(x y), 

2 x 2 at which the tangent has slope 1/2 is

(A) 1 (B) 2

(C) 4 (D) 8

Solution: Differentiating the given equation, y
cos(x y), we have

dy
dx

x y
dy
dx

sin( ) 1

dy
dx

x y
x y

x y

sin( )

sin( )

sin( )

1

1

2

1

Now sin(x y)  1  cos (x y) 0. Therefore

x yy ( )nn
2

and x y ny n( )n ,n
2

Now

2 2
2

3

2

3
x ,

Therefore, the number of points on the curve at which

the tangent slope equals 1/2 is two.

Answer: (B)

27.  A curve in xy-plane is parametrically represented by

the equations x t2tt t 1, y t2tt t 1 where t  0.

The number of straight lines passing through the point 

(1, 1) which are tangent to the curve is

(A) 0 (B) 1

(C) 2 (D) 3

Solution: t  0 x 1 and y 1. Therefore (1, 1) is a 

point on the given curve. Also

dy
dx

dy
dt

dx
dt

t
t

y 2 1t
2 1t

Now

dy
dx

dy
dx t( , )1, 0

1

1
1

Equation of the tangent at (1, 1) is

y 1 1(x  1)

x y 2

Answer: (B)

28. The number of points belonging to the set

{( , ) d }x, x a dandand10 10 which lie on the

curve y2 x  sin x at which the tangent to the curve

is horizontal is

(A) 4 (B) 8

(C) 2 (D) 0

Solution: The given equation is y2 x  sin x. Differen-

tiating both sides w.r.t. x, we get

2 1y
dy
dx

x1 cos

Horizontal tangent implies

y
dy
dx

0 0
dyy

d

Therefore, cos x 1, which implies that x  (2n  1) , 

n .  Now

10 10

10
1

2

10
1

2
nx

92

44

48

44
n
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Therefore n 2, 1, 0, 1. Now

n 2 x cos( 3 ) 1

but y2 3 0, which is not true. So n 2. Similarly

n 1. This implies n  0, 1. But n  1 implies x 3

so that y2 3 y 3. Hence n  1. Therefore, the 

points in the set are ( ).

Answer: (C)

29. The triangle formed by the tangent to the curve

f (x) x2 bx b at the point (1, 1) and the coordi-

nate axes, lies in the first quadrant. If its area is 2, 

then the value of b is

(A) 1 (B) 3

(C) 3 (D) 1

Solution: The triangle lies in the first quadrant implies

the tangent at (1, 1) makes obtuse angle with the positive

direction of the x-axis. The slope of the tangent at (1, 1) is 

negative. From the curve equation,

f (x) 2x b

Therefore

f (1) 2 b

Now f (1)  slope of the tangent at (1, 1) 0. This

implies

b 2 0 (3.18)

Equation of the tangent at (1, 1) is

y 1 (b  2) (x  1)

Now

y x
b

b
b

0 1x
1

2

1

2

x  0 y (b 1)

Therefore

2 Area of the triangle

1

2

1

2
| |1

b
b

1

2 2

2( )1
[ . . ]

b
q  . (3 18)

Solving we get

4(b  2) (b  1)2

b2 6b  9 0

 (b 3)2  0

b  3

Answer: (C)

30. The angle of intersection of the curves y x2, 6y
7 x2 at (1, 1) is

(A)
4

(B)
2

(C)
6

(D) Tan 1(7)

Solution: Differentiating y x2 we get

dy
dx

x2

dy
dx ( , )

( )
1,

12 m (1

Differentiating 6y 7 x2 we get

dy
dx

x
3

dy
dx

m
( , )

( )
1,

2

1

3

Suppose the acute angle of intersection is . Therefore

tan

( )

m m
m m

1 2m

1 2m

1

1

2
1

3

1
2

3

7

Tan

Answer: (D)

Note: In the above problem, if the second curve is 6y
7 x3, then /2.

31. If  is the angle of intersection of the curves x2  2xy
y2  2ax 0 and 3y3  2a2 x  4a2y2 a3  0 at the 

point (a, a), then tan   is equal to

(A)
9

8
(B)

8

9

(C)
3

8
(D)

4

9

Solution: Differentiating the first equation, we get

2 2 2 2 2 0x y x
dy
dx

y
dy
dx

2y2 2y
y

dy
dx

( )x y ( )x y a

Therefore

dy
dx

a
a

m
a( ,a )

(
2

1

2
1 say)

Again, differentiating the second equation we get
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9 2 4 02 22 2y
dy
dx

a a42 dy
dx

2a

dy
dx

a( )y a 22 2a 2

Therefore

dy
dx

a

a
m

a( ,a )

2

5

2

5

2

2 2 (say)

Now

tan
m m

m m
1 2m

1 2m1

1

2

2

5

1
1

2

2

5

9

10

5

4

9

8

Answer: (A)

32. The acute angle of intersection of curves x2 y2 a2

and x y a2 2 2 2y2y  is

(A)
2

(B)
3

(C)
4

(D)
6

Solution: Suppose the two curves intersect in (x1, y1)

and let be their acute angle of intersection. Differen-

tiating x2 − y2 a2, we get

dy
dx

x
yy( ,x )1 1y

1

1

Differentiating x y a2 2 2 2y2y , we get

dy
dx

x
yy( ,x )1 1y

1

1

Therefore

tan
| |

| |

x
y

x
y

x

y
y

1

1

1

1

1
2

1
2

1 1y

1
2

1
2

1

2

Solving the given equations, we have

x
a a

1 1y
2

2 1
2

2 1y1y1
a

2d

Therefore, at the point

x
a

1
2

2 12  and y1
a

2
2 1

we have

tan
| |

2
2

2 1

1

2

2

a

Therefore /4. This angle is same, because the curves 

are symmetric about the axes.

Answer: (C)

33. The angle of intersection of the curves y  sin x and

y  cos x in the first quadrant is

(A) Tan 1 2 (B) Tan 1 1

2

(C) Tan 1 3

2
(D) Tan 1

Solution: The given curves intersect at ( / , // )//4, // 2  in 

the first quadrant. Now

y x
dy
dx

x

dy
dx

xi c
y

x os

,
4

1

2

1

2

y x
dy
dx

x

dy
dx

x s
y

x in

,
4

1

2

1

2

Therefore if is the acute angle of intersection of the 

curves, then

tan

Tan

1

2

1

2

1
1

2

4

2
2 2

2 21

Answer: (D)

34. The sub-normal at any point of the curve x2y2 2

a2(x2 a2) varies inversely as

(A) cube of the abscissa of the point

(B) square of the abscissa

(C)
3

2
th  power of abscissa

(D)
2

3
rd power of abscissa

Solution: Differentiating the given equation we get
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2 22 22 2xy x y
dy
dx

a x22 22x y2 y

dy
dx

a y
xy

2 2y

Now the sub-normal is given by

y
dy
dx

a y
x

a
a

x
x

a

2 2y

2
2 2 2

2

4

3

( )x a2x 2

| |x3

Answer: (A)

35. The tangent at any point on the curve x3 y3  2a3

cuts off lengths p and q on the coordinate axes. Then

p 3/2 q 3/2

(A) 2 1 2 21/ /1 21 2 3 23 21 2 a (B) 2 1 2 1 21/ /1 21 2 1 21 21 2 a

(C) 21 2 1 2/ /1 21 2 1 21 2a (D) 21 2 2/ /1 21 2 3 23 2a

Solution: Differentiating the curve equation, we get

dy
dx

x

y

x

y

3

3

2

2

2

2

Therefore

dy
dx

x

yy( ,x )1 1y

1
2

1
2

Equation of the tangent at (x1, y1) is

y y
x

y
y1

1
2

1
2 1( )x x1

Since (x1, y1) lies on the curve we have

x x y y x y a1
2

1
2

1
3

1
3 3a2y y2 y1
3

Therefore

p
a

x
q

a

y
q

2 2a3

1
2

3

1
2

and

So

p q a
x y

a

q

a

3 2 3 2

1
3

1
3

3 2
1
3

1
3

2
1 1

2

/ /q3 23 2 3 22 / /a3 23 2 9 22

/ /a22 9 22 ( )x yx1
3

1
3))

( )/ /

/ /

2 / (

2

3//////// 2//// 3

1//1 2/// 2//

a ((//

a

Answer: (A)

36. The acute angle of intersection of the curves 

y x| |xx2  and y x| |xx2 in the first quadrant is

(A) Tan 1 2 2

7
(B) Tan 1 2

7

(C) Tan 1 3 2
7

(D) Tan 1 4 2

7

Solution: We have

y x

x x

x x

x x

x| |xx

i

i

i

2

2

2

2

1 1xif

1 1xx if2 1

1 1xif

y x

x

x

x

x| |xx

if

if

2

2

2

2

3 33 xxif

3 3xxx2 3

3 33 xxif

if

Therefore, the two curves intersect at ( , )1, in the first 

quadrant. Now x  1 implies

y x
dy
dx x

x2

2

2
dy

1 2

and y x
dy
dx x

23 x
dy

22

2

Now, if is the acute angle of intersection of the curves 

at ( , ),1, then

tan
( )( )( )

2 2 2 2

1 (( )()(

4 2

7

Tan 1 4 2

7

Answer: (D)

Note: The two curves also intersect at ( , )1, .

37. The acute angle of intersection of the curves x2 y2

5 and y x x[| in |xx | cos |] where [ ]  is the greatest 

integer function is

(A) Tan 1 (B) Tan 12

(C) Tan 1 2 (D) Tan 1 1

2

Solution: Since 0 1|| i | and 0 || | ,1

sin x  0  cos x 1

and vice versa. Also

sin cos
4 4

1

2
cos

We have
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21 | si | | s |x | | cos

Therefore

y x x[| in |xx | cos |] 1

So, the points of intersection of the two curves are (2, 1)

and ( 2, 1). Differentiating x2 y2  4 we have

dy
dx

x
y

dy
dx ( , )1,

2

The angle made by the tangent at (2, 1) to the circle 

with the line y  1 is Tan 12. Also

dy
dx ( , )1,

2

This implies that the acute angle between the tangent to 

the circle with the line y 1 is Tan 12.

Answer: (B)

38. The tangent at any point of the curve x a cos3 , y
a sin3 meets coordinate axes in A and B. Then, the

locus of the mid-point of the segment AB is

(A) x2 y2 a2 (B) x y
a2 2

2

2
y2y

(C) x y
a2 2

2

4
y2y (D) x2 y2  2a2

Solution: Differentiating both the equations we get

dx
d

a3 2cos2 i

and
dy
d

a3 2sin2

Therefore

dy
dx

dy
d

dx
d

y
d

tan

Equation of the tangent at (a cos3 , a sin3 ) is

y a x aa sin cos )3 3x acos

x y
a a

cos i
(cos n )

sin
n2 2isin

Therefore A (a cos , 0) and B  (0, a sin ). Let 

(x1, y1) be the mid-point of AB.  Then

x
a

y1 1y
2 2

1yy1y
cos

and
ia

d
sin

So,

2 21
2

1
2

2 2x
a

y
a

2cos2 2sin

x y
a

1
2

1
2

2

4

Therefore the locus of (x1, y1) is

x y
a2 2

2

4
y2y

Answer: (C)

39. If the algebraic sum of the intercepts on the axes cut 

off by tangent to the curve x1/3 y1/3 a1/3 at (a/8, 

a/8) is 2, then the value of a is

(A) 8 (B) 4

(C) 2 (D) 4 2

Solution: Differentiating the curve equation, we get

1

3

1

3
02 3x y

3

2 dy
dx

2 3y
y/ /12 33 2 32 322 3 22y

dy
dx

y
x

2/3

Therefore

dy
dx ( /a , / )8 8/ , //a

1

Equation of the tangent at (a/8, a/8) is

y
a

x
a

8
1

8

x y
a
4

The intercepts of the tangent on the axes are a/4 and a/4.

By hypothesis,

a a
4 4

2 4aa

Answer: (B)

40. If tangents are drawn from the origin to the curve

y  sin x, then their point of contact lies on the 

curve whose equation is

(A) x2 y2  1 (B) x2 y2 1

(C)
1 1

1
2 2x y2

(D) x2 y2 x2 y2

Solution: Let the tangent at (x1, y1) to the curve pass

through (0, 0). Therefore the tangent at (x1, y1) is

y y1  cos x1(x x1)
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This passes through (0, 0) which implies

x1 cos x1 y1 0

y
x

x y1

1
1

2
1 1y211 x2
1co ss x1 1 i

y

x
1
2

1
2 1

21 (y1
2 )squaring both sides

1 1
1

1
2

1
2x y1

2

1 1
1

1
2

1
2x y1

2

Therefore (x1, y1) lies on the curve

1 1
1

2 2x y2

Answer: (C)

41. If p1 and p2 are the lengths of the perpendiculars

drawn from origin onto the tangent and normal, 

respectively, to the curve x2/3 y2/3 a2/3, then 

4 1
2

2
2p p1

2  is equal to

(A) a2 (B) 2a2

(C) a (D) 2a

Solution: Differentiating x2/3 y2/3 a2/3 we get

dy
dx

y
x

1/3

Let P(x1, y1) be a point on the curve. Then

x1
2/3 y1

2/3 a2/3 (3.19)

Therefore the equation of the tangent at (x1, y1) is

y y
y
x

y1
1

1

1

1

/311

( )x x1

x

x

y

y
x y a

1
1

1
1 1

2
1
2 2

/311 /311

/322 /32 /32y
1/31

y1
2/322

[By Eq. (3.19)]

So

p

a

x y

x y
a

a
x y a1

2

1
2

1
2

1
1

1
1

2

1 1
1

1
1 1

1 1 x y1

/322

/322 /322

/311 /311
/322

/311

/311 /311 /311

4 41
2

1
2

1
2 2p x41 y a1

/32 /32 /32 (3.20)

Equation of the normal at (x1, y1) is

y y
x
y

y1
1

1

1

1

/311

( )x x1

y y x y1
1

1
1

1
4

1
4

0
/311 /311 /3 /3

y y1
1

1
1

1
2

1
2

1
2

1
2

0
/311 /311 /32 /32 /32 /32

( )x y1
2

1
2/32 /322

( )x y1
2

1
2/32 /32

y y a1
1

1
1 2

1
2

1
2

0
/311 /311 /32 /32 /32

( )x y1
2

1
2/32 /322

Therefore

p
a

x y
a2

2
1
2

1
2

1
2

1
2

1
1
2

1
2

/322 /32 /32

/3 /3

/311 /32 /32
( )x y1

2
1
2/322 /322

( )x y1
2

1
2/322 /322

p a2
2 2a 1

2
1
2 2/322 /32 /32

( )x y1
2

1
2/322 /322

(3.21)

From Eqs. (3.20) and (3.21), we have

4 1
2

2
2 2

1
2

1
2

1
2

1
2 2

2
1
2

1
3

p p1 a x y

a x y

1
2x

1
2x2a2

/32 /32 /32 /3 /32

/32222

[ (4 1
2

1
2x4 y1

/32 /322
) ]2

((
/ /2 3 222 32

))2

2 4 2a a2 a/322 /3

Answer: (A)

Advice: The curve is parametrically represented by the

equations x a cos3 , y a sin3  so that dy/dx  tan .

Now proceed.

42. A tangent to the curve x2/3 y2/3 a2/3 meets x-axis

in A and y-axis is B. Then the point which divides the

segment AB  internally in the ratio 2:1 lies on the

curve whose equation is

(A) x
y a2

2 2a
4 9

y
(B)

x y a2 2y 2

4 1 9

y

(C)
x y a2 2y 2

4 1 9
(D) x2 y2  36a2

Solution: The parametric equations of the curve are

x a cos3 , y a sin3  so that dy/dx  at any  is −tan .

Therefore the equation of the tangent is

y a sin3 tan  (x a sin3 )

x y
a a

cos i
(si )

sin

2 2cos

Therefore

A (a cos , 0) and B (0, a sin )

Suppose P(x1, y1) divides AB in the ratio 2:1. then

x
a

y1 1y
3

2

3
y1y

cos ia2 sin

So,

9 9

4
11

2

2
1
2

2a

y

a
1
2

y
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Therefore P(x1, y1) lies on the curve x
y a2

2 2a
4 9

y

Answer: (A)

43. Tangent to the curve xy a2 at point P meets the 

x-axis in A and y-axis in B. Then the ratio AP:PB is

(A) 1:2 (B) 2:1

(C) 1:1 (D) 2:3

Solution: xy a2 is represented parametrically. So,

x at y
a
t

tat td ,y
a

y 0

Now,

dy
dx t

1
2

Therefore, the tangent at (at, a/t) is

y
a
t t

1
2

( )x atx

x t2tt y2 2at

so that

A B
a
t

B( ,a ) a d ,0,atat 0
2

Mid-point of AB at
a
t

P,

Therefore, the ratio AP:PB is 1:1.

Answer: (C)

44. Angle of intersection of the curves x3  3xy2 2 and

3x2y 2 y3  2 is

(A)
2

(B)
6

(C)
3

(D)
4

Solution: Suppose the two curves intersect in (x1, y1).

Differentiating the first curve equation, we get

3 062 23x y33 xy
dy
dx

y3

dy
dx

x y
x yy( ,x )1 1y

1
2

1
2

1 1y2
(3.22)

Differentiating the second equation, we get

6 3 032 23y x
dy
dx

y
dy
dx

3 2x
y

dy
dx

x y

x yy( ,x )1 1y

2 1 1y

1
2

1
2

(3.23)

From Eqs. (3.22) and (3.23) it follows that the product of 

slopes of the tangents to the curves at (x1, y1) is 1. Hence 

the two curves intersect orthogonally.

Answer: (A)

45. The curve y be x/a crosses the y-axis at P. The

equation of the tangent at P is

(A)
x
a

y
b
y

2 (B)
x
a

y
b

2

(C)
x
a

y
b
y

1 (D)
x
a

y
b

1

Solution: x  0 y b. Therefore P (0, b). Now

dy
dx

b
a

e x a/a

dy
dx

b
ab( , )

Equation of the tangent at P(0, b) is

y b
b

a
b ( )x

x
a

y
b

1

Answer: (C)

46. The curves y2 4ax and ay2 4x3 where a 0 inter-

sect at a point P (not the origin). If the normals toP
the curves at P meet theP x-axis in A and B, then the

distance AB is

(A) 2a (B) 3a

(C) 4a (D) 5a

Solution: It can be easily seen that the two curves

intersect in the points (0, 0), (a, 2a) and (a, − 2a). Take 

P  (a, 2a). Then

y a
dy
dx

a
y

2 4
2

ax4

dy
dx

a
aP

2

2
1

ay
dy
dx

x
ay

2 3
212

2
x3x4

dy
dx

a

aP

12

4
3

2

2

Therefore, the equations of the normals to the curves at 

P are, respectively,P

y 2a 1(x a)

and y aa2
1

3
( )x ax



268 Chapter 3   Applications of Differentiation

Therefore, A (3a, 0) and B (7a, 0). So

AB  7a  3a 4a

Answer: (C)

Note: At Q(a, 2a) also, you can see that A ( a, 0) and

B  ( 5a, 0) so that AB 4a.

47. For the curve x 3 cos cos3 , y 3 sin  sin3 , the 

equation of the normal at /4 is

(A) x y  0 (B) 2x y  0

(C) x 2y2 0 (D) x y  0

Solution: Differentiating both the given equations

w.r.t. , we get

dy
d
dx
d

3 3

3 3

2

2

i cos

i sin

Therefore

dy
dx

3 3

3 3

2

2

3

3

i cos

i sin

cos

sin

3 2s3 in

dy
dx

4

1

Now /4 implies

x yyy
3

2

1

2 2

5

2 2

5

2 2
and

Therefore the equation of the normal at
5

2 2

5

2 2
,  is

y x

x yx

5

2 2
1

5

2 2

0

Answer: (D)

48.  For the curve y a log(x2 a2) where a is positive, 

the algebraic sum of the tangent and sub-tangent at

any point on the curve is

(A)
xy
a

(B)
2xy

a

(C)
xy
a2

(D)
x y

a

Solution: y is defined for | | .a|  Differentiating the

given equation we get

dy
dx

ax

x a

2
2 2a

The tangent at (x, y) is

y
dx
dy

y a x

ax

y
ax

1
4

2

2

2 2 2x 2 2 2

2 2

( )x a( 2 2ax2

( )x a2 2a

Sub-tangent is

y
dx
dy

y
ax

( )x a2 2a
2

Therefore the sum of tangent and sub-tangent is

y
ax

xy
a

( )x
2

2

Answer: (A)

49. For the curve yn an 1 x, the sub-normal at any point

is constant. Then the value of n equals

(A) 0 (B) 1

(C) 2 (D) 1

Solution: Differentiating the given equation we get

ny
dy
dx

an ny
a1 1dy ndy
andy

Therefore

y
dy
dx

a

ny

n

n

1

2
 Constant if n 2 0

So, n  2.
Answer: (C)

50.  Let f (x) x x3 for 2 x  2. If the line y mx b
is a tangent to the curve y x x3 at the point ( 1, 

0), then (m, b) is

(A) (2, 2) (B) ( 2, 2)

(C) ( 2, 2) (D) (2, 2)

Solution: Let y x − x3. Differentiating we get

dy
dx

x

dy
dx

1 3

1 3 2

2

0( ,1 )

So, m 2. The point ( 1, 0) lies on the line. Now

y mx b  0  ( 2)( 1) b

b 2

Therefore, (m, b) ( 2, 2)

Answer: (B)
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Rate Measure

51. Each edge of a cube is expanding at the rate of 1 

cm/sec. Then, the rate of change of its volume, when 

each edge is length 5 cm, is

(A) 75 cm3/sec (B) 125 cm3/sec

(C) 25 cm3/sec (D) 175 cm3/sec

Solution: Let x be the edge of the cube. It is given that

dx/dt  1 where t is the time. Lett V be the volume of the 

cube. Then

V x
dV
dt

x
dx
dt

x3 2dV
x3

When x 5 and dx/dt  1, then

dV
dt

3 752( )5 ( )1

Answer: (A)

52. A particle moves along the curve 6y x3  2. The 

number of points on the curve at which the y-coor-

dinate is changing eight times the x-coordinate is

(A) 4 (B) 3

(C) 2 (D) 1

Solution: Differentiating the given equation we have

dy
dt

x
dx
dt

3

6

2 (3.24)

But by hypothesis

dy
dt

dx
dt

8 (3.25)

From Eqs. (3.24) and (3.25) we have

8
1

2

2dx
dt

x
dx
dt

2 16

4

Now

x 4 y 11

and x yy4
31

3

Therefore the points on the curve are (4, 11) and ( 4, 

31/3).

Answer: (C)

53. A particle moves along the curve 3y 2x3  3. If the 

rate of change of the ordinate of a point is twice the

rate of change of its abscissa, then the sum of the ordi-

nates of the points is

(A) 2 (B) 3

(C) 0 (D) 4

Solution: By hypothesis

dy
dt

dx
dt

2 (3.26)

Differentiating the curve equation, we have

3 6 2dy
dt

x
dx
dt

(3.27)

Substituing the value obtained in Eq. (3.26) in Eq. (3.27)

gives

6 6 2dx
dt

x
dx
dt

x2 1 or x 1

Now

x y1
5

3

x yy1
1

3

Therefore the sum of the ordinates is

5

3

1

3
2

Answer: (A)

54. The length and width of a rectangle are respectively

decreasing 5 cm/sec and increasing 4 cm/sec. When

the length is 8 cm and width is 6 cm, the rate of 

change of the area is

(A) 4 cm2/sec (B) 8 cm2/sec

(C) 2 cm2/sec (D) 1 cm2/sec

Solution: Let x and y be the length and width of the 

rectangle and A its area. By hypothesis

dx
dt

5 cm/se// c

and
dy
dt

4 cm sec/s

Now A xy implies

dA
dt

y
dx
dt

x
dy
dt

y

When x 8 and y  6,
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dA
dt

6 8 2( )5 ( )4

Therefore

dA
dt

2 2cm /sec

Answer: (C)

55. A spherical ball of napthlene loosing its volume at 

time t is proportional to its surface area. (The cont -

stant of proportionality is k 0.) Then the radius of 

the ball decreases at the rate of

(A)
k
2

(B)
k
3

(C)
2

3

k
(D) k

Solution: Let r be the radious of the ball, r V the volumeV
and S the surface area. Then

S r V rd2r Vr Vand2 4

3

3

It is given that

dV
dt

kS k rkS 4 2

But

dV
dt

r
dr
dt

4 2

Therefore

4 2 24k r
dV
dt

r
dr
dt

44r

dr
dt

k

Since k is negative, the radius of the ball is decreasing

constantly at the rate of k.

Answer: (D)

56. A balloon which is always spherical is being inflated

by pumping in gas at the rate of 900 cm3/sec. When 

the radius of the balloon is 15 cm, the rate of change 

of the radius is

(A)
4

cm sec/s (B)
3

cm sec/s

(C)
2

cm sec/s (D)
1

cm sec/s

Solution: Let r be the radius andr V be the volume. V
Then

V r
4

3

3

Differentiating this we get

dV
dt

r
dr
dt

4 2

Now dV/VV dt  900 and r  15. Substituting these in the 

above equation, we get

900 4

1

( )225
dr
dt

dr
dt

 cm/sec

Answer: (D)

57. A small stone is dropped into a quiet lake and the 

waves move in a circle at a rate of 3.5 cm/sec. At the

instant when the radius of circular wave is 7.5 cm/sec, 

the rate of change of the area of the nearest circle is

(A)
105

2

2cm sec/s (B) (50) cm2/sec

(C) (51) cm2/sec (D) (52) cm2/sec

Solution: Let r be the radius of the circle andr A its area.

Then

A r2

Differentiating we get

dA
dt

r
dr
dt

2

When r  15/2 we have

dA
dt

dr
dt

2
15

2

7

2
3 5

105

2

Answer: (A)

58.  A ladder of 5 m length is leaning against a wall. The

bottom of the ladder is moving on the ground away

from the edge of the wall at a rate of 2 cm/sec. When

the foot of the ladder is 4 m away from the wall, the

height of the top of the ladder on the wall decreases 

at the rate of

(A)
4

3
cm sec/s (B) 2 cm/sec

(C)
8

3
cm sec/s (D) 3 cm/sec

Solution: PQ  5 (ladder), Q being the foot of the

ladder. Let OQ x and OP y (see Fig. 3.13).
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P

O

y

x Q Floor

Wall Ladder (5)

FIGURE 3.13 Single correct choice type question 58.

Now by Pythagoras theorem,

x2 y2  52

Differentiating we get

dy
dt

x
y

dx
dt

Now x 4 y  3 and dx/dt is given to be 2 cm/sec.t
Therefore

dy
dt

4

3

8

3
( )2 /cm se// c

Hence y decreases at the rate of (8/3) cm/sec.

Answer: (C)

59. A man of height 2 m walks at a uniform speed of 5 

km/hour away from a lamp post of 6 m height. His 

shadow length increases at the rate of

(A) 2.5 km/hour (B) 2 km/hour

(C) 3 km/hour (D) 3.5 km/hour

Solution: In Fig. 3.14, AB 6 (lamp post), PQ 2 (man), 

BP x (distance from the lamp post) and PS y (length 

of the shadow). From the similar triangles property, we 

have

6

2 2

y x
y

y
x

Differentiating we have

dy
dt

dx
dt

dx
dt

1

2

5

2
5∵

A

B x y SP

Q

Man (2)

La
m

p 
po

st
 (

6)

FIGURE 3.14 Single correct choice type question 59.

Answer: (A)

60. A water tank is in the shape of a right circular cone 

with vertex down. The radius of the base is 15 feet and

height is 10 feet. Water is poured into the tank at a

constant rate of c cubic feet per second. Water leakes

out from the bottom at a constant rate of one cubic

foot per second. The value of c for which the water 

level is rising at the rate of 4 feet per second at the

time when the water level is 2 feet deep, is given by

(A) c 1  9 (B) c 1 4

(C) c  1  18 (D) c 1 36

Solution: See. Fig. 3.15. At time t, let r be the radiusr
of the water surface and h be the depth of the water

level. Let V be the volume of the water at timeV t. By the

hypothesis

dV
dt

c

But

V r h
3

2 (3.28)

From the similar triangles property

15 10 3

2r h
r h

3

Substituting this value of r in Eq. (3.28), we getr

hV
3

9

4

3

Therefore

dV
dt

h
dh
dt

9

4

2

When h 2, dh dt/dd 4  and dv d/ ,dtd 1 we get

1 36

Therefore

c 1 36

c 1  36

10

15

r

h

FIGURE 3.15 Single correct choice type question 60.

Answer: (D)

61. A particle moves along the curve y 2x3 3x2 4. If 

x-coordinate is increasing at the rate of 0.5/sec, the 

rate of charge of the y-coordinate when x  2 is
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(A) 4/sec (B) 6/sec

(C) 8/sec (D) 2/sec

Solution: Differentiating the given equation we get

dy
dt

dx
dt

( )xxx2

When x 2 and dx/dt  0.5, we get

dy
dt

( )
1

2
6

Answer: (B)

62. A plane is flying parallel to the ground at a height 

of 4 km/hour over a radar station. A short time later, 

the radar station staff announces that the distance 

between the plane and the station is 5 km. They also 

announced that the distance between the plane and

the station is increasing at a rate of 300 km/hour. At 

that moment, the rate at which the plane is moving

parallel to the ground is

(A) 300 km/hour (B) 400 km/hour

(C) 500 km/hour (D) 600 km/hour

Solution: See Fig. 3.16. Let S be the radar station. At a

time t, P is the position of the plane. Let P x be the distance

horizontal to the ground and y be the distance SP. Then

y2 42 x2

Therefore

y
dy
dt

x
dx
dt

When y 5, then x 5 4 32 24 .

When y 5 and 
dy
dt

300, we get

5 300 3300
dx
dt

dx
dt

500

S (radar station)

P (plane)x

y4

FIGURE 3.16 Single correct choice type question 62.

Answer: (C)

63. Water is pouring into a conical vessel with vertex up-

wards at the rate of 3 cubicmeters per minute. The 

radius of the base is 5 m and the height is 10 m. When 

the water level is 7 m from the base, the rate at which 

water level increases is

(A)
18

7
(B)

9

7

(C)
4

3
(D)

9

7

10

5
5

r h
h

FIGURE 3.17 Single correct choice type question 63.

Solution: Let r be the radious of the water surface and r
h its height from the base at time t (Fig. 3.17). Lett V1VV  be

the volume whole cone. Then

V1VV =
1

3
250

3

2( )5 ( )10

Let V2VV be the volume of the cone above the water sur-

face at time t. Then

V r2VV 21

3
r ( )h1010

Also we have

10

10

5

22

h r
r h10

Therefore

V
h

2VV
2

3

3

10

2 12

h10
( )h10 hh10 ( )h

Let V be the volume of the water at timeV t. Then

V V VV1 2V VVVV

3250

3 12
( )h10

Differentiating we get

dV
dt

dh
dt

3

12

2( )h10

When h 7, we have

3

4

2

dV
dt

dh
dt

( )10 710
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4
9

dh
dt

This implies

dh
dt

4

3

Answer: (C)

64. Consider Fig. 3.18. ABCD is a square. A runner

starts at C and is running towardsC D at a rate of 20

ft/sec. The rate of change of the distance of the run-

ner from the point A when he is at a distance of 60 ft 

from the point C isC

(A) 2 10 ft sff ec/st (B) 10 ft sec/s

(C)
1

2
10 ft sec/s (D)

3

2
10 ft sec/s

D

A B

C
Rx

y90 90

90

FIGURE 3.18 Single correct choice type question 64.

Solution: In Fig. 3.18 x is the distance of the runner 

from D and y is the distance between A and the runner 

at a time t. Using Pythagoras theorem for triangle ADR
we get

y2 x2 902

Differentiating we have
dy
dt

x
y

dx
dt

(3.29)

When x  90 60  30, then y 90 30 30 102 230 .

From Eq. (3.29) we have

dy
dt

30

30 10

2 10

( )20 ( )x

Answer: (A)

65. A ladder of 26 ft length is leaning against a wall. The

bottom foot of the ladder is moving away from the 

base of the wall at a rate of 3 feet per second. When 

the bottom of the ladder is 10 ft away from the wall, 

then the angle   made by the ladder with the ground 

decreases at the rate of

(A)
1

4
radian sec/nn s (B)

1

6
radian sec/nn s

(C)
1

8
radian sec/nn s (D) 1 radian/sec

B

C A
q

Wall
Ladder (26)

FIGURE 3.19 Single correct choice type question 65.

Solution: See Fig. 3.19. AB  26 (ladder), BC is wall, C
CA x is the distance of the bottom of the ladder at time

t from the base of the wall. Now,t

cos
x

26

Differentiating we get

( sin ))sin
d
dt

dx
dt

1

26

When x  10, sin
BC
AC

24

26

12

13
 and

dx
dt

3  we 

get

d
dt

26

24

1

26
3

1

8

Answer: (C)

Mean Value Theorems

66. The value of c in Rolle’s theorem for the function 

f (x) x2/3 2x1/3 for x [0, 8] is

(A)
1

2
(B) 1

(C) 2 (D)
3

2

Solution: Clearly f is continuous on [0, 8] andf

f x x( )x /x
2

3

2

3

1 3// 3//

exists for x  0. Therefore, f is differentiable in (0, 8). f
Also

f (0)  0 and f (8) 4 2(2) 0

Thus, f (0) f (8). Hence by Rolle’s theorem, f ( )c 0

for some c (0, 8). So
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f c c

c

c

c c

( )c /c

/c
/ /c

0
2

3

2

3
0

0

0

1 3// 3//

1 3/ 3//

2/ 1 3//

1 3// ( 1 311 1 0

1

/111111 ))

( )0

1

1

Answer: (B)

67. Let

f
x x

x( )x
[ , ]x

3 22 5xx2x 6

1
[x1 3

6 1xx

for x d

Then, value of c in the Rolle’s theorem for the func-

tion f (x) on [ 2, 3] is

(A) 1 (B) 2

(C)
1

2
(D) 

1

2

Solution: We have

f
x x x

( )x
[ , ]x x2 6 1x 3,

6 1xx

d

Clearly lim ( ) ( )
x

x( f( )( )
1

(( is continuous at x 1

and hence f is contf inuous on [ 2, 3]. f is also differentiaf -

ble in ( 2, 3). Further,

f ( 2) 4 2 6 0

and f (3) 9 3 6  0

Thus f( 2)  0 f(3). Hence f (c) 0 for some c ( 2, 3). 

Therefore f ( )c 0  implies

2 1 0
1

2
3c c1 01 or ( ,2 )

Answer: (D)

68.  Let f x( )x , [x , ].x [3 23 1x xx2x 1, The value 

of c in the Rolle’s theorem for f (x) is

(A) 1
1

3
6 (B) 1

1

4
6

(C) 1
2

5
6 (D)

3

2

Solution: Since f (x) is a polynomial, it is differentiable

for all x and in particular on [ ].  Also f (1) 0 

and

f ( ) ( ) ( ) ( )

( )) ( )

3( ( 1)

3) 1

2

3 2( )3( )) )3 ))) ))

( )

2 11

6 2 6 2

0

( )7 9 27 2

Thus, f f( ) ( ).f ((f (  Hence by Rolle’s theorem, 

f ( )c 0 for some c ( , ).1 2  That is

3 6 1 0

6 24

6
1

1

3
6

2c c66c6

c 1

Now

1
1

3
6 1 2

1
1

3
6

6

Answer: (A)

69. Let

f
x

x x
( )x

x

2

2

if 0 1xx

2 ix f 1

Then the value of c in Rolle’s theorem for f (x) in

(0, 2) is

(A) 1 (B)
1

2

(C)
3

2
(D) does not exist

Solution: Obviously

f ( ) 1) and f (1  0) 2 1 1

This implies f is continuous atf x  1 and hence continuous

on [0, 2]. Therefore

f
x

x
( )x

,

,

2 0x 1

1 1 2

which implies f (1) does not exists. Hence, Rolle’s theo-

rem cannot be applied.

Answer: (D)

70. Let

f
x ab

x
( )x log

( )a b

2

where 0 a b. Then value of c in Rolle’s theorem 

for f (x) on [a, b] is
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(A)
a b

2
(B) ab

(C)
a b
ab

(D)
1

2

1 1

a b

Solution: Since f (x) is a log function, it is continuous

and differentiable for all x > 0 and in particular continuous

in [a, b] and differentiable in (a, b). Also

f
a
a

b( )a log
( )a b
( )a b

log (f )log

Therefore, Rolle’s theorem is applicable. Now

f
x

x ab x
( )x

2 1x
2

x ab

x

2

2( )x ab2

Therefore, f ( )x 0 for some x (a, b) x ab.

Hence c ab  and a ab bab .

Answer: (B)

71. If Rolle’s theorem is applied for f (x)  (x  2) log x
on the interval [1, 2], then one of the following equa-

tions has solution in (1, 2).

(A) (x 2) log x  2 (B) (x  2) log x x

(C) (x 2) log x  2 x (D) x log x  2 x

Solution: Since f is continuous on [1, 2] and differen-

tiable in (1, 2) and f(1)  0 f(2), by Rolle’s theorem f (1)

0 for some x (1, 2). That is

log x
x

x
2

0

Hence x log x 2 x has a solution in (1, 2).

Answer: (D)

72. The number of values of c in Rolle’s theorem for 

f (x) (x 1) (x 2)2, 1 x  2 is

(A) 2 (B) 1

(C) 0 (D) not applicable

Solution: Clearly f is continuous on [1, 2] and differf -

entiable in (1, 2). Further f (1)  0 f (2). Therefore, by 

Rolle’s theorem,

f ( )x ( )x ( )x ( )x2) )(x 02

for some x (1, 2). That is

(x 2) (3x  4)  0

Therefore c  2, 4/3. Since c (1, 2), we have c  4/3.

Answer: (B)

73. In [0, 1], Lagrange’s mean value theorem is not ap-

plied to

(A) f

x x

x x

( )x

x x
1

2

1

2

1

2

1

2

2

if

if

(B) f
x

x
x

( )x
sin

,

,

0

1 0x,

(C) f x( )x | |x
(D) f ( )x | |x

Solution:

(A) Clearly f is continuous on [0, 1]. Nowf

f
x

x x
( )x

1
1

2

2
1

2

1

2

fo

for

Clearly

ff
1

2

1

2
0 0

That is, f is not differentiable at 1/2 f (0, 1). There-

fore Lagrange’s mean value theorem is not appli-
cable to f (x) on [0, 1]. Hence (A) is correct.

(B) We have

lim
sin

( )
x

x
x

f
0

(1 f

This implies f is continuous on [0, 1]. Also (sinf x)/x//
is differentiable for all x 0 and hence Lagrange’s

mean value theorem is applicable.

(C) We have f x( )x ( )xx ( x2  is continuous on [0, 1]

and differentiable on (0, 1). Hence Lagrange’s mean

value theorem is applicable.

(D) We have f x( )x | |x| |x ( )x| x  and hence

Lagrange’s mean value is applicable.

Answer: (A)

74. Let f : [0, 4]  be a differentiable function. Then

there exist real numbers a, b belonging to (0, 4) such

that

[ ( )] [ ( )] ( ) ( )( )] [ kf f)0()] [2 2[ ( )][ 0([ )]0([

where k is

(A) 4 (B) 8

(C)
1

12
(D) 2

Solution: By Lagrange’s mean value theorem, there 

exists a (0, 4) such that
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f f
f

( ) ( )
( )a

f (

4 0

Therefore

f f f( ) ( ) ( )af ( 4)f ( (3.30)

Since [f[[ (4) f (0)]/2 lies between f (0) and f (4), by the

Intermediate value property of a continuous functions 

(Theorem 1.32, Chapter 1), there exists b (0, 4) such 

that

f f
f

( ) ( )
( )b

f (

2

f (4) f (0)  2f2 (b) (3.31)

From Eqs. (3.30) and (3.31), we have

[ ( )] [ ( )] ( ) ( )( )] [ f ( f (0()] [ 82 2[ ( )][ 0([ )]0([

So, the value of k is 8.

Answer: (B)

75. Let a, b, c be real numbers and a b c. f is continuf -

ous on [a, c] and differentiale in (a, c). If f ( )x is

strictly increasing, then (c b) f (a) (b a) f (c) is

(A) greater than (c a) f (b)

(B) less than (c a) f (b)

(C) equal to (c a) f (b)

(D) greater than 2(c a) f (b)

Solution: Using Lagrange’s mean value theorem for f
on [a, b] and [b, c], we have

f f
b a

f
( )b ( )a

( )u

and
f f

c b
f

( )c ( )b
( )v

for some u (a, b) and v (b, c). Since a u b v c
and f ( )x  is strictly increasing, we have that

f f
b a

f

f

f f
c b

( )b ( )a
( )u

( )v

( )c ( )b

Therefore ( )

(c b)[f[[ (b) f (a)]  (b a)[f[[ (c) f (b)]

(c b) f(a)  (b a) f(c)  (c b b a) f(b) (c a) f(b)

Answer: (A)

76. Let f be continuous on [0, 2], differentiable in (0, f
2) and f (0) 0, f (1) 1 and f (2) 1. Then for

some x (0, 2), f ( )x  is equal to

(A)
3

4
(B)

4

3

(C)
5

3
(D)

1

7

Solution: Using Lagrange’s mean value theorem for f 
on [0, 2], there exists x0 (0, 2) such that

f
f f

( )x
( ) ( )

0

f (

2 0

1 0

2

1

2

Now, using Rolle’s theorem for f on [1, 2], there exists f
y0 (1, 2) such that f ( )y .0 0  Observe that,

f f( )y ( )x0 0f) (x0
1

7

1

2

Hence, by Intermediate value theorem for derivative

(Darboux theorem, Theorem 3.10), there exists x1 lying

between x0 and y0 and hence in (0, 2) such that

f ( )x1

1

7

Answer: (D)

77. f is twice differentiable function on [f a, b] such that 

f (a) f (b)  0 and f (x) 0 for all x (a, b). Then

(A) f x b( )x ( ,a )0

(B) f x b( )x ( ,a )0

(C) f ( )x0 0  for some x0 (a, b)

(D) f ( )x0 0  for some x0 (a, b)

Solution: Using Rolle’s theorem for f on [f a, b], there 

exists c (a, b) such that f ( )c .0  Now, using Lagrange’s 

mean value theorem for f on the intervals [f a, c] and [c, b], 

there exists c1 (a, c) and c2 (c, b) such that

f f
c a

f
( )c ( )a

( )c1

and
f f

b c
f

( )b ( )c
( )c2

Now, use Lagrange’s mean value theorem for f on the 

interval [c1, c2] so that there exists x0 (c1, c2) such that

f f
c c

f

f
f f

c c

c

( )c ( )c
( )x

( )x
( )c ( )c

2 1f) (c

2 1c 0

0
2 1f) (c

2 1c

2

1

cc
f

b c
f
c a

a b
1

0

b

0

( )c ( )c
[ (f ) (ff ) ]0

( )[ ]f 0ff ( )c( )c

Answer: (C)
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78. Consider the following two statements:

P: Suppose f :� � is a differentiable function

such that f f x( )x ( )x �  and f (x0)  0 for

some x0 �.  Then f (x)  0 for all x x0.

Q: If f is continuous on [f a, b], differentiable in (a, b)

and f ( )x 0 for all x in (a, b), then for at most one
value of x, f (x) is zero.

Then,

(A) both P and Q are true

(B) both P and Q are not true

(C) P is true whereas Q is not true

(D) Q is true, but P is not true

Solution: Statement P is true. Define h(x) e x f (x) for

x �. Clearly h is differentiable and

h e x xxx( )x [ (f ) (f )] 0 �

Therefore h is increasing in � (see Theorem 3.6). So, 

x x0 implies

h h e fx( )x ( )x ( )xh )x0 0e f) (x) 0 (given)

h h x xx ( ) ( )x 0 0f

f (x) 0 for x x0

Thus P is true.

Statement Q is true: Suppose f has two different zeros f
say a b. Hence by using Rolle’s theorem for f on f
[ , ], there exists some x0 in ( , ) such that f ( )x .0 0

But by hypothesis f x b( )x ( ,a ).  Hence f cannotf
have more than one zero (if it has). Thus Q is also true.

Answer: (A)

79. Consider the following two statements:

P1: Let f andf g be continuous on [g a, b] and differen-

tiable in (a, b). There exists c (a, b) such that

f b a g b a( )c [ (g ) (g )] ( )c [ (f ) (f )]

P2: If f is continuous on [f a, b], differentiable in (a, b)

and f (a) f (b)  0, then for any real , the equation

f f( )x ( )xf 0 has at least one solution in (a, b).

Then,

(A) both P1 and P2 are false

(B) P1 is true, but P2 is false

(C) both P1 and P2 are true

(D) P1 is false whereas P2 is true

Solution: P1 is true. Define

( ) ( )[ ( ) ( )] ( )[ ( ) ( )]f) )[ b) a g)] )[ b) a( (f )[ b) ( (g )[ b)

Clearly is continuous on [a, b] and differentiable in 

(a, b). Further

( ) ( )[ ( ) ( )] ( )[ ( ) ( )]f) )[ b) a g)] )[ b) a( (f )[ b) ( (g )[ b)

f a f a b( ) ( )g b ( ) (b g ) ( )

Hence, by Rolle’s theorem, there is c (a, b) such that

( ) .0 Hence

f b a g b a( )c [ (g ) (g )] ( )c [ (f ) (f )] 0

Thus P1 is true.

P2 is true. Define ( ) ( )e) f (x so that (x) satisfies all

the conditions of Rolle’s theorem. Hence, there exists c
(a, b) such that ( ) .0  That is

e c ccc[ (f ) (ff )]c(ff )] 0

Hence

f f c( )c ( )c ( )c(f cc0 ( e c

Thus, the equation f f( )x ( )xf 0  has a solution in 

(a, b).

Answer: (C)

80. If f is continuous on [f a, b] and differentiable in (a, b)

(ab  0), then there exists c (a, b) such that

f f
b

( )b ( )a
( / ) ( / )ab/

(A) c f2 ( )c (B) cf ( )c

(C) cf ( )c (D) c f2 ( )c

Solution: We have ab 0  0 (a, b). Define

F f
x

x
b a

( )x ,x
1 1 1

Obviously F is continuous on [1/F b, 1/a] and differentiable

in (1/b, 1/a). Hence, by Lagrange’s mean value theorem, 

there d (1/b, 1/a) such that

F
F a

a
( )d

( /a) (F / )bb
( /a) ( / )bb

a/aa) F
a//a

But

F f
d d

f
d d

( )d
1 1

1 1

2

2

Therefore

F a
a

F f
d d

f f

( /a) (F / )bb
( /a) ( / )bb

( )d

( )a

a/aa) F
a//a

1 1
2

( )((

( / ) ( / )a/ ) ( /
f

d d//a// ) (

1 1
2

Now, put 1/d c. Therefore

f f
b

c f
( )b ( )a

( / ) ( / )a
( )c

b/

2

Answer: (D)
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ALITER

Define

F( ) ( ) [ ( ) ( )]
b a

f (
x

b( a([ )b(
1 1 1

for x [a, b] and use Rolle’s theorem for F (x) on [a, b].

81. Consider the function f (x) 1 x4/5 for x [ 1, 1]. 

Then, the number of conditions of Rolle’s theorem

that are not satisfied byt f (x) is

(A) 1 (B) 2

(C) 3 (D) 0

Solution: Clearly f ( 1)  0 f (1) and f is continuousf
on [ 1, 1]. But

f x( )x /4

5

1 5//

implies that f is not differentiable at f x 0 and 0 ( 1, 1).

That is, f is not differentiable in (f 1, 1). Thus, only one 

condition is not satisfied.

Answer: (A)

82. A(1, 0) and B(e, 1) are points on the curve y loge
x. If P is a point on the curve at which the tangent P
to the curve is parallel to the chord AB, then the ab-

scissa of P isP

(A)
e 1

2
(B) e 1

(C)
e 1

2
(D)

e 1

2

Solution: Using Lagrange’s mean value theorem for

f (x)  loge x on the interval [1, e], there exists x0 (1, e)

such that

f
f f

e
( )x

( )e ( )
0

1

1 1 0

10x e0

x0 e 1

Answer: (B)

83. Let f be continuous on [f a, b] and differentiable

in (a, b). If f x b( )x [ ,a ], then there exists

(a, b) such that

f
f

( )

( )

(A)
1 1

a bb
(B)

1 1

a bb

(C)
a b
2

(D)
a b

Solution: Define

F (x) (a x) (b x) f (x)

for a x b. Since both f (x) and (a x) (b x) are con-

tinuous and differentiable on [a, b] and (a, b), it follows

that F (x) is continuous on [a, b] and differentiable in (a, 

b). Further F (a)  0 F (b). Hence by Rolle’s theorem, 

there exists (a, b) such that F ( ) .0 Now

F f f f( )x ( )b x ( )x ( )a x ( )x ( )a x ( )b x ( )x

So, F ( ) 0 implies

( )( ) ( ) ( ) ( ) ( ) ( ))( f ( ) ( f ( ) ( f)()()( ) (( ) ((

f
f a b

( )

( ) a
1 1

Answer: (B)

84. f is continuous on [0, 5] and differentiable in (0, 5). f
Further f (0)  4 and f (5) 1. If

g
f
x

( )x
( )x

1

for 0 x  5, then there exists c (0, 5) such that 

g ( )c  is equal to

(A)
4

6
(B)

4

6

(C)
5

6
(D)

5

6

Solution: We have 0 x  5 x 1  0. Obviously g
is continuous on [0, 5] and differentiable in (0, 5). Hence, 

by Lagrange’s mean value theorem there exists c (0, 5)

such that

g
g g

( )c
( ) ( )g) (

5 0

Now,

g
f

( )
( )

6

1

6

g
f

( )
( )

6

4

6

Therefore

g ( )c
( / )6// 4

5

5

6

Answer: (D)

85. Let f be continuous on [f a, b], differentiable in (a, b)

and f (a) f (b) 0. Further, suppose g is continuous g
on [a, b] and differentiable in (a, b). Then for the

function
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H f f g( )x ( )x ( )x ( )x

one of the following statements is definitely true.

(A) H(x) 0 for infinitely many x in (a, b)

(B) H (H x) 0 for infinitely many x in (a, b)

(C) H ( )x 0 for infinitely many x in (a, b)

(D) H(x)  0 for atleast one x in (a, b)

Solution: Let F (x) eg(x)f) (x) for x [a, b]. Since F (x)

satisfies the conditions of Rolle’s theorem, there exists

c [a, b] such that F ( )c .0  Therefore

e c c cg( )c [ (g ) (f ) (f )] 0

f f g g( )c ( )c ( )c ( )( g( )cc0 ( g c

Thus H(x) 0  has a solution in (a, b). 

Answer: (D)

86. On the interval [ , ]2,  one of the values of c in 

Rolle’s theorem for f (x) 2x3 x2 4x 2 is

(A)
3

5
(B)

4

5

(C)
2

3
(D)

2

3

Solution: f (x) being a polynomial function, is continu-

ous and differentiable for all real x. Also

f (x) (x2 2) (2x  1)

and f f( ) ( )

Hence by Rolle’s theorem for at least one x ( ,,
)2

f x( )x 6 2x 4 02

 3x2 x 2 0

 (3x  2) (x 1)  0

2

3
1,

Note that 2 2/ [2 32 1 , ]2 .

Answer: (C)

87. The smallest positive root of the equation tan x x
0 lies in

(A) 0
2

, (B)
2

,

(C) ,
3

2
(D)

3

2
2,

Solution: See Fig. 3.20. Let f (x)  tan x x. Clearly f (x)

is continuous at x odd multiple of /2. Therefore

FIGURE 3.20 Single correct choice type question 87.

y

y = x 0

y = tan x

xp
2

3
p
2

p

f x( )x sec ,
2 1 0 0

2
in

Hence f is strictly increasing in (0, f /2). In ( /2, ), tan x is 

negative so that f(x) tan x x  0.

We consider the interval ( , 3 /2). Now

lim ( ) li ( )
x h

)

h

x(( f (lim f (
0 0h

( )(

0

li [tan( ) ( )]
h
h

hh) (
0

0

) (h) (

lim(tan )
h

h h
0

 0

Also,

lim ( ) lim
x h

h

x( f h
3

2
0

0
0

3

2

lim tan
h

hh
0

3

2

3

2
h

3

lim cot
h

h h
0

3

2

Therefore, between and 3  /2, f changes sign. Sof f  must f
vanish in between the two values. Therefore f (x)  0 has 

solution in ( , 3 /2).

Answer: (C)

88. If a b c  0 where a, b, c are real, then the equa-

tion 3ax2 2bx c 0 has

(A) at least one root in [0, 1]

(B) one root in [2, 3] and another root in [ 2, 1]

(C) imaginary roots

(D) one root in [1, 2] and another root in ( 1, 0)

Solution: Let f (x) ax3 bx2 cx. So that f is continuf -

ous in [0, 1] and differentiable in (0, 1). Also f (0)  0 and 

f (1) a b c 0 by hypothesis. Hence, by Rolle’s theo-

rem, f ( )x 0  for some x (0, 1). But

f bx c( )x 3 2ax2

Thus, 3ax2 2bx c 0 has a root in (0, 1).

Answer: (A)
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89. The function f (x) x3 bx2 ax 5 satisfies all the

conditions of Rolle’s theorem. Further it is given 

that the value of c such that f ( )c 0 is 2 3( //11 ).
Then,

(A) a 5, b 11 (B) a  11, b 6

(C) a 11, b 6 (D) a 11, b 6

Solution: We have f (1) f (3). This implies

b a 6  9b 3a 32

a 4b 13 (3.32)

Now c 2 3( //11 )  and f ( )c 0  implies

2 12 13 3a3b( )( )2 3 11 (3.33)

Solving Eqs. (3.32) and (3.33), we have a 11, b 6.

Answer: (B)

90. lim
cos( / )

log( / )x

x
//1

//

1//

//

(A) 0   (B)   (C)
2

 (D)
4

Solution: We use Cauchy’s mean value theorem. Take

f x x( )x cos (x g ) logx(gcos x
2

with a x  0 and b  1. That is the interval is [x, 1]. By

Cauchy’s mean value theorem, there exists (x, 1) such 

that

f f
g g

f
g

( ) ( )x
( ) ( )x

( )

( )

cos cos

log log

sin
2 2 2 2

1

x

x
(3.34)

Since x  1; x 1  1. Taking limits x  1, on

both sides of Eq. (3.34), we have

lim
cos

log

lim

sin

x

x

x
l

1 1
l

2
1

2 2

1 2

lim
cos( / )

log( / )x

x
//1

//

1// 2

//

Answer: (C)

91. The number of real values of k such that the equa-

tion x3  3x k  0 has two distinct real roots in the

interval (0, 1) is

(A) 0 (B) 1 (C) 2 (D) 4

Solution: Let f(x) x3  3x k and suppose 0 k
 1 are two distinct real roots of f(x)  0. Using Rolle’s 

theorem for f(x) on the interval [ , ], there exists c ( , 

) such that f ( )c .0  That is,

3c2 3  0

c 1  ( , )

Therefore, for no real k, f (x)  0 has two distinct real

roots in (0, 1). If at all f (x) 0 has real root in (0, 1), it can

have only one real root.

Answer: (A)

92. If f (x) (1 x)5/2 satisfies the relation

f f xfx
x

f( )x ( ) ( ) ( )xf xfx (
2

2

then as x  1, the value of is

(A)
4

25
(B)

25

4
(C)

25

9
(D)

9

25

Solution: We have

f

f

( )x ( )x

( )x ( )x

/

/

5

2

15

4

3 2//

1 2//

Also

f ( ) , (f )0
5

2

and f ( )x ( )x /)x (
15

4

1 2//

Therefore

( ) ( )( ))
5

2 2

15

4

5 2////
2

1 2//) /) 2//x) 1) ///)
x

Taking limit x 1 on both sides, we get

0 1
5

2

15

8

1 21 ( )11 /1 21 2

( ) / 4

5

1 2//

1
16

25

9

25

Answer: (D)

93. Rolle’s theorem holds for the function f (x) x3

mx2 nx on the interval [1, 2] and the value of c is 

4/3. Then

(A) m  8, n 5 (B) m 5, n  8
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(C) m  5, n 8 (D) m 5, n 8

Solution: We have

f f m n( ) ( )f ( 1 8m n 4 2mf ( )f ( m 8

 3m n 7 (3.35)

mf n
4

3

4

3

4

3
0

2

8m  3n 16 (3.36)

Solving Eqs. (3.35) and (3.36), we obtain m 5, n  8.

Answer: (B)

94. Rolle’s theorem is not applicable to one of the fol-

lowing functions:

(A) f (x) x2 on [ 1, 1]

(B) f (x) x2  3x 2 on [1, 2]

(C) f (x)  tanx on [0, ]

(D) f (x) sinx on [0, ]

Solution:

(A) f (x) x2 is continuous and differentiable for all 

real x. Further f ( 1) 1 f (1). Hence, Rolle’s

theorem is applicable.

(B) We have

f x( )x ( )x ( )xx2 3 2x )(xx

f (1) 0 f (2)

Therefore, Rolle’s theorem is applicable.

(C) tan x is not defined at x /2  and hence Rolle’s 

theorem is not applicable.

(D) sin x is continuous on [0, ], differentiable in

(0, ) and sin 0  0 sin . Hence, Rolle’s theorem 

is applicable.

Answer: (C)

95. Suppose f andf g are differentiable functions on [0, 1]g
and f (0) 2, g (0) g 0, f (1)f  6, g(1) 2. Then, there 

exists c (0, 1) such that f kg( )c ( )c where the 

value of k is

(A) 2 (B)
1

2

(C)
1

3
(D) 3

Solution: Consider H(x) f (x)  2g(x) x  [0, 1].

Clearly H(x) is differentiable in [0, 1]. Also

H(0) f (0)  2g(0) 2 0  2

H(1) f (1) 2g(1) 6 2(2) 2

Therefore

H(0) H(1)

Hence by Rolle’s theorem, there exists c (0, 1) such 

that

H ( )c .0

f (c) 2 g (c) 0

f g( )c ( )c2

Thus k  2.

Answer: (A)

96. Suppose f (x) is twice differentiable for all real x.

Further suppose f ( )x 1 and f ( )x 1 for all real

x. Then f ( )x is

(A) less than or equal to 1

(B) greater than 2

(C) less than or equal to 3/2

(D) greater than 3/2

where

f f
f f

( )x ( )x
( )x ( )

)
1 2

( )

and f f
f f

( )x ( )x
( )x ( )

)
1 2

( )

for some and .

Solution: By hypothesis

f f f( )x ( )x ( )x [ (f ) (f )])f) x) 2
1

2
)

Therefore

2
1

2
f f f( )x ( )1x ( )1x ( (f ) ( ))f x ) (f

f f f( )x ( )x ( ) ( )f)
1

2
f) (

f f f( )x ( )x ( ) ( )f)
1

2
f) (

1 1
1

2
3( )1 1

Therefore f ( )x / .3//

Answer: (C)

97. Let f be a twice differentiable function for all real f x, 

f (1)  1, f (2) 4 and f (3) 9. Then which one of the

following statements is definitely true?

(A) f f( )x ( )x 5  for some x (1, 3).

(B) f ( )x 2 for all x (1, 3).



282 Chapter 3   Applications of Differentiation

(C) f ( )x 3 for all x (1, 3).

(D) f ( )x  attains the value 2 for some x (1, 3).

Solution: Consider the function

g(x) f (x) x2  for x [1, 3]

so that g(1) g(2) g(3) 0. Therefore, by Rolle’s theo-

rem, g ( ) 0 for some (1, 2) and g ( )) 0 for

some (2, 3). That is f ( )) 2 and f ( )) where

1 2  3. Now, using Rolle’s theorem for

h f x( )x ( )x 2 on the interval [ , ], there exists 

x0 ( , ) such that h ( )x .0 0 That is

f ( )x0 2

Answer: (D)

98. Suppose f is differentiable on f �, ( )0 0) and 

1 2f ( )x  for all x �.  Then

(A) x f (x) 2x for all x  0

(B) 2x f (x)  3x for all x  0

(C) 3x f (x)  4x for all x  0

(D) 4x f (x) 5x  for all x  0

Solution: Let x  0. Using Lagrange’s mean value theo-

rem on [0, x], there exists x0 (0, x) such that

f f
x

f
( )x ( )

( )x
0

0

f xf( )x ( )x0 (3.37)

So

1 2 20f xfx x( )x ( )0x

x f (x) 2x [By Eq. (3.37)]

This is true for all x 0. When x 0, we have f (x)  0. 

Thus, the equatity holds. Hence x f (x)  2x x  0.

Answer: (A)

99. Value of c in the Lagrange’s mean value theorem for 

the function

f x
x

( )x ,x
1 1

2
2on

is

(A)
3

4
(B)

3

2

(C) 1 (D)
5

8

Solution: f (x) x  (1/x// ) is continuous and differen-

tiable for all real x  0. Hence by Lagrange’s mean value

theorem, there exists c (1/2, 2) such that

f
f f

( )c
( ) ( / )

( / )

f ( //2//

2 ( //2//

1
1 2 5

3 2
0

2c

( /5 25 2) ( / )5 25 2

/22

Therefore c 1. But 1 (1/2, 2). Therefore c 1.

Answer: (C)

100. Let f (x)  3x4 4x2  5. Then a value of c in

Lagrange’s mean value theorem for f (x) on the in-

terval [ 1, 1] is

(A)
1

2
(B)

1

2

(C)
2

3
(D)

2

3

Solution: We have f c c( )c .12 83 Now since the

function satisfies Langrange’s mean value theorem, we

have

12 8
1

03c c83 ff
c8

( )1 ( )1

( )1

( ) 02

0,
2

3

So, c = 2 3/22  is one of the values.

Answer: (C)

Monotoncity; Maxima and Minima

101.The function f xx( )x logx2 2  is

(A) decreasing in
1

2
,

(B) decreasing in 0 1
2

,

(C) increasing in 0 1
2

,

(D) increasing in ,
1

2

Solution: The function f xx( )x logx2 2  is defined

for all x ≠ 0. Differentiating we get
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f x
x

x
x

x

x

( )x

( )x ( )x

4
1

4 1x

x x

2

2

Now

f x x( )x x0
1

2
0

1

2
either

Therefore, f increases in f
1

2
0

1

2
, ,0

2
.

Again

f x x( )x x0
1

2
0

1

2
ei er orth

Therefore, f is decreasing in f ,, .
1

2
0

1

2

Thus, (B) is correct.

Answer: (B)

102. If

f
x

x
g

x
x

( )x
sin

( )x( )x
tan

g )xand

where 0 x 1, then in this interval

(A) both f (x) and g (x) are increasing functions

(B) both f (x) and g (x) are decreasing functions

(C) f (x) is an increasing function

(D) g (x) is an increasing function

Solution: We have

f
x

x
( )x

sin
,, 0 1x

Differentiating we get

f
x

x
( )x

sin cx x os

sin2

Since sin2 x  0, we have to determine the sign of sin x
x cos x. Now, let

F (x) sinxnn x cosx

so that

F x x x( )x cos cx os in sx x in 0

for 0 x 1. Therefore F (x) is increasing so that

0 x F (0) F (x) 

0  sinxnn  x cosx

Therefore

f
x

x
( )x

sin cx x os

sin2
0

for 0 x 1. So f is increasing in (0, 1]. Nowf

g
x

x

g
x

x

( )x
tan

( )x
tan sx x ec

tan

2

2

Let H(x)  tanxnn x sec2x2 . Then

H x x x( )x sec sx sec tx an2 2sx ec 2

2

2

2 0x xsec tx an2

for 0 x 1. Therefore H(x) is decreasing in (0, 1]. Now

0 x H (0) H (x) 

0 tan x x sec2x2

Hence, g (x)  0 in (0, 1] so that g is decreasing. So, (C) isg
correct.

Answer: (C)

103. Let f (x)  cosx 1 (x2 2). Then

(A) f is increasing onf

(B) f is decreasing onf

(C) f increases in (f , 0] and decreases in [0, )

(D) f decreases in (f , 0] and increases in [0, )

Solution: We have

f (x)  sinxnn x

and f (x)  1  cosx 0

for all real x. Therefore f (x) is increasing for all real x. So,

x 0 f (x) f (0)  0

So, for x  0, f (x) 0 f is decreasing for f x 0. Also

x 0 f (x) f (0)  0

Therefore, for x 0, fff (x)  0 f is increasing for f x 0.

Answer: (D)

104. Suppose f (x) is a real-valued differentiable func-

tion such that f (x) f (x)  0 for all real x. Then

(A) f (x) is an increasing function

(B) f x)x  is an increasing function

(C) f (x) is a decreasing function

(D) f x)x is a decreasing function

Solution: Let g(x)  (f(( (x))2 so that g (x) 2 f (x) f (x)

 0 for all real x. Hence, g(x) is decreasing so that f x)x
is decreasing.

Answer: (D)
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105. Consider the following two statements.

I: If f (x) and g (x) are continuous and monotonic 

functions on the real line �, then f (x) g (x) is 

also a monotonic function.

II: If f (x) is a continuous decreasing function for all

x  0 and f (1) is positive, then f (x) 0 exactly at

one value of x.

Then

(A) both I and II are true

(B) both I and II are false

(C) I is true and II is false

(D) I is false and II is true

Solution:

I: Consider f (x) x sinxnn and g(x) x. Since

ff (x) 1  cosx 0

and g (x) 1  0

we have that f is increasing and f g is strictly decreasing.g
But f (x) g (x) sin x is neither increasing nor decreas-

ing for x 0. Observe that the monotonicity nature of 

sin x can be decided on an interval only. Thus (I) is

false.

II: Consider the function

f
x

x( ) , x,
1

0

so that

f f
x

( ) ( )x
1

0
2

Hence f is continuous and decreasing forf x  0. But

f (x)  0 for all x 0. Thus (II) is false.

Answer: (B)

106. Consider the following two statements.

P: If f is differentiable and strictly increasing onf �,
then ff (x)  0 for all x �.

Q: If f (x) and g(x) are not monotonic functions on 

�, then f (x) g(x) is also not monotonic on �.
Then

(A) both P and Q are false

(B) P is false and Q is true

(C) P is true whereas Q is false

(D) both P and Q are true

Solution: P is false: Consider f x( )x , .xx xx3 �  Then

ff (x)  3x2  0 for x 0

Thus f is strictly increasing on f � and ff (0)  0.

Q is also false: Let f (x) x2 x and g(x) x x2 so that f
and g are not monotonic ong �. But the sum f (x) 

g(x) 2x is monotonic on �.

Note: ff (x) 2x 1 0 for x 1 2 and greater than zero 

for x 1 2. Thus, f is decreasing in (f , 1 2) and

increasing in ( 1 2, ). Similarly, g (x)  1  2x g is g
decreasing for x 1/2 and increasing for x  1/2.

Answer: (A)

107. Consider the following two propositions P
1

and P
2

P .

P1: If f and f g are increasing functions on [g a, b], then 

f g is also increasing on g a, b .

P2: If f(x) x and g (g x)  1 x are defined on 0, 1 , 

then the product fg is increasing on g 0, 1 .

Then

(A) both P
1
 and P

2
are true

(B) P
1
 is true, but P

2
is false

(C) P
1
 is false whereas P

2
is true

(D) both P
1

and P
2
 are false

Solution: P1 is true: Let x
1
, x

2
a, b  and x

1
x

2
. Now

( )( ) ( ) ( )

( ) ( )

f) g)

f ( g( f g

)( )

)f (

1 1) (f)) 1

2 2) (g() (  are increasing))

( )( )2

Therefore, f  g is increasing.g

P2 is false: We have

(fg(( )(x) f (x)g(x) x x2

Differentiating we get

( ) ( )
/

/

x

x

x

x

1 2 0 1//x 2//

1 2 0 1//x 2//

Thus, fg decreases for x 1 2 and increases for x  1 2.

That is, in [0, 1/2], fg is increasing and in [1/2, 1], g fg is g
decreasing. Thus P

2
 is not true.

Answer: (B)

108. The function f (x) xe 3x

(A) increases on �
(B) decreases on �
(C) increases in ( , 1/3)

(D) decreases in ( , 1/3)

Solution: Differentiating the given function we have

ff (x) e 3x x( 3)e 3x e 3x(1 3x) 

We know that e 3x  0 for all real x. Therefore

ff (x) 0 1 3x 0

1

3

So ff (x)  0 for all x  1 3 and hence f increases in f
( , 1 3) and decreases in (1/3, ).

Answer: (C)
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109. In [0, 1], f is twice differentiable andf ff (x)  0. Let

(x) f (f x) f (1 x) 

for x [0, 1]. Then

(A) is increasing on [0, 1]

(B) is decreasing on [0, 1]

(C) increases on [1/2, 1]

(D) decreases on [1/2, 1]

Solution: Differentiating the given function we have

( ) ( ) ( )f) f)

ff (x) 0 for x [0, 1] ff (x) is decreasing in [0, 1]. There-

fore

x x x1
1

2

so that for 0 x  1 2, we have 

( ) ( ) ( )f) f) 0)

Therefore is increasing in [0, 1/2]. Again

x  1 x x  1 2

Therefore ( f  is decreasing)

f f x( )x ( )x 0)x
1

2
1for

So ( ) 0  in [1/2, 1]. is decreasing in [1/2, 1].

Answer: (D)

110. If f (x)  (m  2)x3 3mx2 9mx 1 decreases on ,

then m belongs to

(A) ( , 3)  (0, ) (B) ( , 3]

(C) ( , 0]  (0, 3] (D) [ 1, 0] (0, 1]

Solution: Differentiating the given function we get

f x m( )x ( )

[( ) ]x m

3(m 6 9mx

3 2m[( mx

2

2

Since f is decreasing on f , we have f x( )x .0

Therefore

( )x) mx xx2))x) 3 0mm2

So,

4m2 12m(m  2)  0 and m 2  0

m2  3m(m 2) 0 and m  2

2m(m 3)  0 and m 2

m(m 3)  0 and m 2

m  3 or m  0 and m  2

m 3 or m  0

But, when m 3 or m 0, f (x) is not decreasing for all 

x  (check this point). Therefore

m  3 or m  0

So, m ( , 3)  (0, ).

Answer: (A)

111. Let f be differentiable on f and

h(x) f (x)  [f [[ (x)]2 [f [[ (x)]3

Then

(A) h is increasing whenever f is increasingf

(B) h is increasing whenever f is decreasingf

(C) h is decreasing whenever f is decreasing orf
increasing

(D) h is decreasing whenever f is increasingf

Solution: Differentiating the given function we get

h f f f f f

f x x

( )x ( )x ( )x ( )x ( )x ( )x

( )x [ (f ) (f ) ]

2 3f f)x )x

xf )

2

2

fff
f

( )x
( )x

3

1

3

2

9

2

Therefore

h f( )x ( )x( ) 00 f )x

So h is increasing whenever f is increasing.f

Answer: (A)

112. The function f (x) sin4 x  cos4 x increases if

(A) 0
8

x (B)
4

3

8
x

(C) 3

8

5

8

5
x (D) 5

8

3

4

3
x

Solution: We have

f x

x x x

x

( )x si cx

(sin cx ) sin cos

sin

sin x

(sin x

4 4cosx
2 2cosx 2 2sin 2

21
1

2
2

Differentiating we get

f x x

x

x

( )x ( si )(cos )( )

sin cx os

sin

1

2
2sin 2 2x)(

2 2sin 2

4

Now sin 4x  0, if sin4x  0. But sin 4x 0, if 4x
3 2 or 3 2 4x 2 . Therefore

sin ,4 0
4

3

8

3

8 2
x, x0, if or

3

So (B) is the correct answer.

Answer: (B)
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113. If f is a real-valued function defined onf �  such 

that

f ex( )x ( )x ( )x)(x

then f decreases in the intervalf

(A) ( , 2) (B) ( 2, 1)

(C) (1, 2) (D) (2, )
Solution: We have to determine the values of x for

which f ( )x .0  Observe that ex 0 �. Therefore

f ( )x ( )( )x0 (x 0)

1 x 2

Hence, (C) is the correct answer.

Answer: (C)

114. For all x  (0, 1)

(A) ex  1 x (B) loge(1 x) x

(C) sinx x (D) loge x x

Solution:

(A) Let f
1

ff (x) ex 1 x. Then

f e xx
1ff 1 0 0e x0( )x f

So f
1

ff (x) increases in (0, 1). Therefore

0 x f
1

ff (0) f
1

ff (x)

0 f
1

ff (x) ex (1 x)

 ex  1 x

So (A) is not the correct answer.

(B) Let f
2

ff (x) loge(1 x) x. Then

f
x

x
x2ff

1

1
1

1
0 0x1 x0( )x f

So f
2

ff (x) is decreasing for x  0. Therefore

0 x f
2

ff (0) f
2

ff (x)

0 f
2

ff (x)  loge (1 x) x

loge (1 x) x for x 0

So (B) is the correct answer.

(C) Let f
3 

ff (x) sinx x. Then

f x3ff 1 0x( )x cos fx 1 0x 0

So f
3 

ff (x) is decreasing for x  0. Therefore

x  0 f
3 

ff (x) f
3 

ff (0) 0

 sinx x

Hence (C) is not the correct answer

(D) Let f
4

ff (x) loge x x. Then

f
x

x
x4ff

1
1

1
00( )x ( )x0 10

Therefore f
4

ff (x) is increasing in (0, 1). So,

0 1
0 00

x 1
x

eli l g

so that

lim ( )
x

x(
0 0

4

So f
4

ff (x) 0 in (0, 1). This implies loge x x in (0, 1). 

Hence (D) is not the correct answer.

Answer: (B)

115. If f (x) x ex(1 x), then f (x) is

(A) increasing in [−1/2, 1]

(B) decreasing in [−1/2, 1]

(C) increasing in �
(D) decreasing in �

Solution: Differentiating the given function we get

f e x e

e

e x

x

x

x

( )x ( )x

[ ]x x

[

( ) ( )x

( )

( )

x ex)x (

2[ x)x

2x[)x

xx

x

ex

1]

( )x2 1x ( )x 1( )x1

Now

f ( )x ( )x ( )x

,

0 ( )( 0

1

2
1

So f increases in [f 1/2, 1] and decreases in ( , 1 2)

(1, ). Thus (A) is correct.

Note: If f (x) xex(x  1), then f ex( )x ( x x( )x 2() x xx
x) 0 � and hence f (x) increases in �.

Answer: (A)

116. If f (x) is a function whose derivative is

e e x(x ( )x ( )x
2 2) 4

e xe)xx (

then f (x) increases in

(A) (1, 2) (B) no value of x

(C) (0, ) (D) ( , 0)

Solution: Given that

f e

e

x

x

( )x ( )x ( )e

( )x ( )e xe(

e x)x (e xe

e)x (( )x

4 2

2 2) 2

1xxx2x

2e
2) 1

Since ex  1, for x 0, we have 1 02 12

 for all x.

Therefore f (x)  0, only when x 0. So f (x) increases in

( , 0).

Answer: (D)

117. The function f (x) 2 log(x  2) x2 4x 1
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(A) increases in (2, 3)

(B) decreases in (2, 3)

(C) increases in (3, )

(D) cannot be determined

Solution: Note that f (x) is defined for x > 2. Now

f
x

x

x

( )x

( )x

2

2
2 4

2

2
2(x

2 2

2

2

2

2

2

2

[ (1 ) ]2

( )1 2 ( )1 2

( )2
( )1 ( )2 ( )3

x
x

)2 (1

x

)1 (

Therefore, ff (x) 0 for x 1 or 2 x  3. But

x 2 ff (x) 0 for x  (2, 3)

So f increases in (2, 3). Thus, (A) is the correct answer.f

Answer: (A)

118. The set of all values of the parameter a for each of 

which the function

f (x)  sin 2x 8(a 1) sin x (4a2 8a  14)x

increases for all x and has no critical points is

(A) ( , ) ( , )( ,2 5 5

(B) ( , ) ( , )) 55) ()

(C) ( , ) ( , )0 0) (

(D) ( , ) ( , )5, (

Solution: Differentiating the given function we get

f x a

a x a a

( )x cos (x )cos

s ( )cos

2cos 1a( 4 8a 14

4 cos x x 8

2

2 2a a( )x 41) 16

4 [(cos x (a 1)2  5]  0

ith s ( )a( 51)

or cos ( )a((a( 51)

for all x . That is

cos x a xa 1 5 for all real

or cos ( )a((a( 51)  for all x

But 1  cos x 1 for all real x. Therefore,

either 1 1 5 1 1 5a1a 1 55

So

5 2 55 a2 55

Hence a ( , ) ( , ).2 5 5

Answer: (A)

119. Consider the function

f
x e x

x ax x x

ax

( )x
ax

for

for

0

02 3x

where a  0 is constant. Then f x)x  is

(A) increasing in 
2

3a
a

,

(B) increasing in 
a
3

,

(C) decreasing in
2

3a
a

,

(D) increasing in ,
2

a

Solution: Differentiating the given function we have

f
x

ax
( )x

( )axeax f) or

f

0

1 2 3 0xx for2

f
ae a x e x

a x x

ax ax

( )x
02ae a x e xax ax

2 6a 0

2 f

fo

We determine the values of x for which f x)x .0

(i) f x
a

xx x( )xx x0
2

0at when

(ii) f x
a

x( )x x0
3

0at when

Also, when x 0, 

f ae x
a

ax( )x ( )aeax ( x0)ax
2

if

When x 0,

f x x
a

( )x x2 6aa 0
3

if

Therefore ff (x)  0 if 2 a x a 3. Hence ff (x) increases 

in ( 2 a, a 3).

Answer: (A)

120. The function f (x)  3cos4 x  10cos3 x 6cos2 x 3, 

0 x is

(A) increasing in 0
2

,

(B) increasing in
2

2

3
,

(C) decreasing in
2

2

3
,
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(D) neither increasing nor decreasing in [0, ]

Solution: Differentiating the given function we get

f ( )x cos (x sin )x

cos (x sin )x cos (x sin )x

12

30 12

3

2

3sin 2x (2cos2 x  5 cos x 2)

3sin 2x (2cos x  1)(cos x  2)

Observe that cos [ , ].0  Therefore

f x( )x in (x s )x0 sin 2cos x 0 0f

(i) When 0 x ,

sin 2 0
2

xx 00 x

and 2 1 0
1

2

2

3

cos 00111 cos xcos

x

(ii) We have

sin 2 0 0
2

x0x 00 x

and cos x x
1

2

2

3

From (i) and (ii) we have sin ( cos )2( 0)( cos2( x) for

, .
2

2

3

2

Therefore f x( )x , .0
2

2

3
fo

2

This implies f is increasing inf
2

2

3
, .

Answer: (B)

121. Let f
x

( )x
for 0 2xx

1 0xfor

Then at x 0, f hasf

(A) a local maximum

(B) no local maximum

(C) a local minimum

(D) no extremum

Solution: We have

f

x

x

( )x

x for

for

2 0xx

1 0xfor

0 2xx

FIGURE 3.21 Single correct choice type question 121.

1

(−2, 2)

−2

(2, 2)y

2 x

See Fig. 3.21. Clearly f is discontinuous at f x  0. But this 

cannot disturb the local extremity of the function. Clearly

in a neighbourhood of zero,

f x f( )x ( )x f (

Hence f has local maximum at f x  0.

Note: This question is purely based on the concept.

Answer: (A)

122. If f a x bx x( )x l g | |a xlog | | 2  has its extremum val-

ues at x  1 and x  2, then

(A) a bb
1

2
, (B) a bb

1

2
2,

(C) a bb
1

2
, (D) a b

1

2
,

Solution: f (x) is defined for all x ≠ 0. Now

f
a
x

bx( )x 2 1bx

Since x 1 and x 2 are critical points, we have

f a b( ) 2 1b 0 (3.38)

and f
a

b( ) 0)
2

4 1b 0 (3.39)

Solving Eqs. (3.38) and (3.39), we get

a bb
1

2
,

Answer: (C)

123. Let P a a x a x a xn
n( )x a a x0 1a 2

2
4 2a x be a polyno-

mial in real variable x with 0 0 1 2a a00 a a22 n.

The function P(x) has

(A) neither maximum nor minimum

(B) only one maximum

(C) only one minimum

(D) only one maximum and only one minimum

Solution: Differentiating the given function we get

P a a x a xn
n( )x ( )n2 41 2x a4 3 2a x( )n 1

Since all the powers of x are odd and coefficients are posi-

tive, P (x) 0 for all real x 0 and P (0) 0. Thus x  0 is

the only critical point. Further,
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P a0 2 01

Hence P(x) has only one minimum at x  0.

Answer: (C)

124. On the interval [0, 1], the function x25 (1 x) 75 takes 

its maximum value at the point

(A) 0 (B) 1/4 (C) 1/2 (D) 1/3

Solution: Let f (x) = x25 (1 x) 75. Differentiating we get

f x

x x

x

( )x ( ) ( )x

( )x [ ( ) ]x

25 7)x 5x (

)x [ 1(

24 75 25 74

24 74

244 744 474( )1 ( )25 10074) (25 10025

Also 0 x 1 and f (x) 0 x 1 4.

Now

x f
1

4
0( )x

and x f
1

4
0( )x

That is f (x) changes sign from positive to negative (see

the testing procedure given in Sec. 3.4.1). Therefore, f (x)

has maximum at x 1 4.

Note that f (0) f (1)  0.

Answer: (B)

125. The minimum value of

f (x) x8 x6 x4 2x3 x2 2x  9

on the real number set  is

(A) 1 (B) 5 (C) 0  (D) 3

Solution: The given function can be written as

f ( )x ( )x ( )x ( )x ( )x(x (x4 2) 3 2) 2 2) 2((x2) ((x2) 5 5

for all real x and equality holds if and only if x  1. There-

fore, the minimum value of f is 5 and it attains its minif -

mum value at x  1.

Answer: (B)

126. The minimum value of

Z 2x2 2xy y2 2x 2y2 2

is

(A) 2 (B) 2  (C) 3 (D) 3

Solution: The given function can be written as

Z x y( )x yx ( )x) x 3 32 2( )(x

and equality holds when x  2, y 3. Therefore, the min-

imum value of Z isZ 3.

Answer: (D)

127. The value of “a” such that the sum of the squares of 

the roots of the equation

x2  (a  2) x a 1  0

assumes least value is

(A) 0 (B) 1 (C) 1 (D) 2

Solution: Let , be the roots. Therefore

 a  2, (a 1) 

Let

Z

aa

2 2

2

2

2

2

22

2 6a

( )

( )aa 2 ( )aa 1

Then

dZ
da

a a0 2 2 0 1

Also

d Z

da

2

2
2 02

Thus Z is minimum at Z a 1.

Answer: (C)

128. f (x) 2  (x  1)2 3 is maximum at

(A) x  1 (B) x 1

(C) x 0 (D) x 2 2

Solution: The given function is continuous real x.

Now,

f ( )x ( )x /2

3

1 3//

so that f (1) does not exist. Also f (x) 0 for any value of 

x 1. Hence x  1 is the only critical point for f (x). Also

x  1 f (x) 0

and x  1 f (x)  0

Thus, f (x) changes sign from positive to negative at

x = 1. Hence, f is maximum atf x  1.

Answer: (B)

129. f (x) is a function satisfying the following condi-

tions.
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(i) f (0)  2, f (1) 1

(ii) f has minimum value at f x
5

2
and

(iii) f

ax ax ax b

b b

ax b ax b

( )x

( )ax b( )b

2 2ax 1 2 1

1 1

2(ax b 1b 2

for all x where a and b are constants.

Then

(A) a bb
1

4

5

4
, (B) a b

1

4

5

4
,

(C) a b
1

4

5

4
, (D) a bb

1

4

5

4
,

Solution: On ff (x) perform the following elementary

row operation. That is, applying R
3

R
1

2R
2
 we get

f

ax ax ax b

b b( )x

2 2ax 1 2 1

1 1

0 0 1

Therefore

f ax b

ax b

( )x ( )b ( )ax2 (b ax

2

f has local minimum at f x  5/2. This implies

f

ba

5

2
0

2
5

2
0

 5a b  0 (3.40)

Now,

f ax b

f ax bx c

( )x

( )x

2

2

where c is constant. Again

f (0) 2 c 2

and f (1) 1 a b 2 1

This gives

a b 1 (3.41)

Solving Eqs. (3.40) and (3.41), we get

a bb
1

4

5

4

Answer: (A)

130. If p(x) is a polynomial of degree 3 satisfying P( 1)

 10, P(1) 6, P (x) has local minima at x  1 and

P(x) has maximum at x 1, then the distance 

between local maxima and local minima of the

curve is

(A) 2 65 (B) 3 65

(C) 4 65 (D) 5 65

Solution: Since P(x) is a polynomial of degree 3, let

P(x) ax3 bx2 cx d

Therefore

P( 1)  10 a b c d 10 (3.42)

P(1)  6 a b c d  6 (3.43)

New

P (x)  3ax2 2bx c

P (x) has local minimum at x 1 P (1) 0. That is

6a 2b 0

3a b 0 (3.44)

Now P(x) has maximum at x 1 P ( 1)  0. This

means

3a  2b c  0 (3.45)

Solving Eqs. (3.42) (3.45), we obtain that a 1, b  3, 

c 9, d 5. Therefore

P(x) x3  3x2 9x  5

Differentiating we get

P x( )x

( )x

( )( )x

3 6x 9

3(x

3(x

2

2

So P (x) 0 x 3, 1. Also

P (x)  6x  6

This implies

P (3)  12 0

and P ( 1) 12  0

Therefore, P(x(( ) is maximum at x 1 and minimum at x  3.

Let A and B be the points on the curve y P(x) at 

which P(x) is maximum and minimum, respectively.

Therefore A  ( , 10) and B  (3, 22). So

Distance AB ( ) ( )

16 1024

2 2( )

1040

16 65

4 65

Answer: (C)

131. Let f
a

x
( )x

a

x

2 9x ax 9 2x

2 3x 2

2 f

f

where a is a positive constant. If f (x) has local min-

imum at x  2, then a lies in the interval
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(A) (0, 1 (B) 10, )

(C) 1, 10 (D) 2, 10)

Solution: Since f has local minimum at f x  2, we have

f (x) f (2) for all x 2. Therefore

lim ( ) ( )
x

f ( f (f
2 0

1))

So

a2 9a 9

which implies that

( )( ))(

aa

)()()( 0)

1 1a 0

But a is positive. Hence a 10. That is a  [10, ). Note 

that when a 10,

f
x

( )x
x

3 2x xx x

2 3x 2

f

f

so that f is continuous at 2, f f (2) does not exist and 

f x( )x .  Therefore, x  2 is a critical point and

f (x) changes sign from negative to positive at x 2.

Answer: (B)

132. The sum of an infinitely decreasing geometric pro-

gression is equal to the least value of the function

f x x( )x x3
25

12

2

and the first term of the progression is equal to the

square of its common ratio. Then, the common ratio is

(A) 2 1 (B) 3 1

(C) 2 3 (D)
2 2

3

Solution: Differentiating the given function we have

f x( )x 6 1x 0
1

6

f (x)  6 f is minimum atf x 1 6 and the least value of 

f isf

f
1

6

3

36

1

6

25

12
2

Let r be the common ratio r ( )  so that the progres-

sion is r r r2 3r 4, ,r . By hypothesis,

r
r

2

1
2

2 2 2r 0

2 4 8

2
1 3

Now r 1 1r 3.

Answer: (B)

133. The values of the perameter “a” for which the val-

ues of the function

f (x) x3 6x2  9x a

at the point x 2 and at the points of extremum, 

taken in a certain order, form a geometric progres-

sion are

(A)
8

3

4

3
, (B)

8

3

4

3
,

(C)
8

3

4

3
, (D)

8

3

4

3
,

Solution: We have

f (x) x3 6x2  9x a

Now

f (2) a 2 (3.46)

f x x( )x

( )x(

( )( )x

,

0 3 12 9 0

3( 0)

3( 0)

1 3,

2

2

Now,

f (1) a 4 (3.47)

and f (3) a (3.48)

By hypothesis f (2) a 2, f (1) a 4 and f (3) a form

a geometric progression taken in a certain order. We can

easily show that a, a  2, a  4 cannot be in GP. So

a, a  4, a  2 are in GP  (a  4)2 a (a  2)

6a  16

8

3

Again

a  2, a, a  4 are in GP ( )( ))( a)()(

6 8 0

4

3

2

Therefore a  8 3,  4 3. 

Answer: (D)

134. The number of minima of the polynomial

f (x) 10x6  24x5  15x4 40x2  108

is

(A) 5 (B) 1 (C) 2 (D) 3
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Solution: Differentiating the given function we have

f x x x x( )x 60 60 805 4x120 3

 20x[3x4  6x3 3x2  4]

20x[3x2 (x  1)2 4]

Therefore

f (x)  0 x  0

So x 0 is the only critical point. Also f (x) changes sign 

from negative to positive at x 0. Hence, f is minimum at f
x 0 and the minimum value of f is 108.f

Answer: (B)

135. For x 0, the least value of the expression 
1

1

2x
x

 is

(A) 2 (B) 1

(C) 2( )2 1 (D) 2( )2 1

Solution: Let

f
x
x

x( )x ,
1

1
0

2

Differentiating we get

f
x

( )x
( )x ( )x

( )x

2x( 1( 2

2

x x2

2

2

2 1

1
2

( )x1

( )x1

Now

f ( )x ( )0 (x 22

( ) 1)

Now x 0 2xx 1 is the only critical point. Also

f ( )x
( )x

4
3

and f ( )
4

2 2
0)

f is least at f x 2 1  and the least value is

f ( )
( )1 (

1 2 1

2

)
(

2

4 2 2

2

2 22 2 2

2( )22 1

Answer: (D)

136. Let f (x)  5  4 (x  2)2 3. Then at x  2, f (x)

(A) attains minimum value

(B) attains maximum value

(C) is neither maximum nor minimum value

(D) is not defined

Solution: Differentiating we get

f ( )x ( )x /8

3

1 3/

f ( )x 2x and f (2) is not defined. Hence, x 2 is 

the only critical point. Also

f (x)  0 for x 2

and f (x) 0 for x 2

Thus, f is maximum at f x 2.

Answer: (B)

137. As x varies over all real numbers, the range of the

function

f
x

x x
( )x

2

2

3 4xx

3 4xx

is

(A) [ 7, 7] (B)
1

7
7,

(C) 1

7
7, (D) , ( , )

1

7

Solution: The given function can be written as

f
x

x
( )x 1

6

3 4xx2

Observe that

x x2
2

3 4x
3

2

7

4
03x

for all real x. Now

f
x x x

( )x
[ ( ) (x )]

( )x x

( )x

( )x x

6[ 3 4x 2 3x

x

6(

x

2

2 2)

2

2 2)

6

6

2

2 2

2 2

( )42

( )3 42 3 4

( )2 ( )2

( )3 42 3 4

32

)2 (

32

Now f (x)  0 x 2, 2. That is 2, 2 are the only critical

points. Also
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ff (x) 0 when x 2

and ff (x)  0 when x 2

Hence f is maximum at f x 2. Similary, we can see that

f is minimum atf x  2. Therefore

Minimum value of f ff ( )
4 6 4

4 6 4

1

7

Maximum value of f ff ( )
4 6 4

4 6 4
7

So

Range of f
1

7
7,

Answer: (C)

Try it out Try the above problem by using qua-

dratic equation.

138. Let f (x)  (1 b2)x2  2bx  1. Let m(b) be the mini-

mum value of f (x) (that is least value). As b varies, 

the range of m(b) is

(A) [0, 1] (B) (0, 1 2] 

(C) [1 2, 1] (D) (0, 1]

Solution: Differentiating the given function we get

ff (x) 2(1 b2)x 2b

Now

f x
b

b
( )x 0

1 2

So

x
b

b
f

1
0

2
( )x

and x
b

b
f

1
0

2
( )x

So f is minimum at f x b (1 b2) and the minimum value

of f (x) is

f
b

b

b b

b

b

b

b

1

2

1
1

1

2

1

2

2
2

2 2

2

2

2

2

2

( )b1 2

( )b1 2

bb

b

b2

2

2
1 1

1
1

Therefore

m
b

b
( )b 1

1

2

2
(3.49)

Differentiating we get

m
b b

b

( )b
[ (b ) (b )]

( )b

( )b

b

2

2 2) b
2 2)

2 2)

So m (b) 0 b 0. Now,

b 0 m (b)  0

and b  0 m (b) 0

Hence m(b) is maximum at b 0 and the maximum value

of m(b) m(0)  1 [by Eq. (3.49)]. Also

m
b

b b
( )b 1

1

1
0

2

2 2b

That is m(b) 0 and m(b)  1 and m(b)  1 when b 0.

So

Range of m(b) (0, 1

Answer: (D)

139. The maximum value of f x( )x cos sx in  on the

interval [0,  2] is

(A) 2 31 2 4/32 3 (B) 2 31 2 4/32 3

(C) 2 33 1 2/ /34 1 (D) 2 33 1 2/ /34 1

Solution: We have f x( )x cos sin .  So,

f f( )
2

0

and f x( )x 0 0
2

f

Differentiating we get

f x x
x

x( )x sin sx in cos
sin

cos
1

2

(sin )
cos

sin

si

sin

sin

sin

/ x

x

x xcos

x

x

x

3 2/
2

2 2coscos

2

2

2

2

1 3

2

Now ( ) we have

f x( )x sin0
1

3

Also ff (x)  0 when sin /1 3/// and ff (x) 0 when

sin / .1 3/// Therefore, f is maximum whenf sin /1 3///

and the maximum value of f isf
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f Sin 1 1 2 41

3
1

1

3

1

3
2 31 /1 22 3 43 431 21

Answer: (A)

140. The greatest value of the function

f
x

ax b
( )x

2

is

(A)
2

ab
(B)

1

2 ab

(C) 2 ab (d) 2ab

Solution: Differentiating the given function we have

f
x

b ax

( )x
( )ax b ( )ax

( )ax b

( )ax b

2

2 2)b
2

2 2)b

So

f x
b
a

( )x 0

Now

x
b
a

b axax2 0

and x
b
a

b axax2 0

Therefore, ff (x) changes sign from positive to negative

at x b/ .a  Hence, f is maximum atf x b a/a and the 

maximum value is

f b
a

b a
a a b ab

/

( /b )

1

2

Answer: (B)

141. The number of values of x at which the function

f (x)  (x  1) x2 3 has extremum values is

(A) 4 (B) 3 (C) 2 (D) 1

Solution: Differentiating the given function we have

f x x

x

x

( )x ( )x

( )x

/ /x( )x

/

/

2/ 1 3/

1 3/

1 3/

2

3
3 2x

3
5 2x

3

Now ff (x) 0 x 2 5. Also f (x) is defined and continu-

ous at x  0, f is not differentiable at f x 0. Thus, zero is a

critical point. Therefore, 0 and 2/5 are critical points of 

f (x). 

(i) x 0 ff (x) 0 and x 0 ff (x) 0. Therefore at

x  0, f is maximum and the maximum value f
f (0)  0.

(ii) x x f 05 f/ (f5 ) /0 22xx ( )x( )x .  Thus f is f
minimum at x 2 5 and the minimum value

f
2

5

3

5

4

25

1 3/11

Answer: (C)

142. Consider the function f (x) x3 3x 3 on the inter-

val [ 3, 3/2]. Let M  Max f (x) and m Min f (x) on

[ 3, 3/2]. Then

(A) M  15, m  5 (B) M  5, m 15

(C) M  15, m 5 (D) M 5, m 15

Solution: Differentiating the given function we have

ff (x)  3x2 3 3 (x2  1) 

Therefore ff (x) 0 x 1. That is 1, 1 are the only

critical points. Now

ff (x)  6x ff (1)  0 and ff ( 1) 0. 

Therefore, f is maximum at f x 1 and minimum at 

x 1. Let

S f f ff ( ), (f (f ), ( ),), f
3

2

According to the procedure given in Sec. 3.4.2, the maxi-

mum of f (x) 5 M andM m minimum of f (x) 15 on

the interval [ 3, 3/2].

Answer: (B)

143. Let f (x)  sin x cos2x2 , x [0, ]. Let m be the number

of values of x at which f (x) is minimum and n be the

number of values of x at which f (x) is maximum. 

Then

(A) m 2, n 2 (B) m 2, n 1

(C) m 3, n  2 (D) m  1, n 2

Solution: Differentiating the given function we get

f x x

x

( )x cos cx os sin cx os

cos [x cos sx in ]

cos [x

2 2x sin

2 2sx in

2

2

3 2xcos2 2]22
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Now f x)x 0  implies

cos cos xcos xcos0
2

3

x
2

2

3

2

3

11 2
or Co Cs 11 2

os,

Again differentiating we get

f x( )x sin (x s ) cos (x cos sx in ))3cos x 62

Now

f

f

2
1 2 0

2

3
0 6

2

3
01 0

( )22

( )Cos

Similary, f Cos 1 32 / is also negative. Therefore

m 1, n  2.

Answer: (D)

144. The range of the function f
x

x
x( )x ,

1 2
 is

(A)
1

2

1

2
, (B) [ 1, 0]

(C) [ 2, 1] (D)
1

2
0,

Solution: Differentiating the given function we get

f
x

x

( )x
( )x ( )x

( )x

( )x

( )x ( )x

( )x

1(

1

)(

2

2 2)

2 2)

2 2)

Therefore

f (x) 0 x 1

 (i) x 1 f (x) 0 and x 1 f (x)  0.

Therefore, f is minimum atf x 1 and the minimum 

value f (f 1) 1 2.

(ii) x 1 f (x)  0 and x 1 f (x)  0. 

Therefore, f is maximum at f x  1 and the maximum 

value f (1)f  1 2.

So 

Range of f
1

2

1

2
,

Answer: (A)

145. The function f (x) x tan x has

(A) one maximum and one minimum

(B) only one maximum

(C) only one minimum

(D) neither maximum nor minimum

Solution: Differentiating the given function we get

f (x) 1 sec2 x 0

So f is strictly increasing. Therefore, f f has neither maxif -

mum nor minimum.

Answer: (D)

146. The range of the function f (x) x (log x)2 is

(A) 1, e2 (B) 0, 4e 2

(C) 0, e2 (D) 0, e

Solution: f (x) x (log x)2 is defined for all x 0. Now

f x
x x

x
( )x (log )

(log )

log (x l g )x

2 2

Therefore

f x e( )x 0 1x 2or

Now,

f
x

x x
f

( )x
log

( )

g 2x2 log

2) 0

and f (e 2) 4e2  2e2 0

Hence, f is minimum at f x  1 and maximum at x e 2.

Now

f (1)  0

and f (e 2) e 2(log e 2)2 4e 2

Therefore

Range of f 0, 4e 2

Answer: (B)

147. The number of critical points for the function

f x( )x sin (sin )tsin x)tan
1

3

2

8

3x (sinx3

where 2  is

(A) 4 (B) 2 (C) 1 (D) 0

Solution: Differentiating the given function we get

f x

x x

( )x sin ( ) (sin )sec

sin ta (si

1

3
) ( in3 2 2 2

2 2

( ) (s3 xtan sx ) (sin

n )nn sec2 x
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Now

f ( )x i i0 1sin i 02 xtan si

t
sin

sin

2 1
0 ( )

 which is absurd. Therefore, f (x) has no critical points.

Answer: (D)

148. Let f
x

x
x( )x , .x

2

2

1

1
 Then the minimum value

of f

(A) does not exist because f is unboundedf

(B) is not attained even though f is boundedf

(C) is equal to 1

(D) is equal to 1

Solution: We have for x

f
x

x

x

x

x

( )x
2

2

2

2

2

1

1

1 2

1

1
2

1

Now

f
x

( )x
( )x

( )x ( )x

2( 4
2 2) 2 2)

Therefore ff (x) 0 x  0. Also at x 0, ff (x) changes 

sign from negative to positive. Hence, f is minimum at f
x 0 and the minimum value f (0)  1.

Answer: (D)

149. For x (0, ), the least value of f
x

x
( )x

cos

sin

2
2

is

(A) 2 (B) 3 (C) 4 (D) 3

Solution: We have

f
x

x
( )x

( cos )

sin

2

2

Put t  cosx so that 1 t  1. Let

( )
( )

,
t

t
1

1 1t
2

2

Differentiating we get

( )
( )( ) ( )( )

( )

)( )(2( ) (2 2) ( )( ))() (
2 2)

2
2 2

( )2 1 ( )2

( )1 2

)1 (

Since 1 t < 1, t t 1/2 is the only critical point. Also

( ) t) 0
1

2
f

and ( ) t) 0
1

2
f

Hence is minimum at t 1 2. Now 

Least value of f (x) on (0, ) Least value of on ( 1, 1) 

2
1

2

1
1

4

3

2

(See Note after Example 3.16.)

Answer: (B)

150. Let f x x)x , [x , . ].x , x2 5 6x 0 2, 4  Then, the sum

of the maximum and minimum values of f on [0, f
2.4] is

(A) 6 (B) 5 (C) 6.5 (D) 5.5

Solution: The given function can be written as

f

x x x

( )x ( )x ( )x

,

( )x x , .x

(x

(x ),

)(x

5 6xx 0 2xx

x 2 2xx 4

2

2

Now differentiating we get

f ( )x
,

, .x

2 5x 0 2x

2 5x 2 2x 4

Now

f x( )x [ , . ]0
2

5
2,

Also f ( ) does not exist. Therefore x 2 is the only 

critical point. f ( )x changes sign from negative to posi-

tive. So f is minimum at f x  2 and the minimum value

f (2)  0.

Also f (0)  6 and f (2.4)  0.24. Therefore, on the inter-

val [0, 2.4], 

Minimum value of f  Maximum value of f  0 6 6

Answer: (A)

151. A closed circular cylinder of volume k cubic units

is to be formed with minimum amount of material.

The ratio of its height to the radius of the base is

(A) 4 (B) 3 (C) 2  (D) 3/2



 Worked-Out Problems 297

Solution: Let h be the height and r the radius of its r
base. By hypothesis,

r2h k (constant) (3.50)

Let S be the total surface area of the cylinder. Therefore

S 2 r2  2 rh

2 22

2
22 r2

k

r
[from Eq. (3.50)]

2
22 k
r

where 2 r sum of the areas of the base and the top and

2 rh is the lateral surface area. Therefore differentiating

we get

dS
dr

r
k

r
r4

2
2

Now

dS
dr

r
k

k
r

0
2

2

3

1 3/11
(3.51)

Since r  0, k 0, we have

d S

dr

k

r

2

2 3r
4

4
04

So, S is minimum when r  (k 2 )1 3. Hence

h
r

k r
r

k

r
k

k

// 2

3

1

2

2

 [from Eq. (3.51)]

Answer: (C)

152. If h is the height and r is the radius of the baser
of a circular cylinder of greatest volume that can be

inscribed in a given sphere, then h is equal to (Fig.

3.22)

(A) 2r (B) 3r

(C) 3 r (D) 2 r

FIGURE 3.22 Single correct choice type question 152.

R

r

h

Solution: Let R be the radius of the sphere. Then

h
r R

2

2
2 2Rr (3.52)

Let V is the volume of the cylinder, so thatV

V r2 h

h R
h2

2

4
[from Eq. (3.52)]

Differentiating we get

dV
dh

R
h

R2
23

4

Now

dV
dh

h
R

0
4

3

2
2

h R
2

3

Also since h  0

d V

dh
h

2

2

3

2
0

So, V is greatest, when V h R2R/ .3 In such a case

r R
h

R
R R2 2R

2
2

2 2R
4

4

3 4 3
R R

Therefore

r R
2

3

and h
R

R r
2

3
2

2

3
2

Answer: (D)

153. From a rectangular cardboard of size 3  8, equal 

square pieces are removed from the four cor-

ners, and an open rectangular box is formed from

the remaining. The maximum volume of the

box is

(A)
250

6
cubic units (B)

250

3
cubic units

(C) 125 cubic units (D)
200

27
cubic units

Solution: See Fig. 3.23. Let x be the side of the square

piece removed. Therefore the dimensions of the box are

3 − 2x, 8 − 2x and x.
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FIGURE 3.23 Single correct choice type question 153.

x
8

8

3 3

x x

x

Let V be the volume of the box so thatV

V x(3  2x) (8  2x) 

Now,

dV
dx

x( )x ( )xx ( )xx ( ) ( )x ( )xx) ( )x (

(24  22x 4x2)  (4x2  16x)  (4x2  6x)

12x2 44x 24

4(3x2 11x  6)

4(3x  2)(x  3)

Therefore the critical points are x  2 3 and x  3. Now x  3 

is impossible. Hence x 2 3 is the only critical point. So

d V

dx
x

d V

dx x

2

2

2

2 2

3

24 44

24
2

3
44 28 0

x24

44 28

Hence, V is maximum atV x  2 3 and the maximum

volume is

2

3
3

4

3
8

4

3

2

3

5

3

20

3

200

27
cubic unitsss

Answer: (D)

154. Let x, y, z be positive numbers such that

x y z 26 and y  3x

If x2 y2 z2 is to be least, then the value of x is

(A) 3 (B) 4

(C) 3.5 (D) 4.5

Solution: Let

S x2 y2 z2

x2  9x2 (26 4x)2

( , ).z x y2, zz 6 N).x yx ow

0 26 4
13

2
4z x26 4 x

Therefore, S is a function of S x on the interval (0, 13/2). Now

dS
dx

x xx0 2 18 8 0( )xx26 4

52x  8  26

8 26

52
4 0

13

2
,

Also

d S

dx

2

2
20 32 020

Therefore S is least at x  4.

Answer: (B)

155. If h is the height of a circular cone of greatest vol-

ume of given slant height l, then h is equal to

(A)
l

3
 (B)

l

2
 (C) 3 l   (D) 2 l

FIGURE 3.24 Single correct choice type question 155.

r

h l

Solution: See Fig. 3.24. Let r be the radious of the baser
circle. Therefore

h2 r 2 l 2 (l is constant)l

The volume of the cone is

V r h hr h
1

3 3

2 2h 2( )l h2l 2

Differentiating we get

dV
dh 3

2 2( )l hl2 2h

Now

dV
dh

h
l

0
3

Also

d V

dh
h h

l2

2
2 0h

3
h,

So V is maximum whenV h
l

3
.

Answer: (A)

156. The least distance of the point Q (0, 2) from the

point P(x, y) where y
x

16

3
2

3
 and x  0 is
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(A) 4/3 (B) 4 3 (C) 34/ (D) 3 3

Solution: We have

D  distance PQ xx2 2( )yy 2

Therefore

D x
x

x
x

2 2x
3

2
2

6

16

3

256

3
x2x x2

Now

( ) 2)
6 256

3

7dD
dx

x x2x

So

dD
dx

x0 2568

2 ( )0x

Also when x 2

d D

dx
x

2

2

82 0( )2D ( )2 256 x 8

So D is minimum if x 2 and the minimum value of D is

4
16

3

1

8
4

4

3

4

3

2

4

Answer: (C)

157. The greatest volume of a circular cylinder whose 

total surface area is 2 , is

(A)
2

3 3
(B)

2

3
(C)

2

3
(D)

4

3 3

Solution: Let r be the radius of the base circle andr h is 

the height of the cylinder (Fig. 3.25). By hypothesis

2 2 r2 2 rh

rh2 1 (3.53)

The volume of the cylinder is given by

V r h

r
r

2

2
2( )r21

[from Eq. (3.53)]

FIGURE 3.25 Single correct choice type question 157.

r

h

rr 2

3

( )r21

( )r rr 3

Now

dV
dr

0 02( )1 3rr2

1

3

Also

d V

dr

2

2
6 0r

1

3
r0 when

So V is maximum if V r 1 3/11  and the greatest volume is

1

3

1

3

1

3

1

3 3

3

2

3

2

3 3

3

Answer: (A)

158. ABCD is a trapezium in which AB and CD are

non-parallel sides with BC andC AD of lengths

of 6 and 10 units, respectively. Further it is given

that AB is perpendicular to the parallel sides BC
and AD. Thus, the greatest area of the rectangle

inscribed in the trapezium so that one of its sides 

lies on the larger side of the trapezium, given that 

AB is of length 8 units is

(A) 46 square units (B) 48 square units

(C) 36 square units (D) 72 square units

FIGURE 3.26 Single correct choice type question 158.

A

P

C

DN

M
x

xy

B

8

6

Solution: Let APMN (see Fig. 3.26) be a rectangleN
inscribed in the trapezium with AN on the larger sideN
AD. Let AN x and AP y so that 6 x 10 and 0 y

8. Now, Area of trapezium ABCD
1

2
8 64( )6 10

Also,

Area of ABCD Area of PBCM Area of APMN 
Area of MND
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64
1

2

1

2

128 22

( )88 ( )6 ( )1010

( )48 8 648 ( )10

) (6 xy y)

66 xy

8 4 48x y4

Therefore

2x y  20 (3.54)

Let S be the area of the rectangle APMN, so that, using 

Eq. (3.54),

S xy x(20 2x)

where 6 x < 10. Now

dS
dx

x20 4

so that

dS
dx

0 5x 10[ ,6 )

Further dS/dx 0 for x 6. Therefore S is decreasing for

x 6 and hence S is maximum at x 6. The greatest value

of S is

6 × 8  48

because, from Eq. (3.54), x  6 implies y  8.

Answer: (B)

159. The area of the greatest rectangle inscribed in the

segment of the curve y2 2px2 cut off by the line

x 2a is

(A)
16

3 3

3a p3/2

(B)
8

3 3

3a p3/2

(C)
4

3

3a p3/2333

(D) 4
3

3 2a
p/3 23 2

Solution: See. Fig. 3.27. First, observe that the curve 

y2 2px2 passes through (0, 0) and is symmetric about 

the x-axis. That is, if P(x, y) is a point on the curve, then

Q(x, y) is also a point on the curve. Draw PN and QM 
perpendicular to the line x 2a. Therefore, PQMN is a 

rectangle inscribed in the segment. Let its area be A.

FIGURE 3.27 Single correct choice type question 159.

P (x, xx y )

O

Q (x,xx −y)yy
M

(2a, 0)

N

y

x

Then

A y

ay xy

ay
y

p
y

ay
y
p

ay

yy

4 2ayay

4 2ayay
2

4

2

3

( )a xa2

(3.55)

Now

dA
dy

a
y
p

y
ap

y

0 4
3

0

2
3

2

For this value of y

d A

dy

y
p

2

2

6
0

Therefore, A is maximum, when y apa2 3apa / and the

greatest area is

Greatest area 4
3

ay
y
p

[from Eq. (3.55)]

y a
y
p

4
2

where y apa2 apa / ,3 so that the greatest area equals

2
3

4
4

3

16

3 3

3 2
ap a

ap
p

a p3 2/3 223 23

Answer: (B)

160. A person wishes to lay a straight fence across a 

triangular field ABC with A B CB  so as to di-

vide into two equal areas. The length of the fence

with minimum expense is

(A) 2
2

tan
A

(B) 2
2

cot
B

(C) 2
3

tan
C

(D) tan tan tan
A B C
2 2 2

FIGURE 3.28 Single correct choice type question 160.

P

Q

B

C

A

y

x
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Solution: Let PQ be the fence opposite to the vertex 

A (see Fig. 3.28). Let AP x, AQ y and PQ ZAZ . By 

hypothesis

1

2

1

2

1

2

1

2

xy A APQ

bc A

sin A ea of

(Area of )ABC

sin

AA

AA

Therefore

xy bc
1

2
(3.56)

Now,

Z

x y xy A

x
b c

x
bc

A
2 2

2 2y

2
2 2c

2

2

4

x2

x2

( )PQPQ

cos

cos [A from Eq. (3.56)]

Therefore

22
2

2 2

3

dZ
dx

x
b c2

x
A

A 2x

Now

dZ
dx

x
b cA 0

4

4
2 2c

bc
2

It can be easily seen that

d Z

dx
A

2

2
0

Therefore, ZAZ is minimum if x bc/2  and minimum

value of ZAZ  is

bc bc
bc

bc
A

A
A

A

2 2
1

2
2

2
2

2

2
2

2

2

cos (A bcbc s )A

sin

sin
sin

tan

Similarly, if ZBZ and ZC are the lengths of fences opposite C

to the vertices B and C, respectively, then

Z
B

Z
C

B C2
2

2
2

ZCZZCZ
B

2d tan .

Since A B CB , Z AA Atan( / )22  is the length of the

fence with minimum expense.

Answer: (A)

L’Hospital’s Rule

161. The integer n 0 for which

lim
(cos ) (cos )

x

x

n

x ) (cos) (cos

x

) (cos

0

1

is a finite non-zero number is

(A) 1 (B) 2 (C) 3 (D) 4

Solution: We have

lim
(cos ) (cos )

lim

sin (cos )

x

x

n

x

n

x ) (cos

x

x
x e

xx

) (cos

0 0nn xx

2

1
2

2

If n 1 or 2, the limit is zero and hence n  3. There-

fore, the above limit is equal to

lim
sin (cos )

x

x

n

x

x
x e

x0

2

22 2

2

1

4

1

2

0

0

1

2

0 2

0

lim
cos

lim
( sin )

(

x

x

n

x

x

x e

x

x e

n 22 3)xn

If n 3, then this limit does not exist and hence n 3.

Answer: (C)

Note: Here afterwards, if a certain limit is of 
0

0
 form, 

it means that L’Hospital’s rule is going to be applied.

162. If f ( ) 6) and f ( ) ,4)  then

lim
( ) ( )

( ) ( )h

f ( f)

f ( f)0

2

2 (f)
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(A) does not exist (B) is equal to 
3

2

(C) is equal to
3

2
(D) is equal to 3

Solution: Since f is differentiable atf x  1 and 2, f isf
continuous at 1 and 2. Therefore

lim
( ) ( )

( ) ( )
is

h

f ( f)

f ( f)0

2

2 (f)

0

0

lim
( ) ( )

( ) ( )

( )

( )

h

f)

f)

f
f

0

2

2

2 (f
1 (f

2 6

1 4
3

Answer: (D)

163. lim
log

tanx

x
x1

is equal to

(A) 1 (B)
1

(C) (D)

Solution: The given limit is 
0

0
form. Therefore

lim
log

tan
lim

/

x

x
x

x//

xxtantan x
lim

1 1tan x xtantan x 2

1// 1

sec2

Answer: (B)

164. lim
tanx

xe
x0

3 1
is

(A) 1 (B)
1

3

(C) 3 (D) does not exist

Solution: The given limit is 
0

0
form. Therefore

lim
tan

lim
secx

x xe
x

e

xtan xx
lim

0

3

0

3

2

1 3
li

3 1

3
3

Answer: (C)

Note : Without using L’Hospital’s rule,

lim
tan

lim
tanx

x

x

x

e
x

e
x

x
x

e

tan xx0

3

0

3

1

1

3
3

1 3

1

1

xx
x

xx
1 0x 1

0
and lim

tan
.

165. lim
sin

sinx

x xsin

x xsin0

2

2
 is equal to

(A) 3 (B) 3 (C) 1 (D) 1

Solution: lim
sin

sinx

x xsin

x xsin0

2

2

0

0
is  form. It equals

lim
cos

cos

( )

( )x

x
x0

1 2 2

1 2 2

1 2

1 2
3

Answer: (B)

166. lim
cos cos

sinx

x xcos

x0 2

2
 is

(A)
1

2
   (B)

1

2
   (C)

3

2
  (D)

3

2

Solution: The given limit is
0

0
 form. Hence

lim
cos cos

sin
lim

sin sin

sin cos

lim

x

x

xcos

x

xsin

x xcossin xsin x

sin

0 2 0

0

2 2cos
li

xcos 2

2

2siss n sin

sin

2

2

x xsin

x

which is again
0

0
 form. So the limit becomes

lim
cos cos

cosx

xcos

x0

4 2cos

2 2cos

4 1

2

3

2

Answer: (D)

167. lim(cosec cot )
x

x cot
0

is

(A) 0 (B) 1

(C) 1 (D) does not exist

Solution: lim ( cot ) lim
sin

is
x

xcot
x

)xcot
0 0

( )
x

1 0cos
i

x
0

 form.

Therefore, it equals

lim
sin

cosx

x
x0

0

1
0

Answer: (A)

168. lim
x

xx e

x

x
0 2

1
 is

(A)
1

2
 (B)

1

2
 (C) 1   (D) 1

Solution: The given limit is 
0
0

form. So

lim lim
x

x xx e

x

e
xxx0 2 0

1 1
li

xx ex
2

which is again
0

0
 form. Hence we have
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lim
x

xe e
0

0

2 2

1

2

Answer: (B)

169. lim (sin )tan

x

x

0 0
 is

(A) 1 (B) (C) 0 (D) 1

Solution: The given limit is of the form 00. As x 0

0, both sinx and tanx are positive and hence (sinx)tanx is 

defined. Let y  (sinx)tanx. Then

log tan log sin
log (sin )

cot
e et log extantan x

x
log sinxtan x

Now, let

l y
xx

e
x

eyg lim
log (sin )x

cot0 0 0 0

which is of the form. Therefore the limit is

lim
cot

cosec
lim (cos sin )

x xcosec

x

x
x sin

0 0 2 0 0
0

Therefore l e0 1.

Answer: (A)

170. lim
x

x

x

2
10

is equal to

(A)
(log )

!
e 2

10

10

(B) (log )e 2 10

(C)
log

!

2

10
(D)

Solution: The given limit is form. Therefore

lim lim
(log )

x

x
e

x

x xxx

2 2 2)

1010 9

Applying L’Hospital’s rule 9 more times the given limit 

becomes

lim
(log )

!x

e
x2 2)

10

10

Answer: (D)

171. lim
cos

x

xe xcosx

x0 2

2

is equal to

(A)
3

2
(B)

1

2
(C) 1 (D) 2

Solution: The given limit is of the form
0

0
. Therefore

lim cos lim
sin

lim
sin

x

x x

x

x

e xcosx

x

xe x
x

e
x

x

xx0 2 0

0

2 2

2

2

2

2

1
1

2

3

2

Answer: (A)

172. lim
( ) /

x

x/ e)

x
) /x//) /x//

0

1/////

 is

(A)
e
2

(B)
e

2
(C)

e2

2
(D)

e2

2

Solution: We know that lim ( ) /

x

x e)) /x) /x

0

1  so that 

the given limit is of the form 
0

0
. First, we calculate the 

derivative of (1 x)1 x w.r.t. x. Let

y (1 x)1 x

l g log ( )e elog
x
1

Differentiating both sides w.r.t. x we get

1 1
1

1

2

2 3

y
dy
dx

x
x

x

x
x x

x x2

e

e

1log (ee )

( )1 x11 log (e )

So

dy
dx

y x

x x
e[ (x ) log ( )x ]1 x) log (

2 3x

Now

lim
( )

lim
[ ( ) log ( )]/

x

x
ee)

x

y[ x) log (e

x xxx
) /x) /x (

0

1

0 2 3x

1 ) log (x) log (e

lim
[ ( ) log ( )]

( lim )
x

ee[ (x) loge

x x
y e

0 2 3 0

1 ) log (x) log (e

lim
[ log( ) ]

x

e[ log(

x0 2

l (l 1

2 3x

0

0
form
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e
x
x

e

e

x
lim

0

1

1

2 6

1

2

2

Answer: (B)

173. Let f be differentiable on some interval (a, ) and 

suppose

lim [ ( ) ( )]
x

f x( f x( lf

Then lim ( )
x

f x( is equal to

(A) 0 (B) ll (C) ll (D)
l
2

Solution: We have

f
f e

e

x
f e

e

e f

x

x

x x

x

x

x

x

( )x
( )x

li (f (f ) lim
( )x

lim
[

xlim f )

( )(( ( )]

li [ ( ) ( )]

f)

e
x( x( l

x

x

f

lim[ )x( ( )]x(

Answer: (C)

174. lim sin sin
x a

xsin xsin
x a

is

(A) sin a (B) sin a a

(C) a sin a (D) sin a a cos a

Solution: The given limit is 0
0

form. So

lim
sin sin

lim
sin cos

sin cos

x a

x asin a xsin

x a
x

a

xa x a
sin

1

Answer: (D)

175. lim
x a

a x

x a

x aa

x ax
 equals

(A)
1

1

log

log

a
a

(B)
1

1

log

log

a
a

(C) 1 (D) does not exist

Solution: The given limit is
0

0
 form. So

lim lim
log

( log )

log

(

x

a x

x a a

a x

x

a a

a

x aa

x a

ax a alogx

x x( logx

a aa a

a

a x a xx ax

1

11

1

1

log )

log

log

a
a

Answer: (A)

176. lim ( log )
x

n
ex logn

0 0
 is

(A)

(B)

(C) 0

(D) does not exists either finitely or infinitely

Solution: lim ( log )
x

n
ex logn

0 0
 is of the form of 0 × (−∞). 

Therefore it equals

lim
log

x

e
n

x

x0 0

which is of the form .  So it can be written as

lim
/

lim
( )x xnx

x
n n(0 0 0 0

0nx1//
li

x//
0

Answer: (C)

177. lim ( )
x

xx
x 0

 is

(A) (B) 1

(C) 0 (D) does not exist finitely

Solution: lim ( )
x

xx
0 0

 is of the form 00. Let y xx. Then

loge y xloge x

li log lim
log

/x
e

x

ey
x

x//0 0 0 0 1//

which is of the form .  It equals

lim
/

/
lim ( )

x x/

x//

x///0 0 2 0 0

1//

1///
0

Therefore

lim
x

y ee
0

0 1

Answer: (B)
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178. lim ( )/

x

xx( 1 is equal to

(A) (B) 0 (C) 1 (D) 1

Solution: The given limit is of the form 0. There-

fore

lim ( ) lim
/

lim
(

/
/

/

x

x/

x

x//

x

x//

x(
e

x//

e

)1/
1//

1//

1

1//

0

0

11

1

1

2

2

1 0

/ )1111 2

/11

lim 11

//

x//

e e1/11

x
lim e

Answer: (C)

179. lim (cos sin ) /

x

xx sin
0

1  equals

(A) e (B) e (C) 1 (D) 1

Solution: lim (cos sin ) /

x

xx sin
0

1 is of the form 1 . Let

y x xx(( sin )x /x1//

Therefore

log l (cos sin )

log (cos sin )

e elog

e

x
x sin

x xsin

x

log (coselog x
1

Now

lim (log ) lim
log (cos sin )

x
e

ey
x xsin

x0 0
( g )e y

x

0

0

lim

cos sin

cos sin

x

x xsin

x xsin

0 1

1 0

1 0
1

So lim ( ) .
x

e) ee
0

1

Answer: (A)

180. If f (x) is differentiable and f ( ) ,0  then the 

value of

lim
( ) ( )

( ) ( )x

f ( f (

f ( f0

2

 is

(A) 1 (B) 0 (C) 1 (D) 2

Solution: The given limit is 
0

0
form. So

lim
( ) ( )

( ) ( )
lim

( ) ( )

( )

[ (

x

f ( f (

f (f ( f
xf f)

f () x)) (()f (f (( f
( ))

0

2

0

22

0(0[ )])) ( )

( )

f
f

1

Answer: (C)

181. lim
log

x

xa xx a

x0 2

1
 is

(A)
1

2
log a (B)

1

2

2(log )a

(C) (log a)2 (D) 1

Solution: The given limit is of the form 
0

0
.  So

lim
log

lim
log log

lim log
(

x

x x

x

x

a xx a

x
a logx a

x

a
a

xx0 2 0

0

1

2

1 1

2

1

2

1

2

2

)

log (log )

(log )

x

(log

a

Answer: (B)

182. lim
log( )

sinx

x

x0

3

3

1
is

(A) 4 (B) 3 (C) 0 (D) 1

Solution: The given limit

lim
log( )

sin
lim

log( )

si six

x

x

x
xsin xsin x0

3

3 0

31 4)
li

x3 1

3 3sin sinsin

is
0
0

 form. Therefore, it equals

4

3

1

3 3 3
4

20

2

3

0

2

3
lim

s c3c3 os
lim

( )1 3 ( s2 in sinx

x

x
x3c3 os x3c3 os

x

x2)( s2 inx330 30 x3c3 os x3c3 os 3c3 os xx)
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lim
( )

sin sin

( )( )

x
x

x
x

0
3

1

2

2

1
1

Answer: (D)

183. lim
( )x xx x(0 4 2 (x(

 equals

(A)
8

(B)
2

4
(C) 2 (D)

2

8

Solution: The limit is of the form (∞ − ∞). The given

limit equals

4

1

0
lim

( )1x

x

x

e

x(

which is
0

0
 form. Hence

4

1

4

4 2

040

2

lim
( )1)1( 1

lim
( )1x

x

x

x

xx(

e

e x44)110 x( 1

88

ALITER

Given limit
4

1
lim

( )1

e

x(

x

x

4

1

1

4 2 8

0

2

lim

( )1

x

x

x
e

x e

Answer: (D)

184. lim(cos )cot

x

xx
0

2

 is

(A) e  (B) e  (C) e (D)
1

e

Solution: lim (cos )cot

x

xx
0

2

is of the form 1 . Let 

y x x(cos ) .xcot2

Then

log cot log cos

log cos

tan

e ec log

e

xcotcot x

x

x

2

2

So

lim (log ) lim
log cos

tan

lim
tan

x
e

e

x

y
x

x0 0
( g )e y

x 2

0

0

0
is form

xx

x2

1

2

2tan sx ec

Therefore

lim
x

y e
e

e
0

1 1/2

Answer: (D)

185. lim cosec
x x

x
0 2

21
 is equal to

(A)
1

8
(B)

1

8
(C)

1

3
(D)

1

3

Solution: The given limit is

lim cosec ) lim

[( )

x x x xsinxx
lim

0 2 0 2 2sinsin

1 1
) li2 1

form]

lim
(sin )

( c )

lim
(sin

x

x

x x( cos

x

0

2 2

2

0

2

2coscos

0

0

2
2 2x

form

xx

x x x

)

( c ) sx in2x( 2 ) 2

0

02xcos 2x)

lim
( cos )

( si ) ( cos ) sin cosx

x

x x( sin x) x0 2

2cos 2

2sinsin 1 cos 2 2i 2 2cos2

0

0

2
2 1

4 2 2 2 1 2

0

0

2

0 2
lim

cos

i 2 cos

lim

x

x

x

x xsin 2 x xcos x

00 2

2 2

4 2 8 2 4 2 4 22 2 28 2 4 22

si

sin 2 8 cos s2 4 2 i i

x

88 x x4 4 x x2 2si

4
2

6 2 12 2 4 2

0

0

4
2

0 2

0

lim
sin

n c2 os sin

lim
co

x

x

x

x x4 x
ss

cos sin sin cos

( )

2

12 2 12 2 24 2 8 2 8 2

4(

12 12 0

2

x

x xcos x xsin x xsin 2sin 2 x xcos 2212 2cos xcos 2cos sin 2

12 0 0

8

24

1

3

Answer: (C)

186. Let f :  be such that f (1) f 3 and f ( ) .6)

Then

lim
( )

( )

/

x

xf (

f0

1
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(A) e2 (B) e3 (C) e4 (D) e

Solution: The given limit is (1 ) form. Let

y
f

f

x
( )x

( )

/1

Therefore

log
log ( ) l ( )

e
e e( ) log

y
x(( f

x

) log (e) logx f))x

So

lim(log ) lim
log ( ) l ( )

x
e

e e( ) og
y

x(( f

x0 0
( g )e y

x

() loge) logx f))x 0

0

lim
( )

( )x

f (

f (0

f
f

( )

( )

6

3
2

So lim .
x

y e
0

2

Answer: (A)

187. If

lim
[( ) tan ]sin

x

a n x n]sin x

x

)n
0 2

0

then a is equal to

(A) 0  (B)
n

n
1

 (C) n (D) n
n
1

Solution: Given that

lim
[( ) tan ]sin

x

a n x n]sin x

x

)n
0 2

0

Left-hand side limit is of the form 
0

0
.  Therefore

lim
[( ) sec ]sin [( ) tan ]cos

lim [(

x

x

a n xsec nx n a[( n) xtan nx
x

)n [(n a[(

0

2

0

2
0

a naa x
nx

nx
n n

x
x

nxn n) snn ec ]
sin

( )n ( )a nn
tan

cos 0nx

[( ) ] [( ) ]a n n] n a[( n))n ]] [( )n] n)[(n a[( 0

(a n)n 1  0

an n2 1

So

a
n

n
n

n
n

2 1 1

Answer: (D)

188. If f ( ) , (f ) ,9)  then

lim
( )

x

f (

x9

3

3

(A) 3 (B) 4 (C) 9 (D) 2

Solution: The given limit is
0

0
 form. Hence

lim
( )

lim

( )

( )

x

f (

x

f (

f (

x

9x99 xx

3

3

2

1

2

lim
( )

( )

( )

x

x f

f (9

9(

9
4

Answer: (B)

189. lim cot
x x

x
0

1
is equal to

(A) 0 (B) 1 (C) 1 (D)

Solution: The given limit is of the form (∞ − ∞). So

lim cot lim
i

sin

lim
co

x

x

x
x

x xsinx0 0xx

0

1 0
li

sin cos x

0

sss sin

sin cos

lim
sin

sin cos

x xcos x xsin

x x x
x xsin

xx

cos xcos

0

0

0

lim
sin cos

cos sinx

x
x xcos x xsin0

0 0

2 0
0

Answer: (A)

190. lim sec log
x x

x
1 2

 equals

(A)
1

(B) (C)
2

(D)
2
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Solution: We have

lim sec log lim
log

cos
x x

x

x
xx 1

g
x xx1 22

2

0

0

lim

sin

( )

x

x

x x

1

2

1

2 2

1

2

2

Answer: (C)

191. lim
sin i

tanx

x xsin

x0 3

2 2sin sinsin
 is equal to

(A) 0  (B) 1  (C) 2  (D) 1

Solution: The given limit is
0

0
 form. So

lim
si i

tan
lim

sin ( cos )cos

sin

lim

x

x

x xs

x

( cos x

xtantan xtan x0 3 0

3

3

2 2sin sinsin 2 1sin ((

2
0

3

2

( c1 os )cos

sin

x3x)cos

x

0

3

2
1

2
1

2
1

lim
cos

cos

x
xx

Answer: (B)

Try it out In the above problem, use of L’Hospital’s

rule is a lengthy process. Direct method is easy. Try it.

192. lim
log ( ) ( )

h

e e( ) gh) l (e) log

h

h))

0 2

1 2 log (elog
 is

(A) 0 (B) 1 (C) 1 (D)
1

2

Solution: Given limit is of the form
0

0
. Therefore

lim
log ( ) ( )

lim

l

h

e e( ) g

h

h) l (e) log

h
h h

h
hh

h))

0 2 0

1 2 log (elog
2

1 2

2

2

imii
( )( )h

h
h(0 )()(

1

Answer: (C)

193. lim
cos

sinh

x xe ex x
x xsin

xe
0

2

2
 is equal to

(A) 0 (B) 1 (C)
1

2
(D) 1

Solution: Given limit is of the form
0

0
. Therefore

lim
cos

i
lim

sin

sin cosx

x x x xe ex x
x xsin

e ex x
x

xe xe
0sin xx xsin0

2

2

2

2 2sin

0

0

lim
cos

cos sinx

x xe ex x
x xcos x xsin0

2

2 2 2cos c

4

4 0
1

Answer: (B)

194. lim
sec tan

cosx

x xtan

x
4

2 2

1 4cos
is

(A)
1

2
(B) 1 (C)

1

4
(D) 2

Solution: Given limit is of the form
0

0
. Therefore

lim
sec tan

lim
sec sec

sinx

x xtan

x
x xtan x

xxcos xx
4

2

4

2 2sec2

1 4coscoscoscos

2 2sec xtan2 tan xtan

4 4sin

0

00

2 4

0

0
4

2 2

lim
sec2 sec

six

x xtan x
x

lim
sec sec tan

( )

x

x xtan x xsec x
x

4

2 2 4 2secsec2 sec xtan2 2tantan 4

8 4cos

4 4 4

8(

1

2

Answer: (A)

195. lim ( )
x

xx
0 0

cosec  is

(A) 1 (B) 0 (C)
1

2
(D) 2

Solution: We have y x x)x( ) , 0xx xx)x)x , . Now

log log ( )

log (sin )

e elog

ex log (sine



 Worked-Out Problems 309

log (sin )

/
e

x//1//

Therefore

lim log lim
log (sin )

/

lim
cot

x
e

x

e

x

y
x

x

lim
0 0 0 0

0 0

1

1

0

0

2

0 0

2

/11

lim
cos

sin

x//

x x2 cos

xx

lim
cos sin

cosx

x xcos x xsin

x0 0

22

0

1
0

Therefore lim
x

y ee
0 0

0 1 .

Answer: (A)

196. lim log (sin )sin
x

x
0 0

 is equal to

(A) 2 (B) 1 (C) 0 (D)

Solution: We have

lim log (sin ) lim
log sin

log sin
sin

x
x

x

e

e

x

x0 0 0 0

2

lim

cos

sin

cos

sin

lim
sin cos

x

x

x
x
x
x

0 0

0 0

2 2cos

2

2
22

2

2

2

2

0 0

x
x2

x
x

x
x

x
x

cos sx in

lim
sin

sin

cos

co0 ss x

1 1 1 1

Answer: (B)

197. f is a real-valued differentiable and “f a” is a real con-

stant. Further f is continuous. If

F

f f f

f f f

f f f

( )x

( )x a ( )x ( )x a

( )a ( )a ( )a

( )a( ) ( )a ( )a

fa (x

f( )a

f)a x

f)a

f)a

then lim ( )/
x

F( x//
0

is

(A) 1 (B) 1 (C) 2 (D) 0

Solution: Since f (x) is differentiable, F (x) is also dif-

fernentiable. Hence

F

f f f

f f f

f f f

( )x

( )x a ( )x ( )x a

( )a ( )a ( )a

( )a ( )a (

f)a x

f)a

3f)a ( aa)

and F ( ) 0) (  Two rows are identical)

Now lim
( )

x

F(

x0

0

0
is  form. Therefore

lim
( )

lim
( )

( )
x

F(

x
F (

F
x0 0x xx 1

0)

Answer: (D)

198. lim

log

log
x

e

e

x
x

x
x

1

1
 is

(A) 0 (B) 1 (C) 1 (D)

Solution: We have

lim

log

log

lim

log

log
x

e

e
x

e
x

x
x

x

x
1

1

1
1

ee

x

x

x x

x x

1
1

0

0

1

1

1

1

1

1

2

2

lim
( /x11 )

( /x11 )

lim
( / ) () ( / )x x// ) ( //

1

1 ( //

1

1( /( //

1

Answer: (C)

199. lim
x

xe

x3
 is

(A) 6 (B) 1 (C) 3 (D)

Solution: The given limit is of  form. Therefore

lim lim

lim

lim

x

x

x

x

x

x

x

x

e

x

e

x

e
x

e

3 2
lim
x x3

6

66

Answer: (D)
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Multiple Correct Choice Type Questions

1. If the line ax by c  0 is a normal to the curve 

xy  1, then

(A) a  0, b 0 (B) a 0, b  0

(C) a  0, b 0 (D) a  0, b 0

Solution: Suppose ax by c  0 is normal to the curve

xy 1 at (x
1
, y

1
). Differentiating xy 1 with respect x, we 

have

dy
dx xy( ,x )1 1y

1

1
2

(∵ x y1 1y 11 0x11  and y
1

0). Therefore equation of 

the normal at (x
1
, y

1
) is

y y xy1 1x2
1( )x x1

y y x1
2

1 1x3 0

But ax by c 0 is the normal at (x
1
, y

1
). Therefore

a

x

b c

y x1
2

1 1x31

a
b

x1
2 0

So a and b must have opposite signs. This means

a 0, b 0 or a 0, b  0

Therefore, both (B) and (C) are correct.

Answers: (B), (C)

2. The tangent at a point P
1
 (other than origin) on the

curve y x3 meets the curve again at P
2
. The tangent 

at P
2
 meets the curve again at P

3
 and so on. Then

(A) The abscissae of P P PnPP1 2P PP P ,2PP ,… are in AP

(B) The absscissae of P P PnPP1 2P PP P ,2PP ,…  are in GP

(C) (Area of P
1
P

2
P

3
):(Area of P

2
P

3
P

4
) 1:8

(D) (Area of P
1
P

2
P

3
):(Area of P

2
P

3
P

4
) 1:16

Solution: Let P
1

be ( , ).x,1 1, x, 3 Now

y x
dy
dx

xx3 2dy
x3

dy
dx

x
y( ,x )1 1y

3 1
2

So the equation of the tangent at P x1 1PP 1
3( ,x1x ) is

y x x xx1
3

1
2

13 (x1
2 )

Suppose this meets the curve at P x2 2PP 2
3( ,x2x ).

So

x x x2
3

1
3

1
2

2 13x1 ( )x x2 1x

As x x2 1x , we have

x x x x2
2

2 1x 1
2

1
23x x2x

x x2
2

2 1x 1
22 0x1
2

( )( )2 1 2 1 0)( )

So

x x x1 2 2 1x2x2x

Similarly, if the tangent P x2 2PP 2
3( ,x2x )  meets the curve in

P x3 3PP 3
3( ,x3x ), then

x x3 2x 1 1x2 2x2x 4( )x12x2x

Continuing this process, the abscissae of P P PnPP1 2P PP P ,2PP ,  are

respectively

x x x1 1 1 1x2 4x1x 8 1xx 6,1x1x x ,x4x1x

which are in GP with the common ratio 2. Hence (B) is

correct.

Area of P
1
P

2
P

3
is the absolute value of the determi-

nant

1

2

1

1

1

1 1
3

2 2
3

3 3
3

x x1

x x2

x x3

Now

x x

x x

x x

x x

x

1 1x3

2 2x3

3 3x3

1 1x3

1 1x3

1 1x3

1

1

1

1

2 8x 1

4 6x 4 1x1x3

2x

x1
4

1 1 1

2 8 1

4 64 1

(3.57)

Again area of P
2
P

3
P

4
 is the absolute value of

1

2

1

1

1

2 2
3

3 3
3

4 4
3

x x2

x x3

x x4

Now

x x

x x

x x

x

x x

2 2x3

3 3x3

4 4x3

1 1x3

1 1x3

1 1x3

1

1

1

2 8x 1

4 6x 4 1x1x3

8 512 1

2x

( )2 ( )8 xx1
4

1 1 1

2 8 1

4 64 1

2 (3.58)
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From Eqs. (3.57) and (3.58), we get

Area of

Area of

P P P

P P P
1 2P PP P 3PP

2 3P PP P 4PP
1

16

Thus (D) is correct.

Answers: (B), (D)

3. The abscissae of the points on the curve y3  3x2 12y2

where the tangent is vertical are

(A)
4

3
(B)

11

3

(C) 11

3
(D) 4

3

Solution: Differentiating the curve equation w.r.t. x we 

get

3 6 122y
dy
dx

x
dy
dx

6x

dy
dx

x( )y2 2)

Therefore

dy
dx

x

y

2

42

Now

Tangent is vertical y2  4

y 2

So

y x2 3 1xx 22( )8 ( )2

Therefore

x2 224 8

3

16

3
( )y 2y 0x2xy 2

4

3

Hence (A) and (D) are correct.

Answers: (A), (D)

4. The number of points on the curve y x4 6x3 13x2

10x at which the tangents are parallel to the line

y  2x and the number of points having the same tan-

gent that is parallel to the line y 2x is

(A) 3 (B) 2

(C) 4 (D) 4

Solution: Differentiating y x4 6x3  13x2 10x00 we get

dy
dx

x4xx 8 2x 6 1xx 03 218x

Since, the slope of the line y  2x is 2, we have

4 26 10 23 218x x8181818 10

2 9 13 6 03 29x99 x

Clearly x  1 is a root. So

( )( ))( ))()()()( 02

( )( )( ))()()( 0

Therefore x  1, x  2, x 3/2. So the points are (1, 3), 

(2, 5), (3/2, 15/6) at which the tangents are parallel to the

line y  2x and the tangents at (1, 3) and (2, 5) are same

and the common tangent is y 2x 1. Therefore, (A) and

(B) are correct.

Answers: (A), (B)

5. The slopes of the tangents drawn to the curve y2 2x22 3

4y4  8  0 from the point (1, 2) are

(A) 2 3 (B) 4 3

(C) 2 3 (D) 4 3

Solution: Differentiating the given equation with re-

spect to x we get

2 6 4 02y
dy
dx

x
dy
dx

6x

dy
dx

x
y
3

2

2

dy
dx

h
kk( ,h )

3

2

2

Now equation of the tangent at (h, k) is

y k
h

k
k

3

2

2

( )x h

This tangent passes through the point (1, 2). This implies

2
3

2

2

k
h

k
( )1 h

3 2 2 03 2 2h h33 3 k k4 k2h33 4 2 (3.59)

Also (h, k) lies on the curve. This implies

k h k2 3h 4h3h 8 0h 8 (3.60)

Adding Eqs. (3.59) and (3.60), we have

h3  3h2 4  0

(h  1)(h 2)2 0

h 1, 2

Now h 1 k is imaginary. So

h 2 and k 2 2 3

Hence the slopes are 2 3.

Answers: (A), (C)
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6. The line y x is a tangent to the curve y ax2 bx
c at the point x  1. If the curve passes through the

point ( 1, 0), then

(A) a 1/2 (B) b  1/2

(C) c  1/4 (D) a c b  0

Solution: Differentiating the given curve we have

dy
dx

ax bax2

Since the line y x touches the curve, at the point

x 1, we have

1 2
dy
dx

a b

2a b 1 (3.61)

Also (1, 1) lies on the curve implies

a b c 1 (3.62)

Again, the curve passes through the point ( 1, 0) implies

a b c 1 (3.63)

Solving Eqs. (3.61) (3.63), we get

a b cb
1

4

1

2

1

4
, ,b

2

Hence (B), (C) and (D) are correct.

Answers: (B), (C), (D)

7. The points on the curve 4x2  9y2 1, at which the

tangents are parallel to the line 8x  9y are

(A)
2

5 5
, (B)

2

5

1

5
,

(C)
2

5

1

5
, (D)

2

5

1

5
,

Solution: Differentiating the curve equation w.r.t. x, 

we have

8 18 0x y18
dy
dx

1818

dy
dx

x
y

x
y

8

18

4

9

8

9

so that x 2y2 . Since the point lies on the curve, we

have

4 12 29( )2 2)2 y99)2)

y
1

5
Now

y xx
1

5

2

5
∓

Therefore the points are
2

5

1

5
,  and

2

5

1

5
, .

Answers: (B), (D)

8. For the curve x  2cos t cos 2t, y  2sin t  sin2t at anyt
point t

(A) the tangent equation is x
t

y
t t

sin cy os sin
2 2

y
2

cy os

(B) normal equation is x
t

y
t t

cos sy in cos
2 2

y 3
3

2
sy in

(C) sub-tangent length y
t

cot
2

(D) sub-normal length y
t

tan
2

Solution: Differentiating both the equations we get

dx
dt

t2 2t 2si stt i

dy
dt

t2 2t 2cos cttt

Therefore

dy
dx

dy
dt

dx
dt
t t
t t

y

t
cos ct
(sin stt i )

2

2

cos cos

sin si

sin sin

sin cos

tan

2

2

2
3

2 2

2
3

2 2

2

t tcos

t tsin

t t
i

t t

t

The tangent equation is

y t

t

t
t( si sin )t

sin

cos

( cx cos )ttti sin 2

2

tt cos

That is

x
t

y
t

t
t

t
t

t

sin cy os si sn t in

sin

2 2
y 2

2
2

2

3

2

cy os

Thus, (A) is correct. Now the equation of the normal is
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y t

t

t
t( si sin )t

cos

sin

( cxx cos )ttti sin 2

2

t cos

That is

x
t

y
t

t
t

t
t

t

cos sy in co cs t os

cos

2 2
y 2

2
2

2

3
3

2

sy in

Hence (B) is true. By definition,

Sub-tangent y
dx
dy

y
t

y
t

cot

cot

2

2

So (C) is correct. Finally, the

Sub-normal y
dy
dx

y
t

tan
2

Hence (D) is correct.

Answers: (A), (B), (C), (D)

9. The equations of the normals to the curve y
x

x1 2

at the points where the tangents make angles of /4

with the positive direction of x-axis are

(A) x y  0 (B) x yy
3

2

(C) x yy 2 2 (D) x yy
3

2

Solution: Since the slopes of the tangents is 1, we have

1
1

2

2 2

x dy
dx( )1 2x

x4  3x2 0

0 3,

Now,

x y

x y

0 0y

3
3

2

x yy3
3

2

Thus, the points on the curve at which the tangents make 

angles of /4 with the positive direction of x-axis are (0, 0), 

( , / )3, // and ( , / ).3, //

(i)  Normal at (0, 0): y  0 1(x 0). That is x y  0. 

Hence (A) is true.

(ii) Normal at ( , / )3, //  is

y
3

2
1( )x 3xx

That is

x yy 3
3

2

3

2

So (B) is true

(iii) Normal at ( , / )3,  is

y
3

2
1( )3xx

That is

x yy
3

2
3

3

2

So (D) is true.

Answers: (A), (B), (D)

10. For the curve y
x

x1 2
,  let m be the number of 

points on the curve at which the tangent is parallel 

to x-axis and n be the number of points at which the

tangent is vertical. Then

(A) m 0 (B) n  0

(C) m 1, n 1 (D) m  0, n 2

Solution: The given curve is defined for x 1. Now

dy
dx

x1 2

2 2( )x1 2

m  0 and n 0

Answers: (A), (B)

11. Consider the following two statements:

I: For the curve x y am ny m n , the sub-tangent at

any point varies at the abscissa of point.

II: The equation of the common tangent to the

curves

y x xx x3 23 8x2x 4

and y  3x2  7x 4

at their point of contact is x y 1  0.
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Then

(A) I is true (B) II is true

(C) I is false (D) II is false

Solution:

I: We have x y am ny m n . Therefore

mx y x
dy
dx

m y
y

xmny m1 1n m nn mxm 0( )ny )nynny 1nnnny

dy
dx

my
nx

The sub-tangent is

y
dx
dy

y
nx
my

n
m

x

Therefore the sub-tangent varies as the abscissa of 

the point. Thus I is true.

II: At a common point,

x x x3 2 2

3 2

3 8x2x 4 3 7 4x

6 1x2x 5 8x 0

x 7x

x3 15x

( )( )

( )( )( ))( )(

)()( 0)

)()( 0)

2

So x 1 is a repeated root. Therefore at the point

( 1, 0), the two curves must touch each other. Also the

value of dy/dx at ( 1, 0) for the two curves is same (is

equal to 1). Therefore the common tangent at ( 1, 0) is

y  0  1(x  1)

x y 1 0

Thus (B) is also true.

Answers: (A), (B)

12. The angles of intersection of the curves x2 4ay and 

2y2 2 ax

(A)
2

(B) Tan 1 2

5

(C)
4

(D) Tan 1 3

5

Solution: Solving the equations x2 4ay and 2y2 2 ax, 

we have x  0, 2a. Therefore the points of intersection are

(0, 0) and (2a, a). Now

x y
dy
dx

x
a

2 4
2

ay4 (3.64)

2
4

2y a2 dy
dx

a
y

ax (3.65)

From Eqs. (3.64) and (3.65), it is easy to see that the angle

of intersection of the two curves at (0, 0) is /2. Thus (A) 

is true.

Again, from Eq. (3.64),

dy
dx a( ,a )

1

and from Eq. (3.65),

dy
dx

a
aa( ,a ) 4

1

4

Therefore if is the acute angle of intersection of the

curves at (2a, a), then

tan
( / )

( / )

1 ( //4//

1 1 4//

3

5

Therefore

Tan 1 3

5

Hence (D) is true.

Answers: (A), (D)

13. Tangent to the curve x2 y2 2x  3 0 is parallel to 

the x-axis at the points:

(A) ( 3, 0) (B) ( 1, 2)

(C) (1, 2) (D) (1, 2)

Solution: Differentiating the given equation with re-

spect to x we get

x y
dy
dx

y
y

1 0

Now

dy
dx

x
y

0
1

0

x 1

So

x y1 4y2

Therefore the points are (1, 2) and (1, 2).

Answers: (C), (D)

14. If the normals to the curve y2 4ax at the points 

P at( ,at )2t
2

22  and Q at( ,at )3
2

32  intersect on the curve

at R at( ,at ),1
2

12 then

(A) t t
t1 2tt
2

2

(B) t t
t1 3t
3

2
t3t

(C) t2t t3  2
(D) product of the ordinates of P and P Q is 8a2
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Solution: We have

y a
dy
dx

a
y

2 4
2

ax4

So

dy
dx

a
at tP

2

2

1

2 2t

The normal at P isP

y at tat t2 2 2tt 2
2( )x atx 2
2

t y t at2 2y at 2
32

This passes through the point R at( ,at ).1
2

12  Therefore,

t at at at2 1
2

1 2at 2
32 2t( )at1at2 aat

t2 1t 2
2
2

2 12( )t t1t
2

2
2 ( )t t2 1tt

Since t
2

tt t
1
, we have

t
2

tt (t
1

t
2

tt ) 2

t t
t1 2t
2

2

Thus (A) is true. Similarly

t t
t

t t
t1 3t

3
1 3t

3

2 2
t3t

Thus (B) is also true. Now

t
t

t t
t

t t
t t t t

t t

2
2

1 3t
3

3 2tt
2 3t

3 2

2 3t

2 3

2 2

2 2 2

2

( )t t3 2tt

Hence (C) is also true. Now, the product of the ordinates 

of P and P Q is

( )( ) ( ))( 4 4 8)2 3)()( 2
2 3

2 2( ) 8)a t a43 a4

Thus (D) is true.

Answers: (A), (B), (C), (D)

15. Consider the curve x  cos sin , y sin

cos .

(A) The distance of the normal at from the origin 

is 1

(B) Equation of the tangent at is x sin y cos  1

(C) Length of the sub-normal at
4

 is
4

4 2

(D) Length of the sub-tangent at 
4

 is
4

4 2

Solution: From the given equations, we have

dx
d

and
dy
d

i

Therefore

dy
dx

dy
d

dx
d

y
d

sin

cos

Equation of the normal at is

y (sin cos )
cos

sin
( cx os sin )

That is,

x ycos i sin s cos sinysy i cos cossy in sin cos2 2i cossin cos

x cos y sin 1

Therefore the distance of the normal from the origin 1. 

Thus (A) is correct. Equation of the tangent at is

y (sin cos )
sin

cos
( cxx os sin )

That is,

x ysin sin i sinycy os cos sin cos coscy os sin2 2sin cos cos

x sin y cos

Hence (B) is not correct. Now

4

1

2 4 2

4

4 2
y

and
dy
dx

4

1

Therefore sub-normal at /4 is

4

4 2
1

4

4 2

and sub-tangent at /4 is

4

4 2

4

4 2
( )1

So (C) and (D) are correct.

Answers: (A), (C), (D)

16. f (x) is a cubic polynomial with f (2) 18 and f (1)

1. Also f (x) has local maxima at x 1 and f ( )x
has local minimum at x 0. Then
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(A) the distance between ( 1, 2) and (a, f (a)), where

x a is the point of local minima, is 2 5

(B) f (x) is increasing for x [ , ]2, 5

(C) f (x) has local minima at x  1

(D) the value of f (0) 15

Solution: Let

f ax bx cx d( )x ax cx3 2bx

Then

f (1) 1 a b c d 1 (3.66)

f (2)  18  8a 4b 2c d  18 (3.67)

f (x) has local minima at x 1 implies

f ( ) 0)

3 0a b2 c (3.68)

f ( )x  has local minima at x  0 implies

f b( ) 0 (3.69)

From Eqs. (3.66), (3.67) and (3.69), we get

a c d 1 (3.70)

and 8a 2c d 18 (3.71)

From Eqs. (3.70) and (3.71),

7a c 19 (3.72)

Again from Eqs. (3.68) and (3.69),

3a c 0 (3.73)

From Eqs. (3.72) and (3.73), we get

a cc
19

4

57

4
,

Substituting the values of a and c in Eq. (3.70) we get

d a c 1a ca
19

4

57

4

37

4

Therefore

a b c db
19

4
0

57

4

34

4
, ,b 0 ,

or f ( )x ( )x xx(
1

4

3

Now a 1 is a point of local minima so that

( , ( )) ( , ) [ ( ) ]f, )) ( , ) [( , 1)

Therefore distance between ( 1, 2) and (1, 1) is

2 3 132 23323

So (A) is not correct. Again

f

f

( )x ( )x x

( )x ( )x

( x

( x

1

4

1

4

3

2

Now

f ( )x .0 1x

Therefore, the critical points of f are f 1. Now

f ( )x ( )x ( )x ( )x
57

4

57

4
)(x2

so that f ( )x 0 for x 0x, (f (ff ) for 1 x  1 and 

f ( )x 0 for x  1. That is f increases in (f , 1), decreases

in ( 1, 1) and again increases in (1, ). So f (x) has local

maxima at x 1 and local minima at x  1. Also, f (x)

increases in (1, ) f is increasing inf [ , ].2, 5 Thus (B) 

is correct. f (x) has local minima at x  1 so that (C) is

true. Now

f ( )
34

4
15

Hence (D) is not true.

Answers: (B), (C)

17. For the function f x
x

x( )x cos , ,x xcos ,
1

1

(A) for at least one x in [ , ), ( ) ( ), ) 2), )f ((( f (f ((

(B) lim ( )
x

f ( 1

(C) for all x in the interval [ , ), ( ) ( ), ) 2), )f ((( f (f ((

(D) f ( )x  is strictly decreasing in the interval [1, )

Solution: For x  0,

f
x x x

x x x

( )x cos sx in

cos sin

1 1 1

1 1 1

2

Since lim ( / ) ,
x

// )x//  we have

lim ( ) cos
x

f ( cos0 0 1

because as x , 1/x//  0 and sin(1/x// ) is a bounded func-

tion. So,

lim sin
x x x

1 1
i 0

Thus, (B) is correct. Now, for x  1,

f
x x x x x x

( )x sin sin cossin
1 1

i
1 1

i
1 1

2 2 3x x x x
sin sin
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x x
cos

1 1
0

3

Therefore, f ( )x is strictly decreasing in [1, ). So (D) is 

correct.

Using Lagrange’s mean value theorem for f (x) on the 

interval [x, x 2] (x 1), there exists c (x, x 2) such

that

f f
x

f
( )x ( )x
( )x

( )c
)

)

f f f( )x ( )x ( )c2f) )x) (3.74)

Now lim ( )
x

x( 1  [(B) is correct] and f ( )x is strictly

decreasing for x  1 [(D) is correct]. We have that

f ( )c .1  Hence from Eq. (3.74),

f f( )x ( )x( ) 2f) )x)

for all x 1. Therefore (C) is true.

Answers: (B), (C), (D)

18. Let f (x) be a differentiable function and for every

real x,

h f x x( )x ( )x ( (f )) ( (f ))f )x 2 3x( (f ))

Then

(A) h is increasing whenever f is increasingf

(B) h is increasing whenever f is decreasingf

(C) h is decreasing whenever f is decreasingf

(D) h is decreasing whenever f is increasingf

Solution: Since f is differentiable, f h is also differen-

tiable. Also

h f x f

f f

( )x ( )x [ (f ) ( ( )x ) ]

( )x ( )x3
1

3

1

9

2

2

Now

h x( )x , (f )0 0x, f )

and h ( )x ,0 if f ( )x 0

So h is increasing or decreasing according as f is increasf -

ing or decreasing.

Answers: (A), (C)

19. Which of the following curves cut the curve y2 4ax
orthogonally?

(A) x2 y2 a2 (B) y e x a/2

(C) y ax (D) x2 4ay

Solution:

(A) Put y2  4ax in x2 y2 a2 so that, we have

x2 4ax a2 0

(x 2a)2 5a2  0

a a2 5a ( )2 5

As y2  0, x cannot be a( ). Therefore x =

a( ) which implies

y a2a( )2 5

At the points ( ( ), ),a( ),2 5 2 2a 5  we can see 

the two curves cannot intersect orthogonally. There-

fore (A) is not true.

(B) We have

y e
dy
dx a

e
y
a

y a
dy
dx

a
y

x ae x

ax

x /y
e xa/ /dy 2/ // /dy
ea xa dya

2

1

2 2a

4
2

Therefore

y
a

a
y2

2
1

implies that the two curves y e x/2a and y2 4ax
intersect orthogonally. So (B) is correct.

(C) We have

y a
dy
dx

aax

and y a
dy
dx

a
y

2 4
2

ax4

Further a(2a/y/ ) 1, because the points of intersec-

tion are (0, 0) and (4/a, 4). Hence (C) is not true.

(D) We have

y a
dy
dx

a
y

2 4
2

ax4

and x y
dy
dx

x
a

2 4
2

ay4

Further, y 0 (i.e., x-axis) is a tangent to x2 4ay at 

(0, 0) and x 0 (i.e., y-axis) is tangent to y2 4ax at, 

(0, 0). Hence, at (0, 0), the two curves y2 4ax and 

x2 4ay intersect orthogonally. Therefore (D) is cor-

rect.

Answers: (B), (D)

20. If f is a function, whose derivative isf

f x x( )x ( )ex ( )x ( )x ( ))(x ) (x3 5( )(x

then f has minimum value atf x is equal to

(A) 0 (B) 1

(C) 2 (D) 3
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Solution: We have

f ( )x , ,0 0x 1 2, 3and

First, observe ex  1 for x 0 and ex is strictly increasing 

on �.

(i) At x 0: x 0  the sign of f ( )x  is ( )( )( )( )( )

 0.

x 0  the sign of f ( )x is ( )( )( )( )( ) 0.

Therefore, f has no extremum value at f x  0. Thus, 

(A) is not correct.

(ii) At x  1: x < 1 sign of f ( )x  is ( )( )(−)(−)(−)

< 0.

x 1 sign of f ( )x is ( )( )( )( )( )  0.

Therefore, f has minimum value atf x  1. Thus, (B) is

true.

For a continuous function, minimum and maximum

values occur alternately. So f has maximum atf x  2 

and minimum at x 3. Therefore, (C) is not true 

whereas (D) is correct.

Answers: (B), (D)

21. Let f ( )x ( )x /2 (x 2 3// and g(x) x2/3. Then

(A) Rolle’s theorem is applicable for f (x) on [0, 2]

and Lagrange’s mean value theorem is appli-

cable for g(x) on [ 1, 1]

(B) Rolle’s theorem is not applicable for f(x(( ) on [0, 2]

(C) Lagrange’s mean value theorem is applicable to

g(x) on [ 1, 1]

(D) Rolle’s theorem is not applicable to f(x) on [0, 2] 

and Lagrange’s mean value theorem is not appli-

cable to g(x) on [ 1, 1]

Solution: The function f(x(( ) is continuous x [0, 2] and

f ( )x ( )x /2

3

1 3//

is not defined at x  1. Thus f is not differentiable atf
x 1 (0, 2). Therefore (B) is correct. Now

g x( )x /2

3

1 3//

is not defined at x 0 ( 1, 1). Thus g is not differentiableg
at x 0. Hence (D) is true.

Answers: (B), (D)

 22. Let f

x

x
x

( )x

3

2
0 1xx

1
1 2xx

2

for

for

Then, the value of c in the Lagrange’s mean value 

theorem over [0, 2] is

(A)
1

2
(B)

1

3

(C)
3

2
(D) 2

Solution: We have

lim ( )
x

x(
1 0

3 1

2
1

and lim ( )
x

x(
1 0

1

1
1

Therefore f is continuous at f x 1. Using Lagrange’s mean

value theorem for f(x) on [0, 1], there exists c (0, 1) such

that

f f c

c

( ) ( )f (

1 0

2

2

1
3

2

1

2

1

c

Therefore (A) is correct.

Again, using Lagrange’s mean value theorem for f (x)

on [1, 2], there exists c (1, 2) such that

f f

c

( ) ( )f (

2 1

1
2

1

2
1

1

2

2

2

2

c

Therefore (D) is correct.

Answers: (A), (D)

22. Suppose f is differentiable for all real values of f x.

Then by the Lagrange’s mean value theorem, there

exists ( , )1, such that

f f hfh( )x h ( )x ( )x hh

This statement can be considered as Lagrange’s 
Mean Value Theorem. Then

(A) the value of in Lagrange’s mean value theo-

rem for f (x) x2 is 1/2

(B) the value of for f (x) x2 ax b is 1/2

(C) the value of for g(x) x3 is 1/3

(D) the value of for g(x) x3 bx2 cx d is 1/3

Solution: We consider f (x) ax2 bx c. Therefore

f f f( )x h ( )x ( )x h ( )h )h ()h ()h (

We have
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a b c x h h( )x h ( )x h ( )ax bx c [ (a ) ]bh )h ax )c h2 2b c( )x h ()h (ax

22 2 22 2h ah bh axh a h bh

h a h2 2a h2

2 1
1

2
1

Thus (A) and (B) are correct. Consider g(x) x3. There-

fore

g g hg

x h x h

xh h

( )x h ( )x ( )x h

( )x h [ ( ) ]

h

(x x

h

3 3x 2

2 2h xh 33 3x hhh 3x hxx x h

x h

2 2h h 2 3h
2

6

3 6x h

xx6

3x x6

h2hh2h

so that 1/3. Hence (C) and (D) are not correct.

Answers: (A), (B)

Try it out If

f f
h

f
h

f( )x h ( )x ( )x ( )x hh
1 2

f ( )
2

where 0 1, then for

f ax bx cx d( )x ax cx3 2bx

and a 0, the value of is 1/3.

23. Consider the function f x x( )x , [x , ].4 1xx 2 1x, [x [3

Then

(A) f has local maximum at f x 1

(B) f has local minimum at f x 1

(C) the image of the interval [ 1, 3] under the func-

tion is [ 8, 72]

(D) f has no extremum value in [f 1, 3]

Solution: Differentiating the given function we get

f x( )x 12 122

Now

f ( )x ,0 1x 1

So the critical points of f aref 1. Since f x( )x ,24 we 

have f ( ) 0))  and f ( ) .0)  Hence f has local maxif -

mum at x 1 and local minimum at x  1. Thus (A) and 

(B) are correct. Also,

f ( ) 4)) 12 8

f ( ) 4) 12 84

and f ( ) 108 36 72108

The least and greatest value of f on [f 1, 3] are 8 and 72, 

respectively. Therefore, the image of [ 1, 3] under f isf
[ 8, 72]. So(C) is correct.

Answers: (A), (B), (C)

24. On the interval [0, 3], the function f x x x( )x 24x x xx3

(A) has local minimum at x  1/3

(B) has greatest value at x 3

(C) f is increasing in [1, 2]f

(D) f is decreasing in [0, 1/4]f

Solution: We have

f
x x

x x
( )x

( )x

( )x

4x x(xx(x 0 2xx

4x x(xx(x 2 3xx

3

3

for

for

Now,

f
x x

x x
( )x

12 2 2 0 2x

12 2 2 2 3x

2

2

for

for

So

f ( ) 48 4 2 50

and f ( ) 48 4 2 46

Therefore, f is not differentiable at f x 2. Hence 2 is a

critical point. Now 0 x  2 and f ( )x 0  implies

6 1 0

0

2

( )3 113 ( )2 1x2 1

1 3 1/ ,3

So x 1/3 is a critical point. Now 2 x  3 and f ( )x 0

implies

6x2 x  1  0

But 6x2 x  1  0 has no real roots. Thus, the only critical 

points are 1/3, 2.

(i) Also, x  1/3 the sign of f ( )x is ( )( )  0 and

x x/ (f ) .0  Hence f has local minimum at f x
 1/3.

(ii) f is decreasing for f x  1/3 and increasing for x  1/3. 

Further,

f f

f

( )

( )

1

3

4

27

1

3

5

3

4 15

27

11

27

108 3 105108

On [0, 3], the least value of f isf 11/27 and greatest value 

is 105. From (ii), we have f is decreasing in [0, 1/4] and f
increasing in [1, 2]. Hence all options are correct.

Answers: (A), (B), (C), (D)
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25. P(a cos , b sin ) is a point on the curve

x

a

y

b

2

2

2

2
1

y
2

where a  0, b 0 and b2 a2. Then

(A) equation of the tangent P isP

x
a

y
b

cos i
y

si
y

s
y

in 1

(B) minimum area of the triangle formed by the 

tangent at P and the two coordinate axes is P ab

(C) minimum area of the triangle in part (B) is 2ab

(D) equation of the normal at P is ax sec by
cosec a2 b2

Solution: Differentiating the curve equation with

respect to x we get

x

a

y

b

dy
dx

dy
dx

b x

a y

2 2b
2

2

0
y y
2

y

dy
dx

b

a

b
aP

2

2

( ca os )

( sb in )
cot

So equation of the tangent at P isP

y b
b
a

bsin
cos

sin
( cx ax os )

b y ab abi (si )ysay in cos2 2cos

Dividing by ab we get

x
a

y
b

cos i
y

si
y

s
y

in 1

Thus (A) is true. Again, equation of the normal at P isP

y b
a
b

bsin
sin

cos
( cx a os )

x
b

y a
b

b
a

a b
abcos isa in

2 2b

ax by
a b

cos isin

2 2b

Thus (D) is correct.

If the intercepts made by the tangent (x/a)cos

(y/b)sin 1 on the coordinate axes are a sec and b
cosec , respectively, then the area of the triangle thus

formed is

1

2
2( s )( c ) cosecbsec )( ab ab)( cosecb)( 2cosecab

because cose .c 2 1  Thus the minimum area of the

triangle thus formed is ab. Hence (B) is correct.

Answers: (A), (B), (D)

26. Consider the function

f
x
x

( )x
1

1

on the interval [ 2, 0]. Then

(A) f is decreasing in the interval [f 2, 1]

(B) f is increasing in [f 1, 0]

(C) the minimum value of f is 0f

(D) the maximum value of f is 1f

Solution: We have

f

x
x

x

x
x

( )x

1

1
2 1x

1

1
1 0x

if

if

f is continuous atf x 1. Now

f

x

( )x
( )x

( )x

2
2 1x

2
1 0x

2

2

for

for

Also,

f ( )
1

2

and f ( )
1

2

so that f  is not differentiable at x 1 and hence x 1

is the only critical point and f ( )x 0  for x [ 2, 0].

Since f ( )x 0 for 2 1x and f ( )x 0  for 1

x 0, follows that f is decreasing in [f 2, 1] and increas-

ing in [ 1, 0], hence f is minimum atf x 1 and the mini-

mum value is f ( 1) which is 0. Now

f ( ) , (f ) (f )
1

3
1)) 0 1)

This implies that the minimum value is 0 and maximum

value is 1. Hence all options are correct.

Answers: (A), (B), (C), (D)

27. The sum of the third and ninth terms of an AP is 

equal to the least value of the quadratic expression 

2x2 4x 10. Then

(A) the common difference of the AP is
4

5

a

where “a” is the first term of the AP.

(B) if the first term a is 1, then the common differ-

ence is 1

(C) the common difference d cannot be determined

unless the first term is given

(D) sum of the first eleven terms is 44

Answers: (A), (B), (C), (D)
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Solution: Let a be the first term and d be the common

difference of the A.P. Let

f x x( )x 2 4xxx 102

Therefore

f x( )x 4 4x 0 1x

and f ( )x 4 0

Therefore f has least value atf x  1 and the least value is

f ( ) ( )2) 4) 10 8(2 ) 10

By the hypothesis,

( ) ( ))) () 8

a  5d  4 (3.75)

From Eq. (3.75),

d
a4

5
Thus (A) is correct and also (B) and (C) are correct.

Now, the sum of the first eleven terms is [by Eq. 

(3.75)]

11

2
10

11 4 44

[ ( )] ( )5a( 11d)] ((a( 11(

11

Thus (D) is correct.

28. Let f xx e( )x logx2 2  for x  0. Then

(A) f is decreasing in the setf ,,
1

2
0

1

2

(B) f is increasing inf
1

2
0

1

2
, ,0

2

(C) minimum value of f e
1

2
2log

(D) maximum value for f does not existf

Solution: Differentiating the given function we get

f x
x

x
x x

( )x
( )x ( )x

4
1 4 1 ( )(2

(3.76)

Now

f x( )x 0
1

2

f
x

( )x 4
1

0 0x
2

Therefore, f is minimum at f x 1/2. Also, from Eq. 

(3.76),

f x( )x 0
1

2
fo

f x( )x 0
1

2
0fo

f x( )x 0 0
1

2
f

and finally

f x( )x 0
1

2
fo

Therefore f is decreasing in (f , 1/2) (0, 1/2) and 

increasing in ( 1/2, 0) (1/2, ). Thus (A) and (B) are

correct.

Now f f( / ))  is minimum at x 1/2 and the

minimum value is

f e e
1

2

2

4

1

2

1

2
2log le

1 1
og

Therefore (C) is correct. Because at both x 1/2, f isf
minimum, there is no maximum value for f. Hence (D) isff
correct.

Note: In the above problem, f has two consecutivef
minima which, in general, is not true. But, here f is not f
defined at x  0 ( 1/2, 1/2). Thus, f is minimum at two f
consecutive points.

Answers: (A), (B), (C), (D)

29. The points on the curve y x2  5x  6 at which the

tangents drawn intersect in (1, 1) are

(A) (2, 0) (B) (1, 2)

(C) (0, 6) (D) ( 1, 12)

Solution: Differentiating the given function we get

dy
dx

2 5xx

Suppose (x
1
, y

1
) is a point on the curve. Therefore

dy
dx y( ,x )1 1y

2 5xx1

Equation of the tangent at (x
1
, y

1
) is

y yy1 1 1( )12 5x1x ( )x xx 1

This tangent passes through the point (1, 1). Therefore

1 1 1 1y1 ( )2 51 5x22 ( )1 11 x

2 7 51
2

1x7 (3.77)

Since (x
1
, y

1
) lies on the curve, we have

y x1 1x2
15 6x1x1x (3.78)

From Eqs. (3.77) and (3.78),
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1 5 6 2 7 51
2

1 16 2 2
166 22 2x5 x711

2

x1
2

12 0x2x1x1

x
1

 0, 2

Now

x
1

0 y
1

6

and x
1

2 y
1

 0

Therefore the points on the curve are (0, 6) and (2, 0).

Hence (A) and (C) are correct.

Answers: (A), (C)

30. P is a point on the curve P y x3 3x2 7x 6 at which 

the intercept made by the tangent on the positive 

x-axis is half of the intercept made by it on the nega-

tive y-axis. Then

(A) P  (0, 6)

(B) P (3, 15)

(C) P (1, 3)

(D) length of the intercept on positive x-axis is

21/2

Solution: Let P be (P x
0
, y

0
). Therefore

y x x0 0x3
0
2

03 7x2 6x0x x07 (3.79)

Differentiating the given equation with respect to x, we get

dy
dx

x3 6xx 72

The equation of the tangent at (x
0
, y

0
) is

y yy0 0
2

0 0( )xx0
2

03 6x0x2 7 ( )x x0x x

y x x0
3

0
2

0 0
2

0 03 7x2 6 ( )x0x2
03 6 7x0 ( )x x0x x (3.80)

Putting y 0 in Eq. (3.80) we get

x
x x

x
x

x x

x x

x

x

x

0
3

0
2

0

0
2

0

0

0
3

0
2

0
2

0

3 7xx0
2 6

3 6x2 7

2 3x3 6

3 6x2 7

So

x-intercept
2 3 6

3 6 7
00

2
0
2

0
2

0

x3

x6
 (By hypothesis)

Put x  0 in Eq. (3.80). Therefore (by hypothesis)

y-intercept 2 3 6 00
2

0
2x3 (3.81)

By hypothesis, xy intercept i te cept2 .x-intercept  Therefore

2 3 6 2
2 3 6

3 6 7

1
2

3

0
3

0
2 0

3
0
2

0
2

0

0
3

0
2

x3
x3

x6

x

0x3 0x3

0x6

( )2 3 60
3

0
2x3 0x3

00
2

06 70

0
6 0

( )[ ]

( )( )( )

)[ 0

)( 0

0
3

0
2

0
2

0

0
2

0 0)()( 0)()()(

Since 2 3 60
3

0x3 0x3  is positive [see Eq. (3.81)], x
0

1 or 

x
0

3. Now

x
0

1 x-intercept  0

Therefore, x
0

 3 which implies y
0

15. Thus (B) is cor-

rect and length of the intercept on positive x-axis is

2 3 6

3 6 7

54 27 6

27 18 7

21

2
0
3

0
2

0
2

0

x3

x6

0x3

0x6

27

18

Hence (D) is correct.

Answers: (B), (D)

1. Match the items of Column I with those of Column II.

Column I Column II

(A) The equations to the curve y
x3  2x 6 which are per-

pendicular to the line x 14y
+ 4  0 is (are)

(p) 14x y  10

(q) 14x y  14

(r) 3x  2y2 6

(B) The equation of the tangent 

to the curve y  3e x/2 at the 

point where it crosses the 

y-axis is

Column I Column II

(C) The tangent of the curve 

y 14e x at the point 

(0, 14) is

(s) x y 0

(t) 14x44 y  22  0(D) Equation of the normal to 

the curve x3 y3  6xy at

(3, 3) is

Solution:

(A) Differentiating the given function we have

Matrix-Match Type Questions

(Continued)
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dy
dx

3 2xx2

Since the tangent is perpendicular to the line x
14y 4  0, we have

dy
dx

14

3x2 2 14

x 2

Hence the required points on the curve are (2, 18)

and ( 2, 6).

Equation of the tangent at (2, 18) is

y 18 14(x  2)

 14x y  10

Equation of the tangent at ( 2, 6) is

y 6 14(x 2)

14x y 22  0

Answer: (A)  (p), (t)

(B) Consider the curve y be x/a. It meets y-axis in

(0, b). Differentiating we get

dy
dx

b
a

e

dy
dx

b
a

x a

b

/

( , )

So the equation of the tangent to y be x/a at (0, b) is

y b
b
a

b ( )xx

bx ay ab

If b  3, a  2, then the equation of the tangent at 

(0, 3) is

3x 2y2  6

Answer: (B)  (r)

(C) If b 14 and a 1, then the equation of the tangent

at (0, 14) is

14x y 14

Answer: (C) (q)

(D) Differentiating the given equation with respect to x
we get

3 6

2

2 23

2 22

x y33
dy
dx

y x
dy
dx

dy
dx

y x
y

2y( )2 2y x222y2

dy
dx

y x

y x

dy
dx

2

2

6 9

9 6
1

2

2

3( ,3 )

Hence normal at (3, 3) is

y  3  1(x  3)

x y 0

Answer: (D)  (s)

2. Match the items of Column I with those of Column II.

Column I Column II

(A) Equation of the tangent 

to the curve y2 8x, that 

is parallel to the line 4x
y  3  0 is

(p) x  3y 8  0

(q) x yy 2

(r) 8x 2y2 1  0

(s) y 1

(t) x  3y  8  0

(B) A normal line to the 

curve 3x2 y2  8 having 

slope 1/3 is

(C) Equation of the tangent 

to the curve x  sin3t
and y cos 3t att t /4

is

(D) Equation of the tangent 

of the curve y  cot2 x
2cot x  2 at x /4 is

Solution:

(A) Differentiating y2 8x we get

dy
dx y

dy
dx yy

4

4

1 1y 1( ,x1 )

Since the tangent at (x
1
, y

1
) is parallel to the line 

4x y 3 0, we have

4
4

1

1

1

1 1
y

dy
dx

y
y

1y
( ,1x1 )

Since y x1
2

18  and y
1

 1, we have x
1

1/8. There-

fore

( , ) ,y,1 1y,
1

8
1
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Equation of the tangent at this point is

y x1 4
1

8

2y2 2  8x 1

8x  2y2 1 0

Answer: (A)  (r)

(B) Differentiating 3x2 y2  8 we get

6 2 0

3

x y2
dy
dx

dy
dx

x
y

y2

y

dy
dx

x
yy( ,x )1 1y

3 1

1

Hence slope of the normal at (x
1
, y

1
) is

y
x
1

13

1

3
( )

y
1

x
1

(3.82)

But

3 81
2

1
2x y1 (3.83)

From Eqs. (3.82) and (3.83) we get x
1

2 and

y
1

2, either both are “ ” signs or both are “ ” signs.

This implies that the points are (2, 2) and ( 2, 2).

Now the equation of the normal at (2, 2) is

y 2
1

3
( )xx 2

x  3y  8  0

Similarly, equation of the normal at ( 2, 2) is

y 2
1

3
( )xx 2

x  3y 8 0

Answer: (B)  (p), (t)

(C) The point given on the curve .

Now

x
dx
dt

ti cos3 3t
dx

tt 3

y t
dy
dt

tt sin3 3t
dy

t
y

t 3

Therefore

dy
dx

dy
dx t

ta tt
dy

n an ( )3
3

4
1)

4

So equation of the tangent at 1 2 1 2/ ,22 /  is

y x
1

2
1

1

2

x y 2

Answer: (C) (q)

(D)  The given point is ( /4, 1). Differentiating the given

curve we get

dy
dx

x x2 2x2 22xcot cxx cosec

dy
dx

4
1

2 2 0
,

( )2 ( )2

Therefore equation of the tangent at ( /4, 1) is

y x1 0
4

y  1

Answer: (D)  (s)

3. Match the items of Column I with those of Column II.

Column I Column II

(A) Tangent of the curve x acos3 , 

y asin3 meets the axes in P andP
Q. Then, the mid-point of PQ lies 

on the circle 

x y
a

k
2 2

2

2
y2y

where k2 is equal to

(p) 1

(q) 4

(r)  2

(s) 1

(t) 2

(B) Tangent at (a, b) to the curve x3

y3 c3 meets the curve again in

(a
1
, b

1
). Then

a
a

b
b

1 1b1

(C) If the sum of the squares of the 

intercepts on the axes cut off by a tan-

gent to the curve x y a1 3 1 3 1 33 1 /y 3/y1

(a 0) at the point (a/8, a/8) is 2, 

then the value of a is

(D) Tangents are drawn to the curve 

y sin x from the origin. Then the

points of contact lie on the curve

1 1
2 2y x2

p

where the value of p is
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Solution:

(A) Differentiating x acos3 , y asin3 we get

dx
d

a3 2cos2 i

and
dy
d

a3 2sin2

Therefore

dy
dx

dy
d

dx
d

y
d

tan

So, tangent at ,

y aa sin ( cx ax os )3 3( cx a ostantan

y ai sinycy os cos

x
a

y
cos isa in

1

Hence P (a cos , 0) and Q (0, a sin ). If (x
1
, y

1
) is 

the mid-point of PQ, then

2x
1

a cos and 2y2
1

a sin

Therefore

4 1
2

1
2 2( )1

2
1
2

1
2 a)1

2

or x y
a

1
2

1
2

2

4
y1

2

So, (x
1
, y

1
) lies on

x y
a2 2

2

4
y2y

Answer: (A) (q)

(B) Differentiating the given curve we get

3 02 23x y3
dy
dx

23y33
y

dy
dx

x

y

2

2

dy
dx

a

bb( ,a )

2

2

So, equation of the tangent at (a, b) is

y b
a

b
b

2

2
( )x ax

The tangent at (a, b) meets the curve again in (a
1
, b

1
).

This implies that

b b
a

b
1

2

2 1b ( )a a(a1a

b b
a a

a

b
1

1

2

2
(3.84)

Also a3 b3 c3 and a b c1
3

1
3 3cb1
3  implies

a a b b3
1
3

1
3 3ba1

( )( ) ( )( )1
2

1 1
2

1 1)( 2
1

2

b b
a a b bb b

1

1

2
1 1

2

2
1 1b2

( )a aa a2
1 1a2

(3.85)

From Eqs. (3.84) and (3.85), we have

a

b

a aa a

b bb b

2

2

2
1 1a2

2
1 1b2

aa

bb

On cross-multiplication and simplification we get

( )( )1 1 1 1 0)( )

Now (a, b)  (a
1
, b

1
) implies

ab a
1
b ab

1
 0

1 01 1a
a

b
b

a
a

b
b

1 1b
1

Answer: (B)  (s)

(C) Differentiating the given curve we get

1

3

1

3
02 3x y

3

2 dy
dx

2 3y
y/ /13 233 2y

dy
dx

y
x

2 3/

At (a/8, a/8), the value of dy/dx 1. Therefore 

equation of the tangent at (a/8, a/8) is

y
a

x
a

x
8

1
8

x y
a a a
8 8 4

Now the sum of the squares of the intercepts is

a a a

4 4

2

16
2

2 2 2

( )

Therefore a2 16 or a  4 ( ).

Answer: (C) (q)

(D) Differentiating y sin x we get

dy
dx

xcos

At the point (x
1
, y

1
), the value of dy/dx cos x

1
.
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Therefore equation of the tangent at (x
1
, y

1
) is

y y
1

(cos x
1
)(x x

1
)

This tangent passes through (0,0) implies

y
1

x
1
cos x

1

y
x

x1

1
1cos (3.86)

But (x
1
, y

1
) lies on the curve implies

y
1

 sin x
1

(3.87)

From Eqs. (3.86) and (3.87), we get

y

x
y1

2

1
2 1

2 1y1
2

y x y x1
2

1
2

1
2

1
2

x y x y1
2

1
2

1
2

1
2

1 1
1

1
2

1
2y x1

2

So(x
1
, y

1
) lies on the curve

1 1
1

2 2y x2

Hence p 1.

Answer: (D) (p)

4. Match the items of Column I with those of Column II.

Column I Column II

(A) If the curves xy a(a 0) and y2

4x cut orthogonally, then the value 

of a/2 2  is

(p) 1

2

(B) lim
sinx

x xe ex x
x xsin

e
0

2
is 

(q) 2 2

(C) lim
tan

sinx

x x
x xsin0

is
(r) 1

(D) If the curves y2 2x and xy a/2 (a
 0) cut at right angles, then a/ 2/

equals

(s) 2

(t) 1

Solution:

(A) We have

xy
dy
dx

a

x
a

2
(3.88)

y x
dy
dx y

2 4
2

x4 (3.89)

The curves cut each other orthogonally means

[using Eqs. (3.88) and (3.89)]

a

x y2

2
1

x2 y 2a

(3.90)

x
a
x

xy ax2 2 (a )∵

x 2

Since ( , )y, lies on y x2 4  and x 2 we have

y 2 2

Substituting the values of x and y in Eq. (3.90), we get

( )( )( ))( 2))) a

4 2

4 2 ( )a 0

a

2 2
2

Answer: (A)  (s)

(B) We have

lim
i

lim
cosx

x x x xe ex x
x xsin

e ex

x
e xe

0x0 sinx xsin

2 0

0

2

1

0

0

lim
sin

lim
cos

x

x x

x

x x

e ex

x

e ex

x

0

0

0

0

1 1

1
2

Answer: (B)  (s)

(C) We have

lim
tan

i
lim

sec

cos

lim
cos

x

x

x x
x xsin

x
xx xsin 0x0 sinx xsinx xsinsin

2

0

0

00

1

1

1 22

2

0 2

1

1
2

x

1

x

xx

cos (2 x cos )x

lim
cos

cos

Answer: (C)  (s)

(D) We have

y x
dy
dx y

2 2
1

x2

and xy
a dyd

dx
a

x2 2 2
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By hypothesis, product of the slopes of the curves at

a common point 1. Therefore

1

2
1

2y
a

x

y
a2

2

(3.91)

x
a
x

a
y

a
x

2

2 2 2
∵

1

Now

y x2 2  and x y1 2y

Substituting the values of x 1  and y 2 in Eq.

(3.91), we get

a
2

( )11 ( )2

a
2

2 ( )

a

2
2

Answer: (D)  (s)

5. Match the items of Column I with those of Column II.

Column I Column II

(A) Value of c in the Lagrange’s mean 

value theorem for f x( )x x2 4

on the interval [2, 4] is

(p) 4

(B) Value of c in the Lagrange’s mean 

value theorem for f (x) x2  2x
4 on [1, 5] is

(q) 3

(C) f is continuous on [2, 4] and is diff -

ferentiable in (2, 4). It is given that 

f (2) 5 and f (4)  13. Then there

exists c (2, 4) such that f ( )c is 

equal to

(r) 1

(D) If c is a value in Rolle’s theorem for 

f (x) e x sin x on the interval [0, ], 

then tan c is equal to

(s) 2

(t) 6

Solution:

(A) Clearly f is continuous on [2, 4] and differentiablef
in (2, 4). Hence by Lagrange’s mean value theorem, 

there exists c (2, 4) such that

f
f f

( )c
( ) ( )f (

4 2

2

2 4

2 3 0

22

c

c
2 2( )2 4c2c

2 122

6 4( ,2 )

Answer: (A)  (t)

(B) We have f x x( )x ,x2 2 4x x [1, 5]. Therefore 

f (1) 3, f (5)  19.

By Lagrange’s mean value theorem, for some c
(1, 5)

f f
f c

( ) ( )
( )c

f) (

5 1
2 2c2c

4 2c  2

c  3

Answer: (B) (q)

(C) We have

f
f f

( )c
( ) ( )f (

4 2

13 5

2
4

where c (2, 4).

Answer: (C) (p)

(D) We have f e x( )x sinx. f is continuous on [0, f ]

and differentiable in (0, ). Further

f (0)  0 f ( )

Therefore by Rolle’s theorem, there exists c (0, )

such that f (c)  0. So

e c cc c(cos sin )cc ,0 0

cos c  sinc 0 (∵e c 0)

tan c 1

Answer: (D)  (r)

6. Match the items of Column I with those of Column II.

Column I Column II

(A) lim
sin

x

x xsin

x
is

(p) 3

(B) lim
tan

tanx

x
x

2
3

 is
(q) 2

(C) lim ( )
x

xx
0

 is (r) 1

(D) lim
sin

( / )x x

x xsin

e xx0 21 2( //x
is

(s) 1/2
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Solution:

(A) We have

lim
sin

lim
sin

x x

x xsin

x
x

x
1 1 0

because as x , 1/x// 0 and sin x is bounded.

Answer: (A)  (r)

(B) We have

lim
tan

tan
lim

sec

x

x
x

x

xtan xtan xxtan
2 2

2

233 3 3sec2

1

3

3 0

0
2

2

2
lim

cos

cosx

x

x

1

3

2

2
2

lim
s (3 sin )3 ( )3

cos ( sin )x

( sin 3

( sin

lim
sin

sinx

x
x

2

6

2

0

0

lim
cosx

x
x

2

6 6cos

2 2cos

3 3 3
3

cos

( )1

( )1

Answer: (B) (p)

(C) Let l x
x

xm ( ).
0

Therefore

log l log

lim log
/

e x e

x
e

xlim x

x
x

0

0 1

lim
/

/
lim ( )

x x/

x//

x///0 2 0

1//

1///
0

So, l ee0 1.

Answer: (C)  (r)

(D) We have

lim
sin

( / )
lim

cos

x x x

x xsin

e x

x

e xxx)xex0 2 01 2( //x ( //x

0

0

1

1

0

0

lim
sin

x x

x

e0 1

0

0

0 lim
cos cos

x xe ex0 0

0
1

Answer: (D)  (r)

Try it out In the above problem L’Hospital’s

rule cannot be applied. Why?

Comprehension-Type Questions

1. Passage: If f is continuous on closed [f a, b], differ-

entiable on (a, b) and f (a) f (b), then there exists

c (a, b) such that f ( )c .0  Answer the following

three questions.

(i) If in the passage, f (a) f (b)  0, then the equa-

tion f f( )x ( )x 0  has

(A) solutions for all real

(B) no solution for any real 

(C) exactly one solution for all real 
(D) solution only for  1

(ii) If

a

n
a
n

a
n

a
an

n
0 1 2a 1

1 1n n 2
01 an

where a a a an0 1a 2,1a , , are reals, then the equa-

tion

a x x a x an n n
n0 1x a 1

2
2 0a xna xa 1 n1

has a root in

(A) ( , 1) (B) ( 1, 0)

(C) (0, 1) (D) (1, )
(iii) The number of values of c in Rolle’s theorem for

f (x) 2x3 x2 4x 2 in the interval [ , ]2,

is

(A) 0 (B) 1

(C) 2 (D) 3

Solution:

(i) Let ( ) ( )e) f (x  so that

(a) is continuous on [a, b],

(b) differentiable in (a, b),

(c)  (a)  (b) ( ( ) ( ) )a( b(b( )b(

Therefore by Rolle’s theorem ( ) 0  for some

c (a, b). Then

e c ccc[ (f ) (f )]f 0

f f( )c ( )cf 0
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That is, for each , there corresponds c (a, b) such 

that

f f( )c ( )c 0

That is, f f( )x ( )x 0 is solvable whatever real

may be. Hence (A) is correct.

Answer: (A)

(ii) Let

F
a x

n
a x

n
a x
n

a x
a x

n n na x n
n( )x 0

1
1 2x a 1

1
2

1 1n n 2

Obviously F (x) continuous and differentiable for

all real x. Also (by hypothesis) F (0)  0 and F (1) = 

0. Therefore by Rolle’s theorem (using on [0, 1]), 

F ( )c 0  for some c (0, 1). That is

a c c a c a cn n n
n0 1c a 1

2
2 0 0 1a cna ca 1 0 0n1 ,

That is a x x an n
n0 1x a 1 0a xna xa 1 an has a root in (0, 1).

So (C) is correct.

Answer: (C)

(iii) We have f x x x( )x .x2 4x xx 23 2x  Clearly

f f( ) ( )

Using Rolle’s theorem on [ , ],2,  we get

f ( )c 0  for some c ( , ).2, Therefore

6c2 2c  4  0

 3c2 c 2  0

 (3c 2) (c  1) 0

So c 1, 2/3 and both values belong to ( , ).2,

Hence (C) is correct.

Answer: (C)

2. Passage: Let f be a function continuous in a neighf -

bourhood of a critical point x
0
 and differentiable at all 

points in that neighbourhood (except possibly at x
0
).

Then

(a) f has local minima atf x
0
, if f changes sign from 

minus to plus as x takes values from left of x
0
 to

right of x
0
.

(b) f has local maximum to f x
0
, if f changes sign

from plus to minus.

Answer the following three questions:

(i) The total number of local maxima and local

minima of the function

f
x

x x
( )x

( )x
/

x3)) 1

1 2x

3

2 3/

is

(A) 0 (B) 1

(B) 2 (D) 3
(ii) The minimum area of the triangle formed by

any tangent to the curve

x

a

y

b

2

2

2

2
1

y
2

with the coordinate axes is

(A)
1

2

2( ) (B)
1

2

2 2( )2 22

(C) 1

2

2( ) (D) ab

(iii) The tangent at (1, 7) to the curve y x2  6

touches the curve x y x y c2 2 16 12 0y2y y12 at

(A) (6, 7) (B) ( 6, 7)

(C) (6, 7) (D) ( 6, 7)

Solution:

(i) Clearly f is continuous atf x 1, because

lim ( ) ( )
( )x

f (
(

( )
0)

3 1

and lim ( ) ( )
( )

/

x
f (

(
(

0)

2 3/ 1) /2 3//

Now,

f
x x

( )x
( )3(x 3 1x

2

3
1 2x

2

1 3/

f

for

So,

f ( ) ( )3( 3)2

and f ( ) ( )
2

3

2

3
imply that f is not differentiable atf x 1 and f ( )

does not exists. Hence 1 and 0 are critical points.

Further f ( ) 0)  gives that 2 is also a critical 

point. Hence all the critical points of f are f 2, 1, 0.

At x 2: f ( )x keeps the same sign so that f has f
no local extremum value at x 2.

At x 1:

x f 0f ( )x

and x f xx
2

3
01 3( )x

Therefore f has local maximum atf x 1.

At x 0:

x f xx
2

3
01 3( )x
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and x f 0f ( )x

Hence f has local minimum at f x  0

Therefore, f has one local maximum and one localf
minimum. Hence (C) is correct.

Answer: (C)
(ii) Now

x

a

y

a

2

2

2

2
1

y
2

Differentiating with respect to x we get

dy
dx

b x

a y

2

2

We can see that x a cos , y b sin  are the para-

metric equations of the curve

x

a

y

b

2

2

2

2
1

y
2

Therefore

dy
dx

b

a

b
a

2

2

( ca os )

( sb in )
cot

The equation of the tangent at (a cos , b sin ) is

y b
b
a

bsin
cos

sin
( cx ax os )

 (b cos )x  (a sin ) y ab

x
a

y
b

i
y

s
y

in 1

Therefore area of the triangle formed by the tan-

gent and the axes is

1

2
2

a b
ab ab

cos i
cosec

sin
2ab cosec

It equals to ab when 2  is an odd multiple of /2.

Hence (D) is correct.

Answer: (D)

(iii) Differentiating y x2  6 we get

dy
dx

x2

At (1, 7), we have

dy
dx

2 2( )1

Therefore the equation of the tangent at (1, 7) is

y  7  2(x  1)

2x y  5  0 (3.92)

From Eq. (3.92), we have y 2x  5. Substituting this 

value of y in the second curve equation we get

x x c2 2 16 12 0x16( )2 5xxx ( )2 5x 5

 5x2 60x 85 c  0

x
c2 12 17
5

0 (3.93)

The line given by Eq. (3.92) touches the second

curve if and only if the quadratic equation [Eq. 

(3.93)] has equal roots. This means

Quadratic equation has equal roots

144  4 17
5

0
c

c  95

Therefore the second curve equation is

x y x y2 2 16 12 95 0y2y y12

Now, it can be verified that ( 6, 7) is the only

common point for the line given by Eq. (3.92) and 

the second curve. Hence (D) is correct.

Answer: (D)

Assertion–Reasoning Type Questions
In the following set of questions, a Statement I is given

and a corresponding Statement II is given just below it.

Mark the correct answer as:

(A) Both Statements I and II are true and Statement II 

is a correct explanation for Statement I

(B) Both Statements I and II are true but Statement II is 

not a correct explanation for Statement I

(C) Statement I is true and Statement II is false

(D) Statement I is false and Statement II is true

1. Statement I: If a a an1 2a ,2a ,  are positive reals, then

a a

n
n

n
n1 2a

1 2
1a2a

( )a a an1 2a /

where the equality holds if and only if a a an1 2a ,2a ,

are equal.

Statement II: ex 1 x for all real x.

Solution: Let f (x) ex 1 x. Differentiating this we 

get
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f ex( )x 1

This implies that

f ( )x 0 0x

f ( ) 0)

and f ( )x 0 0x

Therefore f has absolute minimum (that is only one minf -

imum) at x 0. Hence f (x) 0 for all real x. That is

ex 1 x for all real x (3.94)

In Eq. (3.94) replace x with x  1 so that we have

ex 1 x for all real x (3.95)

Let

a
a a

n
na1 2aa

In Eq. (3.95), replace x with a a an1 2a/aa / ,a /, a and mul-

tiply all the inequalities so obtained. Then we have

e
a a aa

a
a
a

a
a

n n
n

n1 2a
1 2a2 n (

( )a
)

n
n

( )n n ( )a a an

( )a
1 2a

( ) a a an
n1 2a

n
n( )a a an

/
1 2a 1

Hence both statements are true and Statement II is a

correct explanation of Statement I.

Answer: (A)
2. Statement I: If

P x x x( )x x x51 2323 45 1035101 100

then P(x) 0 has a root in the open interval (451/100, 

46).

Statement II: If f a: [ , ]b � is continuous and f is f
differentiable in (a, b) such that f (a) f (b), then

f ( )c 0  for at least one c (a, b).

Solution: Statement II is the Rolle’s theorem. Now let

f x x x x

x x x

( )x x x

x

51

102

2323

101

45

2
1035

1

2
23

45

2

102 101 2

102 101 2 1035x

Therefore

f ( ) ( ) ( ) ( ) ( )
1

2
23

45

2
1035

1

100

102

100

101

100

2

100

1

1( )100 ( )100 0000

102

100

101

100

102

100

101

100
1

2
23

1

2
23

0

100 100( )45( )4545 ( )45 ( )4545 ( )45

Hence (45)1/100 is a root of f (x)  0. Again

f ( ) ( ) ( ) ( ) ( )

( )( )

1

2
23

45

2
1035

1

2

102 101 2

101

( ) )( 2

))(( 2322
45 46 46

2
23 45 46101( )46

46
45

23 23 23 545 46 23 45 46

0

101 101( )46 ( )46 45

Hence 46 is a root of f (x)  0. Now using Rolle’s theo-

rem for f (x) on the interval [451/100, 46], we have P(c) = 

f (c) = 0 for at least one c (451/100, 46).

Answer: (A)

3. Statement I: The function f x bx cx dc( )x x cxcc3 2bx
where 0 b2 c is strictly increasing in ( , ).

Statement II: If f is continuous on [f a, b], differentia-

ble in (a, b) and f x b( )x ( ,a ),0 then f is strictly f
increasing in (a, b).

Solution: Statement II is a consequence of Lagrange’s

mean value theorem (see Theorem 3.6 and the Note un-

der it). Now

f x bx cx dcc( )x x cxcc3 2bx

Differentiating this, we get

f x bx c

x
b

x
c

bx

x

( )xx 3x

3
2

3 3

2

2

3
3 3 9

3
3

3

9

2 2

2 2

x
b c b

x
b c b

3
3

2

9 9
0

2 2
2

x
b c c b

( )0 2b c2

Hence f is strictly increasing for all real f x.

Answer: (A)
4. Statement I: The function

f
x

e x
e

e

( )x
log (e )

log (e )

is decreasing on (0, ).

Statement II: If f ( )x 0 for all x (a, b), then f is f
strictly decreasing in (a, b).

Solution: Statement II is true according to Theorem

3.6 and the note under it. Now, let

f
x

e x
e

e

( )x
log (e )

log (e )
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Therefore

f
xe ee x

e

( )x
( )e x log (e ) ( ) l ( )x

( )e x ( )x [log ( )e x ]

exx) log (
2

(3.96)

It is known that, if g (x) x log x, then g e( )x log 1xe
0 for x 1/e. That is x loge x increases for x  1/e.

Therefore if x  0, then

1

e
e x xe

so that

( ) log ( ) ( ) l ( )xe e( ) ( ) ge x) log (e(e (( ) log (x) log (e) gx) log

Hence from Eq. (3.95), f ( )x .0 Hence f (x) decreases 

on (0, ).

Answer: (A)

5. Statement I: Tangent is drawn to the curve

x
y

2
2

27
1y2

at 3 3 cos , i, sin where 0 /2. Then the value

of for which the sum of the intercepts on the coordi-

nate axes made by this tangent is minimum is /3.

Statement II: At a critical point x
0
 a function is mini-

mum if f ( )x changes sign from negative to positive

or if f ( )x0 0  and f ( )x .0 0  Then f is minimum atf
x

0
.

Solution: Statement II is true according Sec. 3.4.1. It is 

known that the equation of the tangent at (a cos , b sin )

to the curve

x

a

y

b

2

2

2

2
1

y
2

is

x
a

y
b

cos i
y

si
y

s
y

in 1

(see, Problem 25 of the section “Multiple Correct Choice 

Type Questions”). Therefore the equation of the tangent 

to the curve

x y2 2y
27 1

1
y

at 3 3 cos , i, sin is

x
y

3 3
1cos iysy isy in

Hence the intercepts of the tangent on the axes are 

3 3 sec  and cosec . Let

f ( ) cosec) secsec3 3

Differentiating we get

f ( ) tan cot

sin

cos

cos

sin

sin

) sec cosec3 3

3 3

3 3

2 2sin
3 cocc s

cos

3

2 2isin2sin

Therefore

f ( )) tan0
1

3

6

Hence, Statement I is not correct.

Answer: (D)

Integer Answer Type Questions

1. The number of values of x, where the function 

f x x x( ) cos cos 2  attains its maximum is 

_________.

Solution: Clearly f (x) ≤ 2 and f (x)  2, if cos x  1 and 

cos .2 1x  This happens when x  0. Also

cos x 1  x  2m

and cos 2 1 2 2x x n

2
2

0

m x
n

m n

Therefore at x  0 only, f (x) is maximum.

Answer: 1 

2. Let f x
x x x

x
( )

if and

if

2 2 0

1 0

Then, the number of local maxima of f is ______.

Solution: If 0 <  < 1, then

x f x f( , ) ( ) ( )0 1

Hence f is locally maximum at x  0.

Answer: 1
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3. Let

f ( )x ( )x ( )x ( )x ( )x2010 2 3( )x 4

for all x in .  If g : ( , )( ,0 is a function such

that f (x)  loge(g(x)), the number of values of x in

 at which g has local maxima is _________.g

(IIT-JEE 2010)

Solution: We have

f g

f
g
g

e( )x log (e ( )x )

( )x
( )x
( )x

and g(x) 0 x.

(i) Now

g f( )x ( )x( ) 00 f )x

x  2009, 2010, 2011 and 2012

Now, g ( )x 0 for x 2009 and g ( )x 0  for x
2009. That is, g ( )x changes sign from positive to 

negative. Hence g hasg local maximum at x 2009.

(ii) g ( )x 0  for x  2010 and x  2010. Hence g(x) has 

no local extremum at x 2010.

(iii) g ( )x 0  for x < 2011 and g ( )x 0  for x > 2011. 

Hence g has local minimum at g x 2011.

(iv) g ( )x 0  for x  2011. Therefore g has only oneg
local maximum.

Answer: 1

4. Let P(x) be a polynomial of degree 4 having extre-

mum at x  1, 2 and

lim
( )

x

P(

x0 2
1 2

( )P(
2

Then the value of P(2) is ____________.

Solution: Let

P a x a x a x a x a( )x a x a x0
4

1
3

2
2

3 4x a

Therefore

P a x a a( )x 4 3a x 20
3

1
2

2 3x a

Now P ( ) 0)  and P ( ) 0) implies

4 3 2 00 1 2 30 33 1a33 (3.96)

and 32 12 4 00 1 2 3a0 12 1a1212 (3.97)

Now

lim
( )

li
( )

x

x

P(

x
P(

x
lim

( )

0 2

0 2

1 2
( )P(

2

1

lim
x

a x a x a x a a

x0

0
4

1
3

2
2

3 4x a
2

1 (3.98)

By Corollary 1.3, it follows that

a
4

0 (3.99)

Therefore [by Eqs. (3.98) and (3.99)]

lim
x

a x a x a x a

x

a x
0

0
3

1
2

2 3x a
1

Again, by the same Corollary 1.3, we have

a
3

0 (3.100)

So from Eqs. (3.98) (3.100),

lim ( )
x

)
0

0
3

1 2 1

This implies

a
2

1 (3.101)

Substituting the values a
4

0, a
3

 0 and a
2

1 in Eqs. 

(3.96) and (3.97) we get

4a
0

 3a
1

2 (3.102)

32a
0

12a
1

4 (3.103)

Solving Eqs. (3.102) and (3.103), we obtain a
0

1/4 and

a
1

1. Therefore

a a a a0 1a 2 3a 4

1

4
1 1a 0 0a4a1a 1 a 0 a4,1a 1 ,3a 0

Hence

P x x x P( )x ( )x x
1

4

16

4
8 4 04 3x 2

Answer: 0

5. If  is an angle of intersection of the curves

y  3x−1 log
e
x and y xx − 1, then 2 cos  is equal to 

_________.

Solution: (1, 0) is a point of intersection of the curves.

Now

y x

dy
dx

x
x

dy
dx

x
e

x
e e

y x

3

3x 3
1

0

1

1 1x xxx3

0

log

g le 3e 3 og

( ,1 )

1 111
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Again

y x
dy
dx

x x

dy
dx

x xdy
ex 1 xxdy

x
yy

1
0

( l1 og )

( ,1 )

Therefore the slopes of the two curves at (1, 0) are equal. 

Hence, they touch each other at (1, 0). This implies that

cos  1 or 2 cos  2.

Answer: 2

6. The number of points on the curve y3  3x2 12y2

where the tangent is horizontal is ________.

Solution: Differentiating the given curve we get

3 6 12

2

2

2

y
dy
dx

x
dy
dx

dy
dx

x

6x

( )4 2y4

dy
dx

0

0

y y

y

3 12

0 2 3,

Therefore the points are (0, 0) and ( , ).2, 3

Answer: 3

7. The height of a right circular cone of minimum 

volume that can be circumscribed about a sphere of 

radius r is r kr. Then the value of k is ___________.

Solution: See Fig. 3.29. Here

OO
1

OE r (radius of the sphere)r

h VO
1

(height of the cone)

Therefore

VO h r

VAO
1

and VOE are similar (see Fig. 3.29). Let E
R O

1
A be the radius of the base of the cone. Therefore

R
r

h
VE

h

VO OE2 2OE

h

r

h

h hr

( )h r 2 2r

2

So,

R
h r

h hr

hr
h r

2
2 2r

2

2

Now, V volume of the cone is given by

V R h

h hr
h r

r h
h r

1

3

3

3

2

2

2 2

Differentiating we get

dV
dh

r h r

r

r2 2h r
2

2 2

2

3

hh

3

[ (hhhh ) ]h2h

( )h r

( )h hr2h 4

( )h r

Therefore

dV
dh

h r0 4h

Also dV/VV dh changes sign from negative to positive at h
4r. Hence V is least or absolute minimum atV h 4r 4

(radius of the sphere). Therefore k  4.
V

E
O

O1 R
A

90°

90°

r
r

FIGURE 3.29 Integer answer type question 7.

Answer: 4

8. Let x, y be positive numbers such that their sum is 

5. If the product of square of one number and cube 

of the other is maximum, then the greater of the

numbers is ____________.

Solution: We have x y  5. Let

P x2y2 3 x2 (5 x)3

Differentiating we get

dP
dx

x x

x x

x

x

x

2xx 3xx

5 xx

3 23x 2

2

2

( )x5 ( )x5

( )x5 x [ (2 ) ]x3

( )x5 x ( )x10 5

555 2( )2 x2 ( )5 x)x (5
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Now

dP
dx

x0 0 2 5, ,22

x, y are positive x  0, 5. Therefore x  2.

Also, at x  2, dP/dx changes sign from positive to neg-

ative. Hence P is maximum at P x 2 and y 3 and the 

maximum value of P 2233 108. Hence greater of the

numbers is 3.

Answer: 3

9. An object moves on the curve x2  3y. When x  3, 

the x-coordinate of the object is increasing at the

rate of 1 cm/s. At that moment, the rate of increase

in y-coordinate is _________ cm/sec.

Solution: Differentiating x2  3y we get

dy
dt

x dxdd
dt

dy
dt x

2

3

2

3
2

3

( )3
( )1

Answer: 2

10. If the function

f
x

x
( )x

2

16

1

attains its least value at x
1

and greatest value at x
2

on the interval [1, 4], then x
1

x
2

is equal to 

___________.

Solution: Differentiating we get

f
x

x
( )x

8

1
2

so that

f ( )x 0 2x

Also,

f ( )
1

8

2

8

3

8
0

Therefore, f is minimum at f x 2 and

f ( )
4

16

1

2

3

4

Also

f ( )
1

16
1

17

16

and f ( ) 1)
1

4

5

4
1

Hence f (2) is least and f (4) is greatest. Therefore

x
1

x
2

2 4 6

Answer: 6

SUMMARY

1. Geometrical meaning of dy/dx: Suppose f (x) is a 

differentiable function and P(x
1
, y

1
) a point on the 

graph of y f (x). Then f ( )x1 or ( / )( , )dx y,1 1y,  is 

the slope of the tangent to the curve at the point. 

Hence the equation of the tangent at P (P x
1
, y

1
) is

y y fy1 1f 1( )x1x ( )x x1

2. If f ( )x ,1 0  then

1 1

1 1 1
f dx y( )1x ( /dy )( ,1x1 )

is the slope of the normal to the curve at P (P x
1
, y

1
).

The equation of the normal is

y y
f

y1
1

1

1

( )x1

( )x x1

3. Tangent at (x, y) is parallel to x  axis dy/dx 0

and tangent at (x, y) is vertical f ( )x  or dy/dx is

infinity with usual meaning. That is, the angle made

by the tangent with x-axis is a right angle.

4. Angle of intersection: Angel of intersection of two

curves at their point of intersection is defined to be

the angle between the tangents drawn to the curves 

at their common point.

5. Orthogonal curves: Two curves are said to be 

orthogonal curves if their angle of intersection is a

right angle.

6. Angle of intersection (formula): Let C
1

and C
2

CC  be 

two curves represented by the functions y f (x) and

y g(x), respectively. Suppose P is P a common point 

for C
1

and C
2

CC . Let

m
df
dx

m
dg
dxp pdx2d

m1 and
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If the acute angle of intersection of C
1
 and C

2
CC at P, 

then

tan
m m

m m
1 2m

1 2m1

7. (i) The two curves touch each other at P m
1

m
2
.

(ii) The two curves cut orthogonally at P m
1
m

2
1.

8. Lengths of tangent, normal, sub-tangent and sub-
normal: Let P(x

1
, y

1
) be a point on the curve y f (x)

and f is differentiable. Suppose the tangent and norf -

mal meet the x-axis in T andT N, respectively. Draw 

PG perpendicular to x-axis. Then PT, PN, TG and

GN are called lengths of the tangent, normal, sub-N
tangent and sub-normal, respectively, at P.

PT y
x

y1

1
2

1
1

[ (f )]

PN y xy1 1x 2[ (ff )]

TG y
f

GN y f

1
1

1 1f

1

( )x1

( )x1x

O T

P

y

90°−q
G

q

q

FIGURE 3.30

Note: (Sub-Tangent)(Sub-normal) y1
2

9. Rate measure: Let f be a function defined on anf
interval (a, b) and x

0
(a, b). Then the quotient

f f

h

( )x h ( )x0 0f)h (xhh

where h may take positive and negative values is

called average change of f in (f x
0
, x

0
h). If

lim
( ) ( )

x x

f ( f)

h

)

0

0 0) (f))

exists and is a finite number, which is denoted by 

f ( )x ,0  that number is called rate of change of f at f x
0
.

10. Velocity and acceleration: Suppose a particle mov-

ing in a straight line covers a distance s(t) in time t.

Then the velocity v of the particle is ds/dt and itst
acceleration is

dv
dt

d s

dt

2

2

11. Angular velocity and angular acceleration: Sup-

pose a particle is moving on a plane curve. Let be 

the angle made by OP (“P O” is the origin) with the 

x-axis at time t. Then d /dt is called angular velocity t
and d2 /dt2tt is called angular acceleration.

Mean Value Theorems

12. Rolle’s theorem: If a function f is continuous on f
closed interval [a, b], differentiable in (a, b) and f (a)

f (b) then there exists c (a, b) such that f ( )c .0

Geometrically, the tangent at the point (c, f (c)) is 

parallel to the x-axis.

13. Rolle’s theorem for polynomials: In between any 

two zeros of a polynomial, there lies a zero of its

derivative polynomial. If a polynomial has n zeros, 

then its derivative has (n  1) zeros.

14. Lagrange’s mean value theorem (LMVT): If f is f
continuous on closed [a, b] and differentiable in (a, 

b), then there exists c (a, b) such that

f f
b a

f
( )b ( )a

( )c

Geometrically, the tangent at (c, f (c)) is parallel to

the chord joining the points (a, f (a)) and (b, f (b)).

15. Other forms of LMVT:

(i) In the above statement, if b is replaced by a h, 

then there exists (0, 1) such that

f f
h

f
( )a h ( )a

( )a h
h

or f f hfh( )a h ( )a ( )a hh

where (0, 1).

(ii) In (i), if a is replaced by x, then

f f h f( )x h ( )x ( )x hh

where (0, 1).

16. Deductions from LMVT:

(i) If f is continuous on [f a, b], differentiable in (a, b)

and f ( )x 0 for all x (a, b), then f(x) is a con-

stant function on [a, b].

(ii) Suppose f is differentiable in (f a, b) and 

f x b( )x ( ,a ).0  Then f is constant inf
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(Continued)

(a, b). This result fails if the domain of f is not 

an interval. For example consider the function

f ( )x
, ( , )

, (x , )

0 0, (x

1 2, (x

(iii) Suppose f andf g are continuous on [g a, b] and 

differentiable in (a, b). Further suppose that 

f g x b( )x ( )x ( ,a ).  Then f and f g will difg -

fer by a constant for all x [a, b].

(iv)  Let f a: [ , ]b �  be a differentiable function 

in (a, b). Then

(a) f is increasing on [f a, b] if and only if 

f ( )x 0 for all x (a, b).

(b) f is decreasing on [f a, b] if and only if 

f x b( )x ( ,a ).0

Note that f is strictly increasing f ( )x
x b( ,a )0  and strictly decreasing f ( )x
x b( ,a ).0

Note: To prove functional inequality f (x) g(x) on an 

interval I, show that f g( )x ( )x 0  for x I.

Maxima And Minima 

17. Let f a: [ , ]b �  be a function and a c b.

(i) Suppose, there exists  0 such that (c , c )

 [a, b] and f f x( )x ( )c ( ,c ).f )c (c c, )

Then, we say that f hasf local maximum at m x c
and f(c) is called local maximum value of f.ff

(ii) Suppose f f x( )x ( )c ( ,c ).f )c (c c, ) Then, 

we say that f has f local minimum at x c and

f (c) is called local minimum value of f.ff

(iii) If f has either local maximum or local minimumf
at x c, then f is said to havef local extremum
at c.

18. Necessary Condition for an Extremum: Suppose

f a: [ , ]b � and c (a, b). If f is differentiable atf c
and c is a point of local extremum, then f ( )c .0

Note:

(i) A function having local extremum at a point

need not be differentiable. For example, 

f x( )x is not differentiable at x 0, but f (0)

is the minimum value.

(ii) f (x) x3 is differentiable at x 0, f ( ) 0) but 

x  0 is not a point of extremum.

19. First Derivative Test: Suppose f a: [ , ]b �
is continuous, a c b and f is differentiable in f
(a, c) and (c, b). Let 0 be such that (c , c )

(a, b). Then,

(i) f has local maximum at f c ifc f x( )x 0

c( ,c ), and f x c( )x ( ,c ).0 )

(ii) f has local minimum at f c if c f x( )x (0

c( ,c ), and f x c( )x ( ,c ).0 )

20. Critical Point: A point x
0
 in the domain of a func-

tion f is said to be a critical point forf f if either f
f ( )x0  exists and is equal to zero or f ( )x0 does 

not exists, but f ( )x  exists in a neighbourhood of x
0

(in other words f is discontinuous at x
0
).

21. Testing a differentiable function for a local extre-
mum with first derivative:

Procedure:

Step 1: Find f .

Step 2:

(i) Equate f ( )x 0  and obtain values of x.

(ii) Find the values of x in the domain of f at whichf
f is discontinuous.

The values of x obtained in 2(a) and 2(b) are the

critical points.

Step 3: Let x
0
 be a critical point of f. Thenff

(i)  If f ( )x changes sign from positive to negative 

when x passes through the values less than x
0

to

the values greater than x
0
 (at x x0 0x 0(ff )  or 

f ( )x is discontinuous), then at x
0
, f has localf

maximum.

(ii)  If f ( )x 0  for x x
0
 and f ( )x 0 for x x

0
, 

then f has local minimum atf x
0
.

(iii)  If f ( )x keeps the same sign for x x
0
 and x

x
0
 then f has no extremum value atf x

0
.

The following table enables the reader about

the character of a critical point.

Sign of the derivative when x passes 
through the values at a critical 
point x0x

Character of 
the critical 
point x0x

x x0x x  x0x x  x0x

f (x
0
) 0 or f (x) 

is discontinuous 

at x
0

Local maxi-

mum at x
0

f (x
0
) 0 or f (x) 

is discontinuous 

at x
0

Local mini-

mum at x
0

f (x
0
) 0 or f (x)

is discontinuous 

at x
0

Neither

maximum nor 

minimum at

x
0
 (actually, f

increases)
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Sign of the derivative when x passes 
through the values at a critical 
point x0x

Character of 
the critical 
point x0x

x x0x x  x0x x  x0x

f (x
0
) 0 or f (x)

is discontinuous 

at x
0

Neither

maximum

nor mini-

mum at x
0
; 

the function

decreases

21. Sufficient Conditions for Extremum (Second ded -
rivative test): Let f a: [ , ]b � be a differentiable 

function and a x
0

b. Suppose f (x
0
) exists and is

equal to zero and f (x
0
) 0. Then f has local maxif -

mum at x
0

if f (x
0
)  0 and has local minimum at x

0
if

f (x
0
)  0

Note: If f (x
0
) 0 then nothing can be said about f at f

x
0
. Hence, whenever f (x

0
)  0, go for the first deriva-

tive test.

22. Darbaux Theorem or Intermediate Value Theorem
for the Derivative: Let f a: [ , ]b � be a differen-

tiable function [here f (a) means f (a + 0) and f (b)

means f (b  0)]. Then f assumes every value be-

tween f (a) and f (b).

23. Computing the greatest and least values of a func-
tion on can interval [a, b].

Step 1: Find all the critical points of f in (f a, b).

Step 2: Suppose x x xn1 2x ,2x … are the critical points, 

of f in (f a, b) at which f is extremum.f
Step 3: Consider the set  S a f x{ (f ), ( )x (f ), ,1 2x), (f
f bn( )xn , (f )}.The maximum element of S is the

greatest value and the minimum is the least value of 

f on the interval [f a, b].

L’Hospital’s Rule

24. Suppose

lim ( ) lim ( )
x a

f ( g(
a x

0

f ( )a  and g (a) exist and g (a)  0. Then

lim
( )

( )x a

f (

g(

exists and is equal to f a( )a / (g ).

Another form: If f andf g are differentiable in ag
deleted neighbourhood of a, are continuous at a, 

f (a) g(a)  0 and lim ( )/ ( ) ,
x a

f ( x/ (/( )/( /  then 

lim ( )/ ( )
x a

f ( x/ (/  exists and is equal to l.

For the other indeterminate forms, refer 

L’Hospital’s Rule-I and-II.

EXERCISES

1. Rolle’s theorem is not applicable to

(A) f (x)  9x3 4x on the interval 
2

3

2

3
,

(C) f x x( )x / /xx2/ 1 3/ on [0, 8]

(B) f x( )x x3 23 1x xx2x  on 1 1 2,

(D) f
x

x x
( )x

2 0 1xx

2 1x 2

if

i

2. The number of zeros of the function f (x)  5x3 

2 3 42x x33x3  belonging to (0, 1) is

(A) 1 (B) 2

(C) 3 (D) cannot be determined

(Hint: Use Intermediate Value Theorem.)

3. The value of c in the Rolle’s theorem for f (x) x2

2x  3 on the interval [ 1, 3] is

(A) 0 (B) 1

(C)
1

2
(D) 2

4. The point on the graph of the function y x2 x  3 

between x  1 and x  2 where the tangent is parallel 

to the chord joining the points (1, 5) and (2, 9) is

(A) (1, 7) (B)
3

2

27

2
,

(C)
3

2

27

4
, (D) 1

27

2
,

5. f is differentiable for all realf x and f (2) 3. 

Suppose 1 2f ( )x  for 2 x  5. Then

(A) 0
1

2
f ( )55 (B) 0 f (5)  1

(C) 0 f (5) 2 (D) 0 f (5) 3

Single Correct Choice Type Questions
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6. Angle of intersection of the curves y x2 and x
(5/3)cos t, y (5/4) sint ist

(A) Tan 1 1

2
(B) Tan 1 31

2

(C) Tan 1 41

2
(D) Tan 1 21

2

7. The length of the sub-tangent at any point for the

curve x a (2 cos t  cos2t), y a (2 sin t  sin2t) is

(A) y
t

cot
3

2
(B) y tt

1

2

(C) y
t

tan
2

(D) y
t

tan
3

2

8. The equation of the tangent to the curve x  1 2 

loge cot , y tan cot at /4 is

(A) x y  1 (B) y 2

(C) x  1 (D) x y  1

9. The sum of the intercepts made by a tangent to

the curve x y ay on the coordinate axes is

equal to

(A) a (B) a/2

(C) 2a (D) a

10. The length of the segment of the tangent to the

curve

y
a a a x

a a x
a xe

a

a
a

2

2 2x
2 2x

2 2xlog

at any point contained between the y-axis and the

point of tangency

(A) is proportional to abscissa

(B) is proportional to ordinate

(C) is of constant length

(D) is of length a2

11. The x-intercept of the tangent at any point (x, y) of 

the curve

a

x

b

y2 2y
1

2

is proportional to

(A) x3 (B) x2

(C) y2 (D) y3

12. The normal to the curve x2 y2 a2 at a point P(x
0
, y

0
)

meets the x-axis at a point A. These AP is equal toP

(A) a (B) x y0
2

0
2

(C) 2a (D)
1

2
a

13. Equation to the tangent at a point on the curve x2

4a whose abscissa is 2am is

(A) mx y am2 (B) my x am2

(C) mx y am2 (D) x my am2

14. The point of intersection of the tangents to the 

curve

y xsin 2
3

at the points with the abscissa x
1

0 and x
2

 5 /12 is

(A)
3

2
1, (B) 1 3 1

(C) 1
3

2
1, (D) 1

3

2
1,

15. The point on the curve

y
x

1

1 2

at which the tangent is parallel to x-axis is

(A) 1
1

2
, (B) 2

1

5
,

(C) 1
1

2
, (D) (0, 1)

16. The length of the sub-tangent at any point on the 

curve y aebx is

(A)
1

a
(B)

1

b

(C)
1

ab
(D) ab

17. The tangent at any point of the curve x a cos3 , y
a sin3 meets the x-axis in P andP y-axis in Q. Then 

the mid-point of the segment PQ lies on the curve 

whose equation is

(A) x2 y2 a2/4 (B)  x2 y2  2a2

(C) x2 y2 a2 (D) xy a2

18. The maximum value of xy (x  0, y 0) subject to the 

condition x y  16 is

(A) 16 (B) 32

(C) 64 (D) 128

19. A particle is moving in a straight line such that its 

distances s at any time t is given byt
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s t t tt t
1

4
2 4t 74 32t 2

The minimum value of its acceleration attains when

t is equal tot

(A) 2
2

3
(B) 2

(C) 2
2

3
(D) 3

20. The function f (x) 2x3  9ax2 12a2x2  1 attains its

maximum at x
1
and minimum at x

2
 such that x x1

2
2 .

Then the value of a is

(A) 2 (B) 3

(C) 1 (D) 4

21. The number of maximum and minimum values of 

the function

f
x x

( )x
x

40

3 8x 18 604 3x8 2

is

(A) 5 (B) 4

(C) 3 (D) 2

22. If f (x) x2 b/x//  has a local minimum at x 2, then b
equals

(A) 4 (B) 8

(C) 12 (D) 16

23. f
x

( )x
x

2 0x x

2 3x 0

f

f

Then, at x  0

(A) f has maximum valuef

(B) f has minimum valuef

(C) f has no extremum valuef

(D) f is decreasing forf x ≥ 0

24. If A  0, B 0 and A B /3, then the maximum 

value of tan A tan B is

(A) 1 (B) 3/4

(C) 4/3 (D) 1/3

25. If x  0, then the maximum value of loge x/x// is

(A) e (B) 1/e

(C) 1 (D) 2/e

26. The function

y
ax b

( )x ( )x)(xx

has extremum at (2, 1). Then, the maximum value

of y is

(A) 1 (B) 4

(C) −2 (D) −1

27. A line drawn through the point (1, 4) meets the

positive coordinate axes. Then, the minimum value

of the sum of the intercepts on the axes is

(A) 9 (B) 8

(C) 10 (D) 12

28. The efficiency E of a screw jack is given byE

E
tan

tan( )

where  is constant. Then the maximum efficiency

of the screw jack is

(A)
1

1

sin

cos
(B)

1

1

sin

sin

(C)
1

1

cos

sin
(D)

1

1

cos

cos

29. An open tank with fixed volume is to be constructed 

on a square base. If the material to be used is mini-

mum, then the edge of the square is

(A) 2 times the depth

(B) 3 times the depths

(C) half of the depth

(D) 2/3 times the depth

30. The equation of the line through the point (3, 4)

which forms a triangle of maximum area with posi-

tive coordinate axes is

(A) 4x  3y 24 0 (B) 2x  3y  18  0

(C) 3x  4y  25 0 (D) x  3y 15  0

31. The value of a for which the difference of the roots 

of the equation ax x2 2x 02( )a 1a ( )0a is mini-

mum is

(A) 5 (B) 1/5

(C) 4 (D) 1/4

32. lim
sin l g ( )

x

ex og (e

x

log (log (e

0 2

(A) 1/2 (B) 1

(C) 1/2 (D) 1

33. The radius of a right circular cylinder is increasing at the 

rate of 2 cm/sec whereas its height is decreasing at the
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rate 3 cm/sec. When the radius is 3 cm and height is 5

cm, the volume of the cylinder would change at the rate

of

(A) 87 cubic cm/sec (B) 27 cubic cm/sec

(C) 33 cubic cm/sec (D) 15 cubic cm/sec

34. Which one of the following statements is true?

(A) f (x)  (1 x2/3)3/2 is not differentiable at x  0, 

but has maximum at x  0

(B) x2/3 is not differentiable at x 0, but has maximum 

at x  0

(C) x 3 is differentiable at x  0 and has maximum at

x  0

(D) x1/3 is not differentiable at x 0, but has local 

extremum value at x 0

35. H is the height of a right circular cylinder of greatH -

est lateral surface area that can inscribed in a given 

sphere of radius of R. Then

(A) H  2R (B) H R 2

(C) H R 3 (D) H
R3

2

36. H is the height of a right circular cylinder of greatestH
volume that can be inscribed in a sphere of radius R.

Then

(A) H
R2

3
(B) H R2 2

(C) H
R2

3
(D) H

R

3

37. Let P(a, 0) be a point on the positive x-axis. Then the

abscissa of the point on the curve y2 2px2 which is

closest to P isP

(A) a p (B) a (p(( /2)

(C) a (p(( /2) (D) a p

38. If P(1)  0 and P P( )x ( )x for all x 1, then

(A) P(x)  0 x  0 (B) P(x) 0 for x (0, 1)

(C) P(x)  0 for all x  1 (D) P(x) 0 for all x  1

[Hint: Consider h e Px( )x ( )x  and show that h is 

increasing for x  1.]

(IIT-JEE 2003)

39. lim tan
tan( / )

x

xx
1 4

(A) e (B) 1

(C) 1/e (D) e

40. lim /

x

xx2

(A) 0 (B) 1

(C) e2 (D) e

Multiple Correct Choice Type Questions

1. Which of the following are true?

(A) In the interval [0, 2 ], the function f (x) 2 sinxnn

cos2x is maximum at x /6, 5 /6 and mini-

mum at x /2, 3 /2

(B) The function f(x(( ) x6 has minimum value at x  0

(C) The function f (x)  (x  1)3 is neither maximum

nor minimum at x  1

(D) The function f (x) x3  3x  3 has greatest value 

at x 3

2. h and r are the height and the radius of the base of r
right circular cylinder of constant volume V with

minimum total surface area. Then

(A) r V / 2 (B) r V / 23

(C) h  2r (D) h  3r

3. Let f e x( )x
2

(this curve is called Gaussian curve). 

Then

(A) f (x) increases for x 0

(B) f (x) decreases for x  0

(C) f (x) is maximum at x  0

(D) The points ( / , )2/ 1 2/ are points of inflexion

of the curve y e x2

4. Let f (x) x4  4x3 6x2 4x 1. Then

(A) f increases for f x 1

(B) f decreases for f x 1

(C) f has minimum atf x  1

(D) f has maximum at f x 1

5. Let f (x)  sinx ax b. Then

(A) f has critical points if f 1 a 1

(B) f is increasing forf a 1

(C) f is decreasing if f a 1

(D) f is neither increasing nor decreasing for anyf
value of a
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6. Let f (x) (4a  3)(x  log 5)  (a  7) sinxnn . Then f (x)

has

(A) critical points, if 4/3 a 2

(B) no critical points if af 4/3

(C) critical points if a 2

(D) If f(ff x) has critical points and a 4/3, then 

cos x 1

7. The function

f x
x

x( )x ,
1

0
2

is monotonically decreasing in

(A) (0, 1) (B) (1, )

(C) (0, 2) (D) (2, )

8. If the curves y x2 ax b and y cx x2 touch each 

other at the point (1, 0), then

(A) a b 2 (B) a c 2

(C) a b c  0 (D) b c 1

9. The abscissa of a point on the curve (a x)2 xy, the

normal at which cuts of numerically equal intercepts 

on the axes of the coordinates is

(A) 2a (B) 2a

(C) a / 2 (D) a / 2

10. Which of the following inequalities are true?

(A) tan x x
x

x
3

3
if x 0

2
,

(B) ex 1 x for all real x

(C) ex ex for x 1

(D) x
x

x x
x

x
3

1
3

3 6
Tan for 0 x 1

11. Which of the following are true?

(A) The function f (x) x5  2x3 x increases every-

where

(B) The function g(x(( ) x3  2x22 2  5 increases in ( , )

(C) The function h(x) 2x/log x decreases in (0,1) 

(1, e) and increases in (e, )

(D) The function (x) x3 ax increases on the 

entire line if a 0

12. The function f (x) x(x  1)3 (x  3)2 has

(A) no extremum value at x 1

(B) local minimum at x
1

4

(C) local maximum at x
1

4

(D) local minimum at x 3

13. Which of the following are true?

(A) The function

f
x

x
x

x
( )x

sin ,

,

0

0 0x,

vanishes at infinite number of values of x in (0, 1)

(B) If , then Tan 1 Tan 1

(C) The value of c in the Cauchy’s mean value 

theorem for the quotient

x

x

2

3 2

2 3x

7 2x2 0 5x

2x

x2x

on the interval [1, 4] is 2

(D) lim[log ( si l g ( )]
x

e e( s )c g x()cot log
0

2 2)sis 1l (sin log (sin x)cot log ()cot log2 2) t)cotx)cot is equal 

to 1

Matrix-Match Type Questions

In each of the following questions, statements are given 

in two columns, which have to be matched. The state-

ments in column I are labeled as (A), (B), (C) and (D),
while those in column II are labeled as (p), (q), (r), (s)
and (t). Any given statement in column I can have cor-

rect matching with one or more statements in column II. 

The appropriate bubbles corresponding to the answers 

to these questions have to be darkened as illustrated in 

the following example.

Example: If the correct matches are (A)  (p), (s), 

(B)  (q), (s), (t), (C)  (r), (D)  (r), (t), that is if the 

matches are (A)  (p) and (s); (B)  (q), (s) and (t); 

(C)  (r); and (D)  (r), (t) then the correct darkening 

of bubbles will look as follows:

p

A

B

C

D

q r s t
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1. Match the items of Column I to those of Column II

Column I Column II

(A) The number of minima of the func-

tion 10 15 1086 524 4 240x x6 x x04524x2424 240x4040

is

(p) 1

(B) The number of local maxima of f (x)

x sin x is 

(q) 2

(C) The minimum value of 

f x x x x x x( )x x x8 6x 4 3 22 2x xx3x 2 9

is

(r) 5

(D) Let P(4, 4) and Q(9, 6) be two

points on the curve y2 4x. R(x, y) is

a point on the curve lying between

the points P and P Q. If the area of 

RPQ is largest, then the value of 

2y2  4x is

(s) 0

2. Match the items of Column I with those of Column II

Column I Column II

(A) For the curve y xn (n is a positive

integer) a normal is drawn at the

point (h, hn) which intersects the y-

axis at (0, k). If lim / ,
h

k
0

1 2// then 

the value of n is

(p) 4

(q) 7

(r) 2

(s) 3

(t) 1/24

(B) Suppose f is differentiable for allf
real x and f ( )x 2  for all x. If 

f (1) 2 and f (4)  8, then f (2) is 

equal to

(Hint: Use Lagrange’s mean 

value theorem for f (x) on [1, 2]

and [2, 4])

(C) The number of points on the 

curve y
x

x1 2
 at which the 

slope is 1 is

(D) The minimum value of the func-

tion 
x

x x

2

2

3 2x

2 1

3x

x2x
is

3. Match the items of Column I with those of Column II

Column I Column II

(A) f is differentiable in (1, a) and continu-

ous on (1, a) and f
f f

a
( )

( )a ( )
.

1

Then the value of a is

(p) 1

(B) The integer part of c, where c is in 

the Lagrange’s mean value theorem, 

for f x x( )x x on the interval 

[1, 4] is

(q) 2

(C) If P(h, k) is the point on the curve

y  4x x2 which is nearest to the 

point Q( , 4), then k h is equal to

(r) 3

(D) f is continuous on [f a, b], differen-

tiable in (a, b). If f (a) a and f (b)

b, then there exist c
1

and c
2
 in (a,b)

such that f f( )c ( )c1 2f) (c  is equal to

(Hint: Take c
a b

2
 and use 

LMVT on [a, c] and [c, b])

(s)

(t)

4

9/4

4.  Consider the function f(x) 2sin(2sinx) 2cos2x for 0 ≤ 

x ≤ 2 . Match the items of Column I with those of 

Column II.

Column I Column II

(A) The number of critical values of f isf (p) 4

(B) f is maximum atf x is equal to (q) / , /6 5 6

(C) f is minimum at f x is equal to (r) / , /3 2

(D) The sum of the greatest and least

value of f on [0, 2f ] is

(s)

(t)

1

5/2

Comprehension-Type Questions

1. Passage: The greatest or least values of a function 

f (x) on an interval [a, b] may be attained either at a 

critical point of f or at the end points of the interval. 

Answer the following three questions.

(i)  The greatest value of f (x)  2x3  3x2  12x 1 

on the interval [ 2, 5/2] is

 (A) 10 (B) 5

 (C) 1 (D) 8
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(ii) The least value of the function sinxnn  sin2x on

is

(A)
2

3 3
(B)

4

3 3

(C)
1

3 3
(D) 0

(Hint: Since sin2x is even and is of least period 

2 , it is enough to consider [0, ])

(iii) The sum of the least and greatest values of

f
x x

x x
( )x

x

x

1

1

2

2

on [0, 1] is

(A) 1 (B) 3/5

(C) 8/5 (D) 2/5

2. Passage: The perpendicular distance of a straight

line ax by c  0 from a point (x
1
, y

1
) in the xy-

plane is given to be
ax b c

a b

1 1by
2 2b

by1by
. Answer the fol-

lowing two questions.

(i) If OT andT ON (N O is the origin) are the perpen-

diculars drawn from O onto the tangent and

normal to the curves x a sin3t andt y a cos3t, 
then 4OT2TT ON2NN  is equal to

(A) 2 2a (B) 2a2

(C) a2 (D) 3 2a

(ii) P is a point on the curve 2P x a (3 cos cos 3 )

2y2 a (3 sin  sin3 ). If p is the length of the

perpendicular from the origin O onto the tan-

gent at P to the curve, then 3P p3 2 4a2 is equal to

(A) 3OP2 (B) 2OP2

(C) 4OP2 (D) OP2

3. Passage: Using the first derivative test for a function 

to determine extrema, answer the following ques-

tions.

(i) The minimum value of

f
x x

( )x
x

50

3 8x 18 604 3x8 2

is

(A) 5/6 (B) 2/3

(C) 50/53 (D) 1

 (ii) The minimum value of the function ex2

1 is

(A) 1 (B) 0 (C) 1 (D) e 1

(iii) The function y f (x) is parametrically repre-

sented by the equations

x t

y t t t

t

t

5 3

3 2t

5 3t3t 0 7tt

4 3tt3 18 3

where t 2. Then y f (x) has maximum value 

14 at x equals

(A) 21 (B) 11

(C) 31 (D) 21

4. Consider the function f :  defined by

f
x ax

x ax
( )x

ax

ax

2

2

1

1

where 0 a 2. Answer the following two ques-

tions.

(i) Which of the following is true?

(A) ( ) ( ) ( ) ( )( 02 2( ) ( )( )( )( (f)))2) f)))))2( ) ( )( )( f2))

(B) ( ) ( ) ( ) ( )( ( 02 2( ) ( )( )( (f))))2) f)))2( ) ( )( f2)))

(C) ff ( ) ( ) ( )af ( 2

(D) ff ( ) ( ) ( )af ( 2

(ii) Which of the following is true?

(A) f (x) is decreasing on ( 1, 1) and has a local

minimum at x  1

(B) f (x) is increasing on ( 1, 1) and has local

maximum at x 1

(C) f (x) is increasing on ( 1, 1) and has no

local extremum at x 1

(D) f (x) is decreasing on ( 1, 1) and has no

local extremum at x  1

(IIT-JEE 2008)

5. Passage: If f :  is continuous and assuming

positive and negative values, then f (x)  0 has a root 

in .  For example, if f is continuous and positive atf
some point and its minimum value is negative, then

f (x) 0 has a real root. Now consider the function

f (x) kex x for all real x and k is a real constant.

Answer the following questions.

(i) The line y x meets y kex for k 0 at

(A) no point (B) one point

(C) two points (D) more than two points

(ii)  The positive value of k for which kex x 0 has

only one root is

(A) 1/e (B) 1

(C) e (D) loge2
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(iii) For k  0, the set of all positive values of k for 

which kex x 0 has two distinct roots is

(A) 0
1

,
e

(B)
1

1
e

,

(C)
1

e
, (D) (0, 1)

(IIT-JEE 2007)

Assertion–Reasoning Type Questions

In the following set of questions, a Statement I is given

and a corresponding Statement II is given just below it.

Mark the correct answer as:

(A) Both Statements I and II are true and Statement II 

is a correct explanation for Statement I.

(B) Both Statements I and II are true but Statement II

is not a correct explanation for Statement I.

(C) Statement I is true and Statement II is false.

(D) Statement I is false and Statement II is true.

1. Statement I: The function f (x) 2  (x  1)2/3 attains

maximum value 2 at x 1.

Statement II: If f  does not exist at a point x
0
 but

f  exists in a neighbourhood of x
0

and changes its

sign at x
0
, then x

0
 is a point of local extremum.

2. Statement I: On the interval [0, /2], the maximum

value of sinxnn  is 1.

Statement II: sinxnn  is strictly increasing on [0, /2].

3. Statement I: lim
sin

x

x xsin

x
1

StatementII: If lim ( ) lim ( )
x x

f ( g( and

lim
( )

( )x

f (

g (
exists (finitely or infinitely), then

lim
( )

( )
lim

( )

( )x x)

f (

g((

f (

g (

4. Statement I: Both sinx and cosx are decreasing 

functions on ( /2, ).

Statement II: If f is decreasing on (f a, b), then its 

derivative also decreasing on (a, b).

[Hint: Derivative of cos x increases in ( /2, )]

5. Consider f x( )x cos ,x .2 �
Statement I: For each real t, there is a point c
[t, t ] such that f ( )c 0 .

Statement II: For each real t, f (t) f (t 2 ).

6. Statement I: The function

f
x

x
x

( )x
sin2 2

1
0

2 0x

2 if

if

has local maximum at x  0.

Statement II: If f (x) continuous on (a, b) and has a

local maximum at the point c (a, b), then in a suf-

ficiently small neighbourhood of c, f (x) increases 

for x c and decreases for x c.

Note: Statement II is wrong according to the func-

tion given in Statement 1.

Integer Answer Type Questions
The answer to each of the questions in this section is a 

non-negative integer. The appropriate bubbles below the 

respective question numbers have to be darkened. For 

example, as shown in the figure, if the correct answer to 

the question number Y is 246, then the bubbles under Y
labeled as 2, 4, 6 are to be darkened.

0 0 0 0

X Y Z W

1111

222

3333

444

5555

666

7777

8888

9999
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1. (D)

2. (A)

3. (B)

4. (C)

5. (D)

6. (C)

7. (A)

8. (B)

9. (A)

10. (C)

11. (A)

12. (B)

13. (A)

14. (C)

15. (D)

16. (B)

17. (A)

18. (C)

19. (B)

20. (A)

21. (C)

22. (D)

23. (B)

24. (D)

25. (B)

26. (D)

27. (A)

28. (B)

29. (A)

30. (A)

31. (B)

32. (A)

33. (C)

34. (A)

35. (B)

36. (C)

ANSWERS

Single Correct Choice Type Questions

1. If lim
log ( )

,
x

ax ax

e

e eax

x
ka

0

2

1
then the value of k is

_______.

2. The maximum value of the function f (x) 2x3

15 36 482x x362 36x36 on the set A { }x x x2 is

_______.

[Hint: A [4, 5]]

3. If the tangents to the curve y x2 5x  6 drawn

at the points P(x
1
, y

1
) and Q(x

2
, y

2
) pass through 

the point M(1,1), then x
1

x
2

y
1

y
2
 is equal to

_______.

4. The area of the triangle bounded by the coordinate

axes and the tangent to the curve y x/(2x  1) at the

point with abscissa x
1

 1 is _______.

5. If the interval [a, b] is the image of the interval 

[ 1, 3] under the mapping (function) f (x)  4x3  12x
then b a/aa  is equal to _______.

6. The greatest value of f x x( )x 2 5 6xx  on the in-

terval [0, 2.4] is_______.

7. The greatest value of the function f x( )x ( )xx
is _______.

8. If the Lagrange’s mean value theorem is applicable

for

f x x

mx b x

( )x x

b

3 0x

3 0x aa 1

2x

2

f

f

on the interval [0, 2], then the value of a b m
is_______.

9. If f, g and g h are continuous on [a, b] and differen-

tiable in (a, b), then there exists (a, b) such that 

the value of the determinant

f f f

g g g

h h h

( )a ( )b ( )

( )a ( )b ( )

( )a ( )b ( )

is 

_______.

10. Let f : be twice differentiable function such

that f (a) f  0, f (b) 2, f d f( )c , (f ) , ( )ef )e1 d, f ) 0

where a b c d e. Then the minimum number

of zeros of the function

g x f f( )x [ (f )] ( )x ( )x2

in the interval [a, e] is _______.

[Hint: First note that g
d
dx

x x( )x ( (f ) (f )). Use

Rolle’s theorem and Intermediate value theorem for

continuous functions.]
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37. (A)

38. (C)

39. (C)

40. (B)

Multiple Correct Choice Type Questions

1. (A), (B), (C)

2. (B), (C)

3. (A), (B), (C), (D)

4. (A), (B), (C)

5. (A), (B), (C)

6. (A), (B), (D)

7. (A), (D)

8. (B), (C), (D)

9. (C), (D)

10. (A), (B), (D)

11. (A), (B), (C), (D)

12. (A), (B), (C), (D)

13. (A), (B), (C), (D)

Matrix-Match Type Questions

1. (A)  (p); (B) (s); (C) (r); (D)  (p)

2. (A)  (r); (B)  (p); (C) (s); (D)  (t)

3. (A)  (r); (B)  (q); (C) (q); (D) (q)

4. (A)  (p); (B) (q); (C)  (r); (D) (t)

Comprehension Type Questions

1. (i) (D); (ii) (B); (iii) (C)

2. (i) (C); (ii) (C)

3. (i) (B); (ii) (B); (iii) (C)

4. (i) (A); (ii) (A)

5. (i) (B); (ii) (A); (iii) (A)

Assertion Reasoning Type Questions

1. (A)

2. (A)

3. (B)

4. (C)

5. (B)

6. (C)

Integer Answer Type Questions

1. 3

2. 7

3. 8

4. 2

5. 9

6. 6

7. 5

8. 8

9. 0

10. 6
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Indefinite integration, also 

known as antidifferentia-
tion, is the reversing of the

process of differentiation.

Given a function f, one finds ff
a function F such that F f. ff
Finding an antiderivative is 

an important process in cal-

culus. It is used as a method

to obtain the area under a

curve and to obtain many 

physical and electrical equa-

tions that scientists and 

engineers use everyday.
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4.1 Introduction

After carefully studying Chapter 3 on differentiation, a natural question that arises is: Given a function on an internal

I, can we find a function g defined ong I such that the derivative of I g is g f? That is, is there a function g such thatg g f
on I. In most of the cases, the answer is yes. In general, the statement that “if f (x) is a function then there exists a func-

tion g such thatg g (x) f (x)” is not true. For example, if f (x) is equal to a, b or c according as x is less than, equal to or

greater than 0, then there is no function g such thatg g (x) f (x) unless a b c for which the reason is that f is disconf -

tinuous at 0. However, if f is a continuous function on an intervalf I, then there is always a function g such that g g f onf
I (which will be proved in Chapter 5). The process of findingI g such thatg g f is called integration. It is in this sense, 

we say that integration is the inverse process of differentiation. Let us begin with the following definition.

DEFINITION 4.1 Antiderivative Suppose f is defined on an interval f I of I �.  Then a F function defined on I is I
said to be an antiderivative or primitive of f iff F is differentiable onF I and I F f x I( )x ( )x .

Examples

1. Let f (x) x on (0, 1). Take F x( )x / ( , ).x /2 0(x
Then F x f x( )x ( )x ( , )1,  so that F (x) x2/2

is a primitive of f (x) x on (0,1).

2. Let f andf F be as in (i) and F k be any constant. De-

fine g F k x( )x ( )x ( , ).F )x x 1, Then clearly g (x)

F f( )x ( )x( ) ( , ).x0 f )x ( 1  Thus, g is also a primig -

tive of f on (0,1).f
3. Let f (x)  sin x, x (0, /2) and F (x)  –cos x on (0, 

/2). Then F (x)  –(–sin x)  sin x f (x) so that –cos 

x is a primitive of sin x on (0, /2).

4. Let f (x) cos x on (0, /2) and F (x) sin x on 

(0, /2) so that F (x)  cos x f (x) and hence sin x is 

a primitive of cos x on (0, /2).

5. Let F (x)  loge x on (0, ) and f (x)  1/x// on (0, ) so

that F (x) 1/x// f (x) on (0, ) and hence log x is a

primitive of 1/x// on (0, ).

6.  Let f (x) ex and F (x) ex on � so that F (x) ex

f (x) and hence ex is a primitive of ex on �.

7. Let I � be an interval and f x I( )x .0  Suppose 

F(x) k (constant) fork x I. Now, II F (x) 0 for all x
I implies thatI F(x) is primitive of f(x) on I.II

Note: If f andf F are defined on F I and F (x) f (x), then

d
dx

x F f( (F ) )k ( )x ( )xk

(where k is a constant) which shows that if F is a primitive of F f onf I, then F k is also a primitive of f onf I. Hence, if f
has a primitive then it has infinitely many primitives.

In point (7) above we have proved that if F (x) k (constant) on an interval, then F (x)  0 on I so that on the interI -

val I, constant function is a primitive of zero function. The converse of this result is also true. This, we establish in the 

following theorem.

THEOREM 4.1 A function F on an interval F I is a primitive of the zero function on I I if and only if I F is a constant F
function on I.

PROOF Suppose F is a constant function say F k on the interval I. Then F k x I( )x k so that 

F x I( )x .0 Thus F is a primitive of the zero function on F I. Now, suppose F is a primitive of F
the zero function on I. Then F x I( )x .0 Suppose a, b I and I a < b so that [a, b] I. Then

F is differentiable and hence is continuous on [F a, b]. Therefore by Lagrange’s mean value theo-

rem, there exists c  (a, b) such that

F F
b a

F
( )b ( )a

( )c 0

Consequently, F (b) F (a). This being true for every a, b I, it follows that F is a constant funcF -

tion on I.

Note: In Theorem 4.1, if I is not an interval the result may not be true. For example, takeI I (–1, 0)  (0, 1) and
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F
x

x
( )x

x

x

1 1 0

1 0 1

o

so that F is not a constant function onF I, but F (x) 0 for x I.

COROLLARY 4.1 Let f, ff F and F G be functions defined on an interval I, and F and F G be primitives of f onf I. Then F
and G differ by a constant. That is, F –F G is a constant function on I.

PROOF Write F – F G. Then

( ) ( ) ( ) ( ) ( )F) G) f) f) x) I(f )

Hence is a primitive of the zero function on I. So by Theorem 4.1, is a constant function, say

k on I. Then

F G k x I( )x ( )x ( )xG )x k(

Note: From Corollary 4.1, we have the following: If F is a primitive of F f on an interval f I, then { }  is the set 

of all primitives of f onf I.

DEFINITION 4.2 Let f be defined on interval f I and I F be a primitive of F f on f I. If k is any constant, thenk F k is calledk
an indefinite integral of f on f I and is denoted by ∫ I f(x) dx. The sign ∫ is the integral sign and x is

only a dummy variable. It can be replaced by any other variable or ∫ f can also be used. Thusf

f dt f dx Fdd kf f dt F( )tt ( )x ( )x( )x

where k is any constant. In this case f is called thef integrand, f is the f indefinite integral (orl
simply integral of f ) and k is called the constant of integration.

Note:

1. Here onwards constant of integration is denoted by “c” instead of k.

2. By definition, f ( )x dx is differentiable and
d
dx

f ( )xf dx( )x  on I.

3. If f is differentiable on f I, then f dx f c( )x ( )x .

From the definition of integral of a function we can list out integrals of some known differentiable functions which are 

called standard integrals. We would list them in separate sections, so that the student can have a ready reference. Even

though the following theorem is a consequence of the differentiation, for completeness sake, we state and prove it.

THEOREM 4.2 Suppose f and f g are defined on an intervalg I.

 (i) If f and f g have integrals ong I, then f g also has integral ong I andI

( )g( dx c( )g( dx( ) ( )dx f ( dx)dx

(ii) If f has integral onf  I and I is any constant, then  f has integral onf I andI

f dx c( )x( )f d( )x dxf )x

PROOF  (i) Write F f dx( )x ( )x and G g dx( )x ( )x .  Then F (x) f(x) and G (x) g(x) so that

( ) ( ) ( ) ( ) ( ) ( )F) G) f) g)( )f )

Hence,
( )( ) ( )( )d) x (dd )( c)( d) xdd ))(

 4.1 Introduction
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( ) ( )

( )

F( G( c

g( dx c

)F(

( )f ( dx)f ( dx

(ii) We have

( )f d) x cd(f d) xdd( )( ) ( ) ( ) ( )) ( ( ))()( d ) ( dx F(( c))F((

Note:

1. If f1ff , f2ff , , fnff  have integrals on I and I 1, 2, n are constants, then 1 f1ff 2 f2ff n fnff  has integral on I andI

( )f d)d) x cdnff (f d) xddnff( )(2( ) ( ) ( )1 1 2 2 1 1 2d)) x f1 1d d) 2x 2dd f ))n n nd)) d ((f ))(1f1 d) xd ( )1)

2. We have

f g x dx

dx c

f dx g

dx

dxf

f g xg x

f dxdxf

(dxdddxd ( ))( )

xx ( )gg ( )x( )x

( )x( )xx ( )x))dx c

THEOREM 4.3
(METHOD OF

SUBSTITUTION)

Suppose I andI J are intervals, J g :g J I is differentiable andI f I �  has integral with primitive 

F. ThenFF ( ) g J: J �) g J: has an integral and

(( ) )( ) ( ( )) ( ) ( ( ))f g )( dx f ( x g)) d) x Fdd x( c( ( ))F x(

PROOF By hypothesis

f dt F c( )t ( )t( )tF )t

Now F I: � is differentiable, being a primitive of f, and ff g: J I is differentiable. HenceI
F g J �g J:  is differentiable and

( ) ( ) ( ( )) ( )

( ( )) ( ) [ ( ) ( )]

F) x( g (

f ( x g)) ) [ t) t

( ( ))x( g

( ) [) [

( )( ) ( )g) (4.1)

Hence

( ( )) ( )

( ) ( ) [

f x( g ( dx

d) xdd

( )( ) ( )g) d) xdd

using Eq. (4.11)11 ]

( )( )

( ( ))

c)

F( cx))

Note:

1. In practice, to evaluate f dt( )t on I, we try to find a function g : J I andI (( ) )( )f g )( dx  on J which iJ s nothing

but f dt( )t  by taking t g x Jg( )x( )x . That is why evaluating an integral using Theorem 4.3 is called the method

of substitution.

2. In practice, even though the constant of integration c is not written, we assume its presence.

Some useful consequences of method of substitution, the method of Integration by Parts and various methods of 

integration are discussed appropriately in the following sections. Since this chapter is very important, in these sec-

tions we will give examples in the form of “Single Correct Answer Type” for students to practice the questions sec-

tion-wise. A consolidated section with more problems would be presented in the “Worked-Out Problems” section.
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4.2 Examples on Direct Integration Using Standard Integrals

In this section we will be solving examples based on direct integration using the standard integrals. These integrals and

some important formulae are given below.

Standard Integrals

A.1 x dxdd
x
n

n
n

c
1

1
( )n 1

A.2
1

x
dx x ce xelog

A.3 a dxdd
a

a
cx

x

elog
( )a

A.4 e dx edd cx xdxd exe

A.5 sin cosdx xcos c

A.6 cos idx xs csin xsin

A.7 sec t2 dx xtan ctan xtan

A.8 cosec2x x ccot

A.9
dx

a x

x
a

x
a

c
2 2x

1 1x
cSin Cc1 x

c11 x
os ( )a 0a

A.10
dx

x a a a a
x
a2 2a

11 1x1 x
Tan Cc1 x

c1 x11 x
ot ( )a 0

A.11 sinh hx dx xcoshdd ccosh xcosh

A.12 cosh i hx dx xsdd csinh xsinh

In A.11 and A.12, sinh x
e ex xe

2
 and cosh x

e ex xe
2

A.13
dx

x a

x
a

c a x

x
a

c x a
2 2a

1

1

c a

c

Cosh if

Cosh if

log( )x x a c)2 2  on any interval contained in ( , a)

( a, a) (a, ∞)

A.14
dx

x a

x
a

c ce
2 2a

21 x 2 Sinh c1 x
c1 og ( ))x x a2x 2xx a2

A.15
dx

x a a
x a
x a

ce2 2a

1

2
log

A.16
dx

a x a
x a
x a

c
2 2x

1

2
log

A.17 ( )f ( dx c2ff )f ( dxff( ( ) ( )) ( )x( x( dx f ( dx1 2( )x( 1( )ff ( dx))x( dx

A.18 ( )f ( dx( ( ))x d)) x kdd  where k is a real constant

A.19 f dx
a

F( )ax b ( )ax bdx)b
1

where f dt F c( )t ( )t( )tF )t

 4.2 Examples on Direct Integration Using Standard Integrals
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Note: A.19 gives you that in all the other formulae A.1—A.18 if x is replaced by px  q on the left-hand side then you 

have to divide the right-hand side by p, that is, the coefficient of x.

 Example    4.1  

If

( )4 5 2 13 2 4 3 2x x x dx x ax x x c

then a is equal to

(A) 
5

3
   (B) 

3

5
   (C) 5

3
   (D) 3

5

Solution: Since x dx
x
n

c nn
n 1

1
1( ), we have

( )4 5 2 1 4
4

5
3

2
2

3 2
4 3 2

x x x dx
x x x

x c

x x x x c4 3 25

3

Therefore

a
5

3

Answer: (A)

Note: Here, the single constant c is the sum of all the arbitrary constants arising in the individual integrals.

 Example    4.2  

If

x x

x
dx ax bx c x k

2
5 2 3 25 1 / /

then a  b  c is equal to

(A) 
16

15
   (B) 

26

15
   (C) 2   (D) 26

15

Solution: We have

x x

x
dx x x x dx

2
3 2 1 2 1 25 1

5( )/ / /

x x x
k

( / ) ( / ) ( / )

( / ) ( / ) ( / )

3 2 1 1 2 1 1 2 1

3 2 1
5

1 2 1 1 2 1

2

5

10

3
25 2 3 2 1 2x x x k/ / /

Therefore

a b c
2

5

10

3
2

6 50 30

15

26

15

Answer: (B)

 Example    4.3  

If

x
x

dx
x

x x x c
n

e
n n n3

3

3
1

2

9

4

9

2

1

2 3 4(log )

then n1  n2  n3  n4 equals

(A) 5    (B) 6    (C) 4    (D) 9

4

Solution: We have

x
x

dx x
x

x x dx3

3

3
1 3 1 31 1

3 3/ /

1

2
3

4 3
3

2 3

2
4 3 2 3

x x
x x

celog
/ /

/ /

 
1

2

9

4

9

2

2 4 3 2 3x x x x celog / /

Therefore

n n n n1 2 3 4 2 1
4

3

2

3
5

Answer: (A)
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Example 4.4

3
1

2

1 3 1 2 5 4x x x dx/ / /  is equal to

(A) 
9

2

1

2

4

9

2 3 9 4x x x c/ /  

(B) 
9

2

9

4

2 3 9 4x x x c/ /

(C) 9

4

1

2

4

9

2 3 9 4x x x c/ /

(D) 9

2

4

9

2 3 9 4x x x c/ /

Solution: We have

3
1

2
3

1 3 1

1

2

1 3 1 2 5 4
1 3 1 1 2

x x x dx
x x/ / /

( / ) ( /

( / )

))

( / )

1

1 2 1

  

( / )

( / )

5 4 1

5 4 1

x
c

9

2

4

9

2 3 1 2 9 4x x x c/ / /

Answer: (D)

Example    4.5  

sin cos
x x

dx
2 2

2

 is equal to

(A) 1  sin x  c (B) x – cos x  c

(C) x  cos x  c (D) 1 – cos x  c

Solution: We have

sin cos sin cos sin cos
x x

dx
x x x x

dx
2 2 2 2

2
2

2
2

2
2 2

( sin )

cos

1 x dx

x x c

Answer: (B)

Example    4.6  

3
3

4
3

3sin sin
x x

dx  is equal to

(A) cos x  c (B) sin x + c

(C) –cos x + c (D) –sin x  c

Solution: We have

3
3

4
3

3
3

3sin sin sin

sin

cos

x x
dx

x
dx

xdx

x c

Answer: (C)

Example    4.7  

(cosh sinh )2 2 2x x dx  equals

(A) 
1

2
2sinh x c  (B) 

1

2
2cosh x c

(C) 1

2
2cosh x c  (D) x  c

Solution: We have

(cosh sinh )2 2 2

2 2

2 2
x x dx

e e e ex x x x
22

dx

1 42 2 2dx a b a b ab[ ( ) ( ) ]∵

 x  c

Answer: (D)

Example    4.8  

1 4
2

x x x
dx  equals (A) 

1 8
2

x x
x c  (B) 

1 8

x x
x c

 4.2 Examples on Direct Integration Using Standard Integrals
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(C) 1 8
2

x x
x c  (D) 1 8

2
x x

x c

Solution: We have

1 4
2 4 2

2

2 3 2

x x x
dx x x dx( )/

x x
x c

2 1 3 2 1

2 1
4

3 2 1
2

/

( / )

 
1 8

2
x x

x c

Answer: (C)

 Example    4.9  

x
x

dx2

3

2
1

 is equal to

(A) 
x

x x c
5

8 3 1 3

5

1

4
3/ /

(B) 
x

x x c
5

8 3 1 3

5

1

2
2/ /

(C) x
x x c

5
8 3 1 3

5

3

8
3/ /

(D) x
x x c

5
8 3 1 3

5

3

4
3/ /

Solution: We have

 x
x

dx x x x dx2

3

2
4 5 3 2 31

2( )/ /

 
x x x

c
5 5 3 1 2 3 1

5
2

5 3 1 2 3 1

( / ) ( / )

( / ) ( / )

 
x

x x c
5

8 3 1 3

5

3

4
3/ /

Answer: (D)

 Example    4.10  

dx

x x1
 is  equal  to a x x bx x c( )1 1  

where

(A) a b
2

3
 (B) 

a
b

1

(C) a b
2

3
 (D) a b

1

3

Solution: We have

1

1
1

x x
dx x x dx( )

( )

( / ) ( / )

( / ) ( / )x x
c

1

1 2 1 1 2 1

1 2 1 1 2 1

2

3
1

2

3

3 2 3 2( ) / /x x c

Therefore

a
b

2 3

2 3
1

/

/

Answer: (B)

 Example    4.11  

If

3 2 1
9 10 15

2
2x x

x
dx k x x x c( )

then k equals

(A) 
2

13
 (B) 

13

2
 (C) 15

2
 (D) 2

15

Solution: We have

3 2 1
3 2

6

5

4

3
2

2
3 2 1 2 1 2

5 2 3 2

x x

x
dx x x x dx

x x x

( )/ / /

/ / 11 2

22

15
9 10 15

/

( )

c

x x x c

Answer: (D)
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 Example    4.12  

If cos cos sin sin ,x x dx a x b x c2 3  then

(A) a b
1

2
 (B) a b

1

3

(C) a b
1

2
 (D) 

a
b

3

Solution: We have

 cos cos
cos cos

x x dx
x x

dx2
3

2

 
1

2

1

3
3sin sinx x c

Therefore a  1/2, b  1/6 so that

a
b

3

Answer: (D)

 Example    4.13  

If cos cos cos sin sin sinx x x dx
a

x
b

x
c

x2 5
1

2
1

4
1

6  

sin ,
d

x k
1

8 then a, b, c, d are in

(A) AP (B) GP (C) HP (D) ac  bd

Solution: We have

cos cos cos (cos cos ) cosx x x dx x x x dx2 5
1

2
3 5

 
1

2
5

1

2
3 5cos cos cos cosx xdx x xdx

1

2

1

2
4 6

1

2

1

2
2 8(cos cos ) (cos cos )x x dx x x dx

1

4
2 4 6 8(cos cos cos cos )x x x x dx

1

4

1

2
2

1

4
4

1

6
6

1

8
8sin sin sin sinx x x x k

Therefore

a  8, b  16, c  24, d  32

So a, b, c, d are in AP.

Anwser: (A)

 Example    4.14  

cos cos

cos

8 7

1 2 5

x x
x

dx  is equal to

(A) 
1

3
3

1

2
2cos cosx x c

(B) 
1

3
3

1

2
2sin sinx x c

(C) 
1

3
3

1

2
2cos cosx x c

(D) 
1

3
3

1

2
2sin sinx x c

Solution: We have

(cos cos )

cos

(cos cos )sin

sin sin

8 7

1 2 5

8 7 5

5 10

x x
x

dx
x x x

x x
dx

2
15

2 2
5

2
15

2

5

2

sin sin sin

sin cos

x x
x

x x
dx

sin sin cos

cos

x x x

x
dx

2
2

5

2

5

2

5

2

2
2

5

2
sin sin

x x
dx

(cos cos )2 3x x dx

(cos cos )3 2x x dx

1

3
3

1

2
2sin sinx x c

Answer: (B)

 4.2 Examples on Direct Integration Using Standard Integrals
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 Example    4.15  

If (sec tan ) tan ( ) ,x x dx x f x c2 2  then f (x) is equal 

to

(A) 2 sec x – x (B) x – 2 sec x

(C) 2 sec x  x (D) x  2 sec x

Solution: We have

(sec tan ) (sec sec tan tan )x x dx x x x x dx2 2 22

( sec sec tan )2 1 22 x x x dx

2 2tan sec sec tan secx x x c x xdx x c∵

Therefore

f (x)  2 sec x – x

Answer: (A)

 Example    4.16  

sec2 2x x dxcosec  equals

(A) sec x  cosec x  c

(B) sec x – cosec x  c

(C) tan x – cot x  c

(D) tan x  cot x  c

Solution: We have

sec
sin cos

sin cos

sin cos

2 2

2 2

2 2

2 2

x x dx
dx

x x

x x

x x

cosec

ddx

 (sec )2 2x x dxcosec

  tan x – cot x  c

Answer: (C)

 Example    4.17  

x x

x x
dx

2 2

2 21

cos

( )sin
 is equal to

(A) Tan–1x  cot x  c (B) Tan–1x – cot x  c

(C) Cot–1x – tan x  c (D) –Tan–1x – cot x  c

Solution: We have

x x

x x
dx

x x

x x
dx

2 2

2 2

2 2

2 21

1

1

cos

( )sin

sin

( ) sin

1 1

12 2sin x x
dx

 cosec2

21
x

dx

x

  – cot x – Tan–1 x  c

Answer: (D)

 Example    4.18  

2 5

10

x x

x
dx  is equal to

(A) 
2

2

5

5

x

e

x

e

c
log log

 (B) 
2

2

5

5

x

e

x

e

c
log log

(C) 
2

2

5

5

x

e

x

e

c
log log

 (D) 
5

5

2

2

x

e

x

e

c
log log

Solution: We have

2 5

10

2

10

5

10

x x

x

x x

dx dx

1

5

1

2

x x

dx

1

5

1

5

1

2

1

2

x

e

x

e

x
x

c a dx
a

log log
log

∵
ee a

c ( .see A 3)

5

5

2

2

x

e

x

e

c
log log

Answer: (A)
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 Example    4.19  

If 
x

x
dx f x

x
c

3

2

1

22( )
( ) ,  then f (x) is equal to

(A) loge (x  2) (B) loge|x  2|

(C) loge |x  1| (D) x  2

Solution: We have

x

x
dx

x

x
dx

x x
dx

3

2

2 1

2

1

2

1

2

2 2

2

( ) ( )

( )

 loge x
x

c2
1

2

Therefore, f (x)  loge |x  2|.

Answer: (B)

 Example    4.20  

dx

ax b ax c k
ax b ax c C

2

3

3 2 3 2[( ) ( ) ]/ /  

where k is equal to

(A) a(b – c) (B) a(c – b)

(C) b(c – a) (D) b(a – c)

Solution: We have

dx

ax b ax c

ax b ax c
ax b ax c

dx
( ) ( )

 
1 1 2 1 2

b c
ax b ax c dx[( ) ( ) ]/ /

1

1

2
1

1

2
1

1 2 1 1 2 1

b c
ax b

a

ax c

a

( ) ( )( / ) ( / )

C

2

3

3 2 3 2

a b c
ax b ax c C

( )
( ) ( )/ /

Therefore

k  a(b – c)

Answer: (A)

 Example    4.21  

dx

x x2 2 3
 equals

(A) Tan 1 1

2

x
c

(B) 
1

2

1

2

1Tan
x

c

(C) 
1

2

1

2

1Tan
x

c

(D) 
1

2

2

2
loge

x

x
c

Solution: We have

 
dx

x x

dx

x2 22 3 1 2( )

 
1

2

1

2

1Tan
x

c  (See A.10)

Answer: (B)

 Example    4.22  

dx

x x3 2 2
 is equal to

(A) sin(x – 2)  c (B) sin
x

c
2

2

(C) 
1

2

1

2

1Sin
x

c  (D) Sin 1 1

2

x
c

Solution: We have

 
dx

x x

dx

x3 2 4 12 2( )

 Sin 1 1

2

x
c  (See A.9)

Answer: (D)

 4.2 Examples on Direct Integration Using Standard Integrals
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 Example    4.23  

cos3 x dx  is equal to

(A) 
1

4

1

3
3sin sinx x c

(B) 
1

4

1

3
3 3sin sinx x c

(C) 
1

3
3

1

4
sin sinx x c

(D) 
1

4

1

3
3 3cos cosx x c

Solution: We have

cos (cos cos )

sin
sin

3 1

4
3 3

1

4

3

3
3

x dx x x dx

x
x c

Answer: (B)

 Example    4.24  

dx

x x5 2 2
 is equal to

(A) log (( ) )e x x x c1 2 52

(B) Cosh 1 1

2

x
c

(C) log (( ) )e x x c1 42

(D) Sinh 1 1

4

x
c

Solution: We have

dx

x x

dx

x5 2 2 12 2 2( )
 

log [( ) ]e x x x c1 2 52

(See A.14)

Answer: (A)

 Example    4.25  

If 
dx

x x a
x
x

ce2 2 8

1 2

4
log  then a is equal to

(A) 4 (B) 2

(C) 6 (D) 1

Solution: We have

dx

x x

dx

x2 2 22 8 1 3( )

 
1

2 3

1 3

1 3( )
loge

x
x

c  (See A.15)

1

6

2

4
loge

x
x

c

Answer: (C)

4.3 Integration by Substitution

The formula we use is

f g x g x dx f t dt( ( )) ( ) ( )

where t  g(x). After evaluating f t dt( ) ,  we return to the old variable x.

Note:

1.  In some of the problems, where more number of substitutions are used, it is difficult to return to the old variable. 

In such cases we leave the answer in the final variable.

2.  There are no fixed rules for substitution. One can get perfection only by practice.
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The following three are important consequences.

1. ( ( )) ( )
( ( ))

( )f x f x dx
f x

n
c nn

n 1

1
1

2. 
f x
f x

dx f x ce
( )

( )
log ( )

3. 
f x

f x
dx f x c

( )

( )
( )2

Before going for worked-out problems, we obtain some more standard formulae. In B.1–B.3 we will use point (2) 

above.

B.1 tan
sin

cos

sin

cos

log

log sec

xdx
x
x

dx

x
x

dx

x c

x c
e

e

cos

B.2 cot
cos

sin
log sinx dx

x
x

dx x ce

B.3 sec
sec (sec tan )

sec tan
log sec tanx dx

x x x
x x

dx x x ce

 log
sin

cos
e

x
x

c
1

B.4 cosec cosecx dx x x c
x

ce elog cot log tan
2

We now use B.3 and B.4 in the evaluation of the following integrals. After this we would present more examples in 

“Single Answer Type Questions.”

 Illustration    1  

Evaluate 
dx

a x b xsin cos
.

Solution: Let

I
dx

a x b xsin cos

Put a  r cos  ,  b  r sin   so that r a b2 2  and   is 

given by the equations cos    a/r and sin    b/r. Therefore

 

I
r

dx
x

1

sin( )

 

1

r
x dxcosec ( )

1

2 22 2a b

x
celog tan

Note:

1. If we put a  r sin   and b  r cos  , then the integral will be transformed to ( / ) sec( ) .1 r x dx

2.  Another method of evaluation of the integral is:  Write sin x and cos x in terms of tan x/2 and then substitute  

t  tan(x/2).

 4.3 Integration by Substitution
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3. To evaluate 
dx

a x b x csin cos
,  the only method is the substitution t  tan(x/2).

 Example    4.27  

( ) ( ) ( ) ,/ /x x dx k x x c4 1 3 7 4 4 3 41 1 4 3  where k is 

equal to

(A) 
1

112
 (B) 

1

28

(C) 
3

112
 (D) 

1

56

Solution: Let

I x x dx( ) /4 1 3 71

Put x4  1  t3 so that

4x3 dx  3t2 dt

 Illustration    2  

Evaluate I
dx

x a x b
a b

sin( )sin( )
( )

Solution: We have

I
x a x b

b a x a x b
dx

sin[( ) ( )]

sin( )sin( )sin( )

1

sin( )
[cot( ) cot( )]

b a
x b x a dx

1

sin( )
log

sin( )

sin( )b a
x b
x a

ce  (See B.2)

If 
cos

sin ,
x

x
dx a x c  then a equals

(A) 2  (B) 
1

2

(C) 
1

2
 (D) 2

Solution: Let

I
x

x
dx

cos

Put t x  so that

dt
x

dx
t

dx

dx t dt

1

2

1

2

2

So

I
t

t
t dt

t dt

t c

x c

cos
( )

cos

sin

sin

2

2

2

2

Answer: (D)

Note: In a similar way,

dx
x a x b b a

x a x b dx
cos( )cos( ) sin( )

[tan( ) tan( )]
1

 
1

sin( )
log

sec( )

sec( )b a
x a
x b

ce

4.3.1 Examples on Integration by Substitutions

 Example    4.26  
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Therefore,

I t t t dt( )3 21
3

4

3

4

6 3( )t t dt

3

4 7 4

7 4t t
c

 
3

112
4 74 3( )( )t t c

3

112
1 4 1 74 4 3 4( ) [ ( ) ]/x x c

 
3

112
1 4 34 4 3 4( ) ( )/x x c

Answer: (C)

 Example    4.28  

x x dx x f x c2 3 21
1

51
1( ) ( )/  where f (x) is 

equal to

(A) 15x2  12x  8 (B) 15x2  12x  4

(C) 15x2 – 12x  8 (D) 15x2 – 12x  4

Solution: Put 1 x t  so that x  1 – t2  and  dx  –2t dt. 
Therefore

I x x dx

t t dt

t t t dt

2

2 2 2

6 4 2

1

1 2

2 2

( ) ( )

( )

 2
7

2

5

1

3

7
5 3t

t t c

 
2

105
15 42 357 5 3( )t t t c

 
1

51
15 1 42 1 35 17 2 5 2 3 2[ ( ) ( ) ( ) ]/ / /x x x c

 
1

51
1 15 1 42 1 353 2 2( ) [ ( ) ( ) ]/x x x c

 
1

51
1 15 12 83 2 2( ) [ ]/x x x c

Therefore

f (x)  15x2  12x  8

Answer: (A)

 Example    4.29  

A particle is moving in a straight line with acceleration 

a  sin 2t  t2 feet/s2. At time t  0, its velocity is 3 feet/s. 

The distance travelled by particle between t  0 and t  

 is

(A) 
192

3363( )  ft (B) 
288

1923( )  ft

(C) 
3 288

192
 ft (D) 

3 192

288
 ft

Solution: Let v denote the velocity of the particle at 

time t. Therefore

dv
dt

a t tsin 2 2

v t t c
1

2
2

1

3

3
1cos

Therefore

3 0
1

2
1v c( )

c1

7

2

Therefore

v t t
1

2
2

1

3

7

2

3cos

Hence at t  ,

 v
2

1

2 24

7

2
4

24

3 3

 (4.2)

Now

s vdt t t dt
1

2
2

1

3

7

2

3cos

 4.3 Integration by Substitution
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1

4
2

1

12

7

2

4
2sin t t t c

So

 s(0)  c2

and s c
2

1

4

1

12 2

7

2 2

4

2sin

Therefore

s s
2

0
1

12 2

7

4

4

( )

4 336

192

Answer: (A)

 Example    4.30  

sec tan5 x x dx  is equal to

(A) 
1

5

5tan x c  (B) 
1

5

5sec x c

(C) 
1

5

5cos x c  (D) 
1

5

5cot x c

Solution: Let I x x dxsec tan .5  Put sec x  t  
so that

(sec x tan x) dx  dt

Therefore

I x x x dxsec (sec tan )4

 

t dt

t c

x c

4

5

5

1

5

5
sec

Answer: (B)

 Example    4.31  

If ( ) ( ) ( ) ,x x x x dx
a

x x c4 2 49 3 4 2 501 2
1

1  

then a is equal to

(A) 50 (B) 49

(C) 100 (D) 98

Solution: Let

I x x x x dx( ) ( )4 2 49 31 2

Put x4  x2  1  t. Therefore

2(2x3  x) dx  dt

Hence

 

I t dt

t c

49

50

1
2

1
2 50
1

100
14 2 50( )x x c

This implies a  100.

Answer: (C)

 Example    4.32  

( ) ( ) ( )
/

x x x x x dx xm m m m m
m

3 2 2
1

2 3 6 0  equals

(A) 
1

6 1
2 3 63 2 1

( )
( )( )/

m
x x x cm m m m m

(B) 
1

1
2 3 62 1

m
x x cm m m m( )( )/

(C) 
1

1

3 2 1

m
x x x cm m m m m( )( )/

(D) 
1

6 1

3 2 1

m
x x x cm m m m m( )( )/

(IIT-JEE 2002)
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Solution: Let

I x x x x x dxm m m m m m( )( ) /3 2 2 12 3 6

( )( ) /x x x x x x dxm m m m m m m2 3 2 1 11 2 3 6

Put 2x3m  3x2m  6xm  t. Therefore

6m(x3m – 1  x2m – 1  xm – 1) dx  dt

6m(x2m  xm  1) xm – 1dx  dt

So

 I t
m

dtm1 1

6

/

 
1

6 1 1

1 1

m
t

m
c

m( / )

( / )

1

6 1
2 3 63 2 1

( )
( )( )/

m
x x x cm m m m m

Answer: (A)

 Example    4.33  

x

x x x

2

3 4 2

1

2 2 1

(A) 
2 2 14 2

2

x x

x
c  (B) 

2 2 14 2

3

x x

x
c

(C) 2 2 14 2x x
x

c  (D) 2 2 1

2

4 2

2

x x

x
c

(IIT-JEE 2006)

Solution: Let

I x

x x x
dx

2

3 4 2

1

2 2 1

x

x
x x

dx
2

5

2 4

1

2
2 1

Put 2
2 1
2 4

2

x x
t .  Then

4 4
2

3 5x x
dx t dt

1 1 1

23 5x x
dx t dt

Therefore

 I x x

x x

dx

t
t dt

1 1

2
2 1

1 1

2

3 5

2 4

1

2

1

2
2

2 1

2 2 1

2

2 4

4 2

2

t c

x x
c

x x

x
c

Answer: (D)

 Example    4.34  

Let f x
x

xn n
( )

( ) /1 1
 where n  2 is integer and

g x f f f x
f n

( ) ( )( )� ���
 ��� ��
occurs times

Then x g x dxn 2 ( )  equals

(A) 
1

1
1 1 1

n n
nx kn n

( )
( ) ( / )

(B) 
1

1
1 1 1

n
nx kn n( ) ( / )

(C) 
1

1
1 1 1

n n
nx kn n

( )
( ) ( / )

(D) 
1

1
1 1 1

n
nx kn n( ) ( / )

(IIT-JEE 2007)

Solution: We have

( )( ) ( ( ))

( ) /

f f x f f x

f
x

xn n

�

1 1

 4.3 Integration by Substitution
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x

x

x

x

x

x

n n

n

n

n

n n

( )

( )

( )

/

/

/

1

1
1

1 2

1

1

1

By induction, we can show that

( )( )
( )

,
/

f f f x
x

mx
m

f m
n n

� ���
 ��� ��
occurs times

1
2

1

Therefore

 g x
x

nxn n
( )

( ) /1 1
 (4.3)

Let

I x g x dxn 2 ( )

 x
x

nx
dxn

n n
2

11( ) /
 [By Eq. (4.3)]

 
x

nx
dx

n

n n

1

11( ) /
 (4.4)

Put 1  nxn  t. Therefore

n2xn–1 dx  dt

From Eq. (4.4), we have

I t
n

dt

n

t
n

c

t
n n

n

n

n

1

2

2

1 1

1 1

1

1

1 1

1

/

( / )

( / )

( / )

( )
cc

( )

( )

( / )1

1

1 1nx
n n

c
n n

Answer: (A)

 Example    4.35  

Let

I
e

e e
dx J

e

e e
dx

x

x x

x

x x4 2 4 21 1
,

Then for any arbitrary constant c, the value of J – I 

equals

(A) 
1

2

1

1

4 2

4 2
log

e e

e e
c

x x

x x

(B) 
1

2

1

1

2

2
log

e e

e e
c

x x

x x

(C) 1

2

1

1

2

2
log

e e

e e
c

x x

x x

(D) 1

2

1

1

4 2

4 2
log

e e

e e
c

x x

x x

(IIT-JEE 2008)

Solution: We have

J
e

e e
dx

e

e e
dx

x

x x

x

x x4 2

3

4 21 1

Therefore

J I
e e

e e
dx

e e

e e
dx

x x

x x

x x

x x

3

4 2

2

4 2

1

1

1

( )

t

t t
dt

2

4 2

1

1
 where t  ex

1
1

1
1

1

1

2

2

2

2

t

t
t

dt

dz

z
z t

t
where

 
1

2

1

1
log

z
z

c  (See A.15)

1

2

1
1

1
1

log
t

t

t
t

c

 
1

2

1

1

2

2
log

e e

e e
c

x x

x x

Answer: (C)
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 Example    4.36  

dx

ex1

(A) loge

x

x

e

e
c

1
 (B) loge

x

x

e

e
c

1

(C) x  loge (ex  1)  c (D) ex  x  c

Solution: We have

dx

e

e

e
dx

x

x

x1 1

 

e

e
dx

x

x 1

 – loge (e–x  1)  c (See B.2)

loge

x

x

e

e
c

1

loge

x

x

e

e
c

1

Answer: (B)

 Example    4.37  

x

x x x
x

dx
2

4 2 1
2

1

3 1 1( ) Tan
 is equal to

(A) Tan 1 1
x

x
c

(B) loge x
x

cTan 1 1

(C) log tane
x

x
c

2 1

(D) x
x

x
x

c
1 11Tan

Solution: Let I be the given integral. Then

I
x

x x x
x

dx
2

2 2 2 1

1

1
1

[( ) ] Tan

Dividing both numerator and denominator by x2 we get

I x

x
x

x
x

dx
1

1

1
1

1

2

2
1Tan

Put Tan–1[x  (1/x)]  t. Then

1 1

1
1

2

2

( / )x

x
x

dx dt

Therefore

I
dt
t

t c

x
x

c

e

e

log

log Tan 1 1

Answer: (B)

 Example    4.38  

log

log

e

e

x

x x
dx

1

(A) (1  loge x)3/2  c

(B) 
2

3
1 2( log ) (log )e ex x c

(C) 2

3
1 51 2( log ) (log )/

e ex x c

(D) 2

3
1 21 2( log ) (log )/

e ex x c

Solution: Let

I
x

x x
dxe

e

log

log1

Put 1 log .e x t  Therefore

loge x  t2 – 1 and 
1

2
x

dx t dt( )

So

I
t

t
t dt

t dt

2

2

1
2

2 1

( )

( )

 4.3 Integration by Substitution
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2
1

3

2

3
3

3

2

t t c

t
t c( )

2

3
1 1 3

2

3
1 2

1 2

1 2

( log ) ( log )

( log ) (log )

/

/

e e

e e

x x

x x c

Answer: (D)

 Example    4.39  

The value of the integral 
cos cos

sin sin

3 5

2 4

x x

x x
dx  is

(A) sin x –6Tan–1(sin x)  c

(B) sin x – 2(sin x)–1  c

(C) sin x – 2(sin x)–1 – 6 Tan–1(sin x)  c

(D) sin x – 2(sin x)–1  5 Tan–1(sin x)  c

Solution: Let

 I
x x

x x
dx

cos cos

sin sin

3 5

2 4

[( sin ) ( sin ) ]cos

sin sin

1 12 2 2

2 4

x x x

x x
dx

 
( sin sin ) cos

sin sin

2 3 2 4

2 4

x x x

x x
dx

 
2 3 2 4

2 4

t t

t t
dt  where t  sin x

 
t t

t t
dt

4 2

2 2

3 2

1( )

1
2 6

12 2t t
dt  (See Partial Fractions, Vol. 1)

 t
t

t c
2

6 1Tan

 sin
sin

(sin )x
x

x c
2

6 1Tan

Answer: (C)

 Example    4.40  

x

x x x x
dx

1

1 12( ) ( )
 is

(A) Tan 1
2 1x x

x
c

(B) 2Tan 1
2 1x x

x
c

(C) Tan 1
2 1x x

x
c

(D) 2Tan 1 1
1x

x
c

Solution: Let

I
x

x x x x
dx

1

1 12( ) ( )

 
x

x x x x
dx

2

2 2

1

1 1( ) ( )

x

x x x x x
dx

2

2 2

1

2 1 1( ) ( )

 

1
1

1
2

1
1

2x

x
x

x
x

dx

Put x  (1/x)  1  t 2 so that

1
1

2
2x

dx t dt( )

Therefore

I
t t

t dt

dt

t

t c

x
x

1

1
2

2
1

2 10

2
1

2

2

1

1

( )
( )

( ) ( )Tan

Tan

See A.

1 c

Answer: (D)
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 Example    4.41  

If 
x

x xe
dx

xe

xe
f x c

x e

x

x

1

1 12( )
log ( ) ,  then f (x) 

is

(A) 
1

1 xex
 (B) 

x

xex1

(C) 
xe

x

x

1
 (D) 

xe

e

x

x1

Solution: Let

I
x

x xe
dx

x

1

1 2( )

Put 1  xex  t. Therefore

ex(x  1) dx  dt

So,

I
e x

xe xe
dx

x

x x

( )

( )

1

1 2

 
dt

t t( )1 2

1

1

1 1
2t t t

dt  (By Partial Fractions)

 log loge et t
t

c1
1

 log loge
x

e
x

x
xe xe

xe
c1

1

1

 loge

x

x x

xe

xe xe
c

1

1

1

So

f x
xex

( )
1

1

Answer: (A)

 Example    4.42  

( ) /x x

x
dx

3 1 3

4

(A) 
3

8

1
1

2

4 3

x
c

/

 (B) 
3

8

1
1

2

4 3

x
c

/

(C) 
3

8

1
1

2

4 3

x
c

/

 (D) 
3

4
1

1
2

4 3

x
c

/

Solution: We have

I
x x

x
dx

( ) /3 1 3

4

1
1

2

1 3

3

x
x

dx

/

Put

1
1

2

3

x
t

2
3

3

2

x
dx t dt

1 3

23

2

x
dx t dt

Therefore

 I t t dt
3

2

2

 
3

2

3t dt

 
3

2

1

4

4t c

3

8

1
1

2

4 3

x
c

/

Answer: (C)

 4.3 Integration by Substitution



 Example    4.43  

If y(x – y)2  x, then 
dx

x y3
 equals

(A) 
x

x y ce
2

12log {( ) }

(B) 
1

2
12log {( ) }e x y c

(C) x x y ce
1

2
12log {( ) }

(D) loge{(x – y)2 – 1}  c

Solution: Put x – y  t so that y(x – y)2  x becomes 

(x – t)t2  x. Therefore

x
t

t
dx

t t

t
dt

3

2

2 2

2 21

3

1

( )

( )

Also

x y
t

t
x t3

1
3

3

2
( )

t

t

t

t
t

t t

t

t t

1
3

1

3

1

3

3

2

3

2

3

2

2( ))

t2 1

Hence

dx
x y

t

t t

t t

t
dt

t

t
dt

3

1

3

3

1

1

2

2

2 2

2 2

2

( )

( )

( )

 

1

2
1

1

2
1

2

2

log ( )

log {( ) }

e

e

t c

x y c

Answer: (B)

 Example    4.44  

If 
1

1
2

1 2

1x

x

dx
x

x x c
/

( ) ,Cos  then  (x) 

equals

(A) loge
x

x

1 1
 (B) 

1

2

1 1
loge

x

x

(C) 2
1 1

loge
x

x
 (D) 2

1 1
loge

x

x

Solution: Let

I
x

x
dx

1

1

1 2/

Put x  cos2 2  so that dx  –2 sin 4  d .  Therefore

I d
1 2

1 2

1

2
2 4

1 2

2

cos

cos cos
( sin )

/

 
tan

cos
( sin cos )

2 2
4 2 2 d

 
sin

cos cos
( sin cos )

2
8 d

 
8

2

2sin

cos
d

8
1

2 1

2

2

cos

cos
d

4
2 1 1

2 1

2

2

cos

cos
d

4 1
1

2cos
d

4 1 2( sec ) d

4
1

2
2 2log sec tane c  (See B.3)

4
1

2
2

1 11Cos x
x

x

x
celog

 ( cos )∵ x 2

2 2
1 11Cos x

x

x
celog  ( )∵0 1x

Therefore

( ) logx
x

x
e2

1 1

Answer: (D)

Chapter 4   Indefinite Integral370
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 Example    4.45  

Let I
x

x x
dx x x c1

2

3 1 3

3 2 31

3 1

1

2
3 1

( )
( )

/

/

and I
x

x
dx x ce2 2

22

1
1

sin

sin
log ( sin )

Then

(A) both I1 and I2 are correct

(B) both I1 and I2 are not correct

(C) I1 is correct and I2 is not

(D) I2 is correct and I1 is not

Solution: We have

I
x

x x
dx1

2

3 1 3

1

3 1( ) /

Put x3  3x  1  t3. Therefore

 3(x2  1) dx  (3t2) dt

 (x2  1) dx  t2 dt

This implies

 I
t

t dt1
21

( )

1

2

1

2
3 1

2

3 2 3

t c

x x c( ) /

So I1 is correct. Now

I
x

x
dx

f x
f x

dx f x x

f xe

2 2

2

2

1

1

sin

sin

( )

( )
( ) sin

log ( )

where 

c

x ce

(See B.2)

log ( sin )1 2

Hence I2 is also correct.

Answer: (A)

 Example    4.46  

Which of the following are true?

(A) log
log

(log ) loge
e

e ex
x

dx
x

x x c
1 1

2

2

(B) 
1

3
3

log

log
log loge

e
e e

x

x x
dx x x c

(C) 
log

log loge
e e

x

x
dx x c

(D) 
log

log log10 1

2

x

x
dx x ce e

Solution: Let

I x
x

dx
xe

e
1

1
log

log

Put loge x  t so that (1 / x)dx  dt. Therefore

I t
t

dt1

1

 
1

2

2t t celog

1

2

2(log ) log loge e ex x c

Therefore (A) is false. Let

I
x

x x
dxe

e
2

1

3

log

log

Put 3  xloge x  t. Therefore

loge x x
x

dx dt
1

 (1  loge x)dx  dt

So

I
dt
t

t c

x x c

e

e e

2

3

log

log log

So (B) is true. Now let

I
x

x
dxe

3

log

 4.3 Integration by Substitution
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t dt  where t  loge x

 

1

2

1

2

2

2

t c

x ce(log )

Hence (C) is false. Finally let

I
x

x
dx4

10log

 
log loge x e

x
dx10

 
1

2

2
10(log ) loge x e c

So (D) is false.

Answer: (B)

 Example    4.47  

e

e
dx f x x c

x

x

1

1
2 ( )  where f equals

(A) (ex  1) (B) ex

(C) ex – 1 (D) loge(1  ex)

Solution: We have

e

e
dx

e e

e e
dx

t
t t

dt t e

x

x

x x

x x

x

1

1

1

1

1

1

( )

( )

( )
where 

1

1

1

1

1

1

1 1

1

2

1

1

t t t
dx

t t t
dt

t t

( )

dt

t t c

e x c t e

e e

e
x x

2 1

2 1 0

log log

log ( ) ( )∵
Answer: (D)

 Example    4.48  

dx

x x xe1 12 2log ( )

 is

(A) 2 1 2log ( )e x x c

(B) log ( )e x x c1 2

(C) 
1

2
1 2log ( )e x x c

(D) 
1

2
1 2log ( )e x x c

Solution: Let

I
dx

x x xe1 12 2log ( )

Put log ( ) .e x x t1 2 2  Then

1

1
1

2

2 1
2

2 2x x

x

x
dx t dt( )

 
1

1
2

2x
dx t dt( )

Therefore

I
t

t dt t c x x ce
1

2 2 2 1 2( ) log ( )

Answer: (A)

 Example    4.49  

If y x x2 1  and for n I x y dxn
n1, /  and aI3  

bI2  cI1  x2y, then (a, b, c) is equal to

(A) 
3

2

1

2
1, ,  (B) (1,  –1,  1)

(C) 3
5

2
2, ,  (D) 

1

2

1

2
1, ,
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Solution: We have

x y a
x
y

dx b
x
y

dx c
x
y

dx2
3 2

Differentiating both sides with respect x, we have

2 2
3 2

xy x
dy
dx

ax
y

bx
y

cx
y

 2 2 2 3 2xy x y
dy
dx

ax bx cx  (4.5)

But

y x x y
dy
dx

x2 2 1
1

2
2 1( )

Substituting the value of y2  x2 – x  1 and y dy
dx

x1
2

2 1( )  

in Eq. (4.5) we obtain

2 1
2 1

2

2 2 3 2x x x x
x

ax bx cx( )
( )

 3
5

2
23 2 3 2x x x ax bx cx

Therefore

a b c3
5

2
2, ,

Answer: (C)

 Example    4.50  

tan

tan tan

x

x x
dx

1 2
 is equal to

(A) x
x

c
2

3

2 1

3

1Tan
( tan )

(B) x
x

c
2

3

2 1

3

1Tan
tan

(C) x
x

c
1

3

1

3

1Tan
tan

(D) x
x

c
1

3

1

3

1Tan
tan

Solution: Let

 I
x

x x
dx

tan

tan tan1 2

 
tan

sec tan

x

x x
dx

2

 
sec tan sec

sec tan

2 2

2

x x x

x x
dx

 1
2

2

sec

tan sec

x

x x
dx

 x
x

x x
dx

sec

tan tan

2

21

 x
dt

t t1 2
 where t  tan x

 x
dt

t[ ( / )] ( / )1 2 3 42

 x
t

c
1

3 2

1 2

3 2

1

( / )

( / )

( / )
Tan  (See A.10)

 x
x

c
2

3

2 1

3

1Tan
tan

Answer: (B)

 Example    4.51  

tan sec

tan tan tan

4

2

3 2

x x

x x x
dx  equals

(A) 2 11Tan tan cotx x c

(B) 2 1Tan tan cotx x c

(C) Tan 1 tan cotx x c

(D) 2 Tan 1 sec tanx x c

Solution: Let

 I
x x

x x x
dx

tan sec

tan tan tan

4

2

3 2

 
1

1

2

3 2

tan

tan

sec

tan tan tan

x
x

x

x x
dx

 
1

1 3 2

t
t

dt

t t t

 4.3 Integration by Substitution
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 2 1
11Tan t
t

c  (See Example 4.40)
 2 11Tan tan cotx x c

Answer: (A)

 Example    4.52  

2

1 2

x

x x
dx

( )
 equals

(A) 
2

1x x
c  (B) 

x

x x
c

1

(C) 
2

1

x

x x
c  (D) 

2

1

x

x x
c

Solution: Let

I
x

x x
dx

2

1 2( )

Dividing numerator and denominator by x2 we get

I
x x x

x x

dx
( / ) ( / )2 1

1
1 1

2

2

Now, put 1
1 1

x x
t.  Therefore

1

2

1 1
2

.
x x x

dx dt

1 2
2

2x x x
dx dt

So

 I
t

dt
1

2
2

( )

 
2

t
c

 

2

1
1 1

2

1

x x

c

x

x x
c

Answer: (D)

 Example   4.53 

2 5

1

12 9

5 3 3

x x

x x
dx

( )
 is equal to

(A) 
x x

x x
c

2

5 3 2

2

1( )

(B) 
x

x x
c

10

5 3 22 1( )

(C) log ( )e x x x x c5 3 7 41 2 5

(D) log ( )e x x x x c2 5 17 4 5 3

Solution: Let

I
x x

x x
dx

2 5

1

12 9

5 3 3( )

Dividing numerator and denominator with x15 we get

I x x

x x

dx

2 5

1
1 1

3 6

2 5

3

Put 1
1 1
2 5x x

t.  Then

2 5
3 6x x

dx dt

So

 I
t

dt
1
3

( )

 
1

2 2t
c

 
1

2

1

1
1 1
2 5

2

x x

c

 
x

x x
c

10

5 3 22 1( )

Answer: (B)
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 Example    4.54  

If

3 1

1 1

4

4 2 1 4

x

x x
dx f x dx

dx

x x
c

( )
( )

then f1(x) is

(A) 
4 1

1

3

4 2

x

x x( )
 (B) 

x x

x x

3

4 2

4 1

1

( )

( )

(C) 
x x

x x

( )

( )

4 1

1

3

4 2
 (D) 

x x

x x

( )

( )

4 1

1

3

4 2

Solution: We know that

d
dx

x x x( )4 31 4 1

Therefore

3 1

1

4 1 1

1

4

4 2

3 4

4 2

x

x x
dx

x x x x

x x
dx

( )

( ) ( )

( )

 
x x

x x
dx

dx

x x

( )

( )

4 1

1 1

3

4 2 4

Therefore

f x
x x

x x
1

3

4 2

4 1

1
( )

( )

( )

Answer: (D)

 Example    4.55  

x x

x

dx

x

2 2

2 21

sin

cos
 is equal to

(A) tan x – Tan–1 x  c (B) tan x  Sin–1 x  c

(C) tan x – Sec–1 x  c (D) cot x – Cot–1 x  c

Solution: We have

x x

x

dx

x

x x

x

dx

x

2 2

2 2

2 2

2 2

2

1

1 1

1

sin

cos

( sin )

cos

sec xx dx
dx

x

x x c

1 2

1tan Tan

Answer: (A)

 Example    4.56  

If f :� �  is a function such that f (0)  0, f  (0)  3 and 

it satisfies the relation

f
x y f x f y

3 3

( ) ( )

for all x y, �  then f x dx( )  equals

(A) 3x2  3 (B) 
2

3
3

2x

(C) 
3

2

2x c  (D) 3x2  c

Solution: Given that

f
x y f x f y

3 3

( ) ( )

Substituting y  0 and replacing x with 3x, we have

f x
f x f f x

f( )
( ) ( ) ( )

[ ( ) ]
3 0

3

3

3
0 0∵

 3 f (x)  f (3x) (4.6)

Now using Eq. (4.6) we have

lim
( ) ( )

lim

( )
( )

lim

h h

h

f x h f x
h

f
x h

f x

h

f
x h

0 0

0

3
3

3
3

f x

h
f x f h

f x

h
f h

h

h

h

( )

lim

( ) ( )
( )

lim
( )

li

0

0

3
3

mm
( ) ( )

[ ( ) ]

( )

h

f h f
h

f

f
0

0
0 0

0 3

∵

Therefore f is differentiable at any real x and f  (x)  

f (0)  3. Hence

f (x)  3x  c

 4.3 Integration by Substitution
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and f (0)  0  c  0

So f (x)  3x and hence
f x dx x c( )

3

2

2

Answer: (C)

 Example    4.57  

x

x
dx

4

6

1

1
 is equal to

(A) Tan Tan1 1 31

3
x x c( )

(B) Tan
Tan1

1 3

3
x

x
c

( )

(C) Tan
Tan1

1 2

2
x

x
c

( )

(D) Tan
Tan1

1 2

2
x

x c( )

Solution: We have

x

x
dx

x

x x x
dx

4

6

4

2 4 2

1

1

1

1 1( ) ( )

 
( )

( )( )

x x x

x x x
dx

4 2 2

2 4 2

1

1 1

 
dx

x

x

x
dx

2

2

61 1

 Tan 1
2

3 2

1

3

3

1
x

x

x
dx

( )

 Tan 1

2

1

3 1
x

dt

t
 where t  x3

 Tan Tan1 11

3
x t c

 Tan Tan1 1 31

3
x x c( )

Answer: (B)

 Example    4.58  

sin

( cos ) cos cos

3

2 2 41 1

xdx

x x x
 equals

(A) Cos–1(sec x  cos x)  c

(B) Sin–1(sec x  cos x)  c

(C) Sec–1(sec x  cos x)  c

(D) Tan–1(sec x  tan x)  c

Solution: Let

I
x

x x x
dx

sin

( cos ) cos cos

3

2 2 41 1

Dividing numerator and denominator by cos2 x we get

I
x x

x x x x
dx

sin sec

(sec cos ) sec cos

3 2

2 21

Put sec x  cos x  t. Therefore

(sec x tan x – sin x) dx  dt

 
sin

cos
sin

x

x
x dx dt

2

sin ( cos )

cos

x x

x
dx dt

1 2

2

 sin3 x sec2 x dx  dt

Hence

I
dt

t t

t c

x x c

2

1

1

1

Sec

Sec (sec cos )

Answer: (C)

 Example    4.59  

( )sin

( )cos ( )sin
log

1

2 1 2

1

2

1

12 2

x x

x x x x x
dx

t
t

ce  

where t is

(A) (x  1) cos x – sin x (B) (x  1) sin x – cos x

(C) (x  1) sin x  cos x (D) (x  1) cos x  sin x
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Solution: Let I be the given integral. Now

I
x x

x x x x x x
dx

( )sin

( ) cos cos ( )( sin cos )

1

1 1 22 2 2

 

( )sin

( ) sin ( )sin cos

1

1 1 2 12 2 2

x x

x x x x x x
dx

cos

 
( )sin

[( )cos sin ]

1

1 12

x x

x x x
dx

Put (x  1)cos x – sin x  t. Therefore

[cos x  (x  1)(–sin x) – cos x]dx  dt

– (1  x) sin x dx  dt

Hence

 I
t

dt
1

1
1

2
( )

 
1

2

1

1

1

1t t
dt

 
1

2

1

1
loge

t
t

c

Answer: (A)

 Example    4.60  

If f is a real-valued function satisfying the relation

5 3
1

2f x f
x

x( )

for all x  0, then xf x dx( )  is

(A) 1

6

5

3
2 33 2x x x c

(B) 
1

16

5

3
2 33 2x x x c

(C) 1

16

5

3
2 3

3
2x

x x c

(D) 1

16

5

3
2 33 2x x x c

Solution: We have

 5 3
1

2f x f
x

x( )  (4.7)

Therefore

 5
1

3
1

2f
x

f x
x

 (4.8)

Solving Eqs. (4.7) and (4.8), we get

f x x
x

( )
1

16
5

3
4

So

xf x dx x x dx( ) ( )
1

16
5 4 32

1

16

5

3
2 33 2x x x c

Answer: (C)

 Example    4.61  

For 0 <  <  , if 

f ( ) sin sin cos sin cos3 3 2 3 4 �  

then e f dcos ( )  is equal to

(A) –ecos  sin   c (B) esin  cos   c

(C) –ecos   c (D) ecos  (sin   cos )  c

Solution: We have

0 <  <    0 < cos2  < 1

Since f (  ) is a sum of an infinite Geometric series with 

first term sin3  and common ratio cos2  (0 < cos2  < 1), 

we have

f ( )
sin

cos
sin

3

21

Therefore

e f e d

e dt t

e c

e

t

t

cos cos

cos

( ) sin

( ) cos1 where 

c

Answer: (C)

 4.3 Integration by Substitution
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2 2 2 1

1 1
1

5 4 3 2

2 4

x x x x

x x
dx x

( )( )
( )  is equal to

(A) log ( ) loge ex
x
x

c2 1
1

2

1

1

(B) log loge e
x

x

x
x

c
2

2

1

1

1

1

(C) log loge e
x

x

x
x

c
2

2

1

1

1

2

1

1

(D) log ( ) loge ex
x

x
x

c2

2
1

1

1

1

2

1

1

Solution: Let I be the given integral. Then

I
x x x

x x
dx

2 1 1

1 1

3 2 2

2 2

( ) ( )

( ) ( )

 
2

1 1

3

2 2

x

x
dx

dx

x( )

 
x x

x
dx

x
xe

2

2

2

1

1

2

1

1

( )

( )
log

 
t

t
dt

x
xe

1 1

2

1

12
log  where t  x2  1

 
1 1 1

2

1

12t t
dt

x
xelog

 log ( ) loge ex
x

x
x

c2

2
1

1

1

1

2

1

1

Answer: (D)

 Example    4.63  

If f x x( )  and g(x)  ex – 1, then ( )( )f g x dx�  

equals

(A) 2 1 2 11e e cx xTan ( )

(B) 2 1 2 11( ) ( )e e cx xTan

(C) 2 1 2 1e e cx xtan( )

(D) 2 1 2 11e e cx xTan ( )

Solution: We have

( )( ) ( ( ))f g x dx f g x dx�

 e dxx 1

 
2

1

2

2

t

t
dx  where t ex 1

 
2

2

1

2 2

2

1

t
dt

t t cTan ( )

 2 1 2 11e e cx xTan ( )

Answer: (A)

 Example    4.64  

dx

x x2 4 3 41( ) /
 equals

(A) (x4  1)1/4  c (B) 
( ) /x

x
c

4 1 41

(C) 
( ) /x

x
c

4 3 4

3

1
 (D) 

( ) /x

x
c

3 3 4

4

1

Solution: Let

 I
dx

x x2 4 3 41( ) /

 
dx

x
x

5

4

3 4

1
1

/

Put t  1  (1 / x4). Then

dt
x

dx
4
5

Therefore

I
t

dt
1 1

43 4/

1

4 3 4 1

3 4 1
1 4t

c t c
( / )

/

( / )

 Example    4.62  
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1
1
4

1 4

x
c

/ ( ) /x
x

c
4 1 41

Answer: (B)

 Example    4.65  

If

x x

x x
dx x xe e

3

2 2

23 2

1 1

1

2
1

1

4
1

( ) ( )
log log ( )

 f x c( )

then f (x) equals

(A) 
1

2 1

1

2
Tan x

x

x
 (B) 

3

2 1

1

2
Tan x

x

x

(C) 
3

2 1

1

2
Tan x

x

x
 (D) 

3

2 1 2
loge x

x

x

Solution: Let I be the given integral. Now, we use partial 

fractions. Write

x x

x x

A
x

Bx C

x

Dx E

x

3

2 2 2 2 2

3 2

1 1 1 1 1( ) ( ) ( )

Therefore 

x x A x Bx C x x3 2 2 23 2 1 1 1( ) ( )( )( )

Dx E x 1( )( )

So,

x A

A

1 4 2

1

2

Equating the coefficient of x4 on both sides, we get

A B B0
1

2

Again equating the coefficients of x3, we get

B C C B1
1

2

1

2
∵

Similarly, equating the coefficients of x2 we get

2A  B  C  D  0

1
1

2

1

2
0D

 D  0

Now

 x  0  2  A  C  E

 2
1

2

1

2
E

  E  2

Therefore

I
dx

x
x

x
dx

x
dx

1

2 1

1

2

1

1

2

12 2 2( )

1

2
1

1

2 1

1

2 1
2

12 2 2 2
log

( )
e x

x

x
dx

dx

x

dx

x

(4.9)

1

2
1

1

4
1

1

2

2 1
1log log ( )e ex x x ITan

Here

 

I
dx

x

d x

1 2 2

2

4

2
1

2

( )

sec

sec
tanwhere

 

2

1 2

1

2
2

2cos

( cos )

sin

d

d

 Tan 1
2

1
2

2
1

x tan
tan

 Tan 1

21
x

x

x

Therefore

I x
x

x
1

1

21
Tan

Substituting the value of I1 in Eq. (4.9), we have

I x x x xe e
1

2
1

1

4
1

1

2

2 1 1log log ( ) Tan Tan

x

x
c

1 2

 4.3 Integration by Substitution
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Therefore

f x x x
x

x
( )

1

2 1

1 1

2
Tan Tan

3

2 1

1

2
Tan x

x

x

Answer: (C)

 Example    4.66  

If

sin

sin cos
( )

x
x x

dx g x
x

c
2

then g(x) equals

(A) 
1

2
log sin cose x x c

(B) 
1

2
log sin cose x x c

(C) sin x  cos x  c

(D) sin x – cos x  c

Solution: We have

sin

sin cos

sin

sin cos

x
x x

dx
x

x x
dx

1

2

2

 
1

2

(sin cos ) (sin cos )

sin cos

x x x x
x x

dx

 
1

2

1

2
1

sin cos

sin cos

x x
x x

dx dx

1

2 2
log sin cose x x

x
c

(See B.2 for the conversion of first integral.) Therefore

g x x xe( ) log sin cos
1

2

Answer: (B)

 Example    4.67  

If

1 12010

2011

(cot )

tan (cot )
log (sin ) (cos )

x

x x
dx

k
x x ce

k k

then k is equal to

(A) 2010 (B) 2011

(C) 2012 (D) 2013

Solution: Let

I
x

x x
dx

1 2010

2011

(cot )

tan (cot )

 
(sin ) (cos )

(sin )

(sin ) cos

(sin )

x x

x

x x

x

2010 2010

2010

2011

2012 (cos )x
dx

2012

 
[(sin ) (cos ) ]sin cos

(sin ) (cos )

x x x x

x x
dx

2010 2010

2012 2012

Put t  (sin x)2012  (cos x)2012. Then

 dt x x x x dx[ (sin ) cos (cos ) ( sin )]2012 20122011 2011

 2012 2010 2010[(sin ) (cos ) ](sin cos )x x x x dx

Therefore

 I
t

dt
1 1

2012

 
1

2012
loge t c

 
1

2012

2012 2012log (sin ) (cos )e x x c

Answer: (C)

 Example    4.68  

1

1

2x x

x xe
dx

x

sec

( )tan
 is equal to

(A) log
tan

tane

x

x

xe

xe
c

1
 (B) log

( ) tan

tane

x

x x

x e

e
c

1

1

(C) log
tan

tane

x x

x

e

xe
c

1

1
 (D) log

( )

tan

tane

x

x

xe

x e
c

1

1 1

Solution: We have
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d
dx

xe e xe x

e x x

x x x

x

( ) sec

( sec )

tan tan tan

tan

1

1

2

2

Now, let

I
x x

x xe
dx

e x x

xe xe
d

x

x

x x

1

1

1

1

2

2

sec

( )

( sec )

( )

tan

tan

tan tan
xx

 
dt

t t( )1
 where t  xe tan x  1

 

1

1

1

1

1

t t
dt

t
t

c

xe

xe
c

e

e

x

x

log

log
tan

tan

Answer: (A)

 Example    4.69  

x x x x

x x
dxe

e

cos log sin

(log )2
 equals

(A) 
log

sin
e x

x
c  (B) 

sin

log

x

x
c

e

(C) 
sin

(log )
x

x
x ce

1

2

2  (D) sin logx x ce
1

2

Solution: Let

 I
x x x x

x x
dxe

e

cos log sin

(log )2

 
cos log (sin / )

(log )

x x x x

x
e

e
2

Now, put t  sin x/loge x. Therefore

dt
x x x x

x
dxe

e

cos log (sin / )

(log )2

Hence

 I dt t c
x

x
c

e

sin

log

Answer: (B)

 Example    4.70  

sec ( sec )

( sec )

x x

x
dx

2

1 2 2
 is equal to

(A) 2cosec x  cot x  c

(B) (2cot x  cosec x)–1  c

(C) 2cosec x – cot x  c

(D) (2cosec x + cot x)–1  c

Solution: Let

 I
x x

x
dx

sec ( sec )

( sec )

2

1 2 2

 
2 1

2 2

cos

( cos )

x

x
dx

Dividing numerator and denominator by sin2 x we get

I
x x x

x x
dx

2

2

2

2

cosec cosec

cosec

cot

( cot )

 
dt

t2
 where 2 cosec x  cot x  t

 
1

t
c

 
1

2cosec x x
c

cot

Answer: (D)

 Example    4.71  

If

x x x

x x
dx k x x x c

11 6

5 10 3 5

5 10 15 2 5

6 3 2
3 2

( )
)

/

/(6

then the value of k is

(A) 
1

6
 (B) 

1

6

(C) 
1

12
 (D) 

1

12

 4.3 Integration by Substitution
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Solution: Let

I
x x x

x x
dx

11 6

5 10 3 56 3 2( ) /

Multiplying numerator and denominator with x3 we get

I
x x x

x x x
dx

14 9 4

5 10 15 3 56 3 2( ) /

Put t  6x5 – 3x10 – 2x15.  Then

dt  –30(x14  x9 – x4)dx

Therefore

 I t dt3 5 1 30/ ( / )

 
1

30 3 5 1

3 5 1t
c

( / )

( / )

 
1

12

2 5t c/

 
1

12
6 3 25 10 15 2 5( ) /x x x c

Hence k  –1/12.

Answer: (C)

 Example    4.72  

If P(x) is a polynomial function such that P(x)  P(2x)  

5x2 – 18, then P e dxx( )  equals

(A) 
1

2
92e x cx  (B) e2x  9x  c

(C) 1

2
9 2e x cx  (D) e2x – x  c

Solution: Since P(x)  P(2x) is a quadratic expression, it 

follows that P(x) must be a quadratic expression. Suppose

P(x)  ax2  bx  c

Therefore

5 18 2

4 2

2

2 2

x P x P x

ax bx c ax bx c

( ) ( )

( ) ( )

Now equating the corresponding coefficients we get

5a  5, 3b  0 and 2c  –18

 a  1, b  0, c  –9

Hence

P(x)  x2 – 9

So

P e dx e dx

e x c

x x

x

( ) ( )2

2

9

1

2
9

Answer: (A)

 Example    4.73  

e x xe dxx x( ) ( )1 2cosec  is

(A) – cot[(x  1)ex]  c (B) – cot(xex)  c

(C) cosec(xex)  c (D) sin(xex)  c

Solution: Put t  xex. Therefore

dt  ex(x  1) dx

So

e x xe dx tdt

xe c

x x

x

( ) ( )

cot( )

1 2 2cosec cosec

Answer: (B)

 Example    4.74  

1

1

2

1 2

log )

log ( ) (log )

e

e
x

e
x

x

x x
dx  equals

(A) loge|1  x loge x|  c (B) loge|x  loge x|  c

(C) loge|(1  x)loge x|  c (D) loge|x loge x|  c

Solution: Let I be the given integral. Then

I
x

x x x x
dxe

e

( log )

( ) log (log )

1

1 1

2

2
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( log )

( log )( log )

1

1 1

2
e

e e

x

x x x
dx

 
1

1

log

log

e

e

x

x x
dx

dt
t

 where t  1  x loge x

  loge |1  x loge x|  c

Answer: (A)

 Example    4.75  

sec

log (tan )

x x
x

dx
e

cosec

(A) loge(tan x)  x  c

(B) loge|loge tan x|  c

(C) tan(loge tan x)  c

(D) loge|tan(loge x)|  c

Solution: We have

 I
x x

x
dx

e

sec

log (tan )

cosec

 

dt
t

t x

t c

x c

e

e

e e

 where log (tan )

log

log log tan

Answer: (B)

4.4 Integration by Parts

Let u and v be differentiable functions. Then it is known that (Chapter 2)

d(uv)  udv + vdu

so that on integration we have

uv udv vdu

and therefore, we have the following formula.

 Formula    1  

udv uv vdu

This formula enables us to find the integral of product of 

two functions. Out of the two factors of the product, we 

consider one factor as u and the second factor as the dif-

ferential dv of v.

If we consider f (x)  u and g(x) dx  dv so that v g x dx( ) ,  then we have the second formula.

 Formula    2  

f x g x dx f x g x dx g x dx f x dx( ) ( ) ( ) ( ) ( ) ( )

If we consider f (x) as first function and g(x) as the second 

function then Formula 2 can be written as

(

(

First function) (Second function)

First function) (Int

dx

eegral of second function)

(Integral of second function)

(DDerivative of first function) dx

Note: Throughout the chapter, we use Formula 1.

 4.4 Integration by Parts
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Selecting u and dv

Suppose the product contains two of the following functions: Inverse trigonometric, Logarithmic, Algebraic, Trigono-

metric and Exponential. According to the order mentioned, we choose u and dv. This rule of selection can be easily 

remembered as given below.

 I Inverse Trigonometric

 L Logarithmic

 A Algebraic

 T Trigonometric

 E Exponential

Using by parts, we obtain some standard formulae. We also show how to solve them for students to understand.

 Formula    3  

log (log )e ex dx x x c1

Solution: Whenever the integrand is a single function, 

take the second function as 1  x0 which is algebraic. 

Therefore, in Formula 1, take u  loge x and dv  1dx. 

Hence, log (log )x dx x x x
x

dxe
1

 x loge x – x  c
x(loge x – 1)  c

 Formula    4  

xe dx e x cx x ( )1

Solution: Here x is an algebraic function and ex is an 

exponential function. According to the rule mentioned 

above, A comes first and E comes next. Therefore, take 

u  x and dv  ex dx so that v  ex. Hence

xe dx uv vdu

xe e dx

x

x x ( )1

 xex – ex  c

 ex(x – 1)  c

 Formula    5  

x x dx x x x csin sin cos

Solution: x is an algebraic function and sin x is a trigo-

nometric function. So, take u  x and dv  sin x dx so that 

v  – cos x. Therefore

x x dx x x x dx

x x x c

sin ( cos ) ( cos )( )

cos sin

1

 Formula    6  

x x dx x x x ccos cos sin

Solution: Take u  x and dv  cos x dx so that v  sin x. 

Therefore

x x dx x x x dx

x x x c

x x x c

cos sin (sin )( )

sin ( cos )

cos sin

1

 Formula    7  

Sin Sin1 1 21x dx x x x c

Solution: Sin–1 x is an inverse trigonometric function 

which comes first in the given order. So, take u  Sin–1 x 

and dv  1 dx so that v  x. Now

Sin Sin1 1

21
x dx x x

x

x
dx

 x x
x

x
dxSin 1

2

1

2

2

1
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 x x x cSin 1 21

2
2 1( )  (See B.3) x x x cSin 1 21

 4.4 Integration by Parts

 Formula    8  

Tan Tan1 1 21

2
1x dx x x x celog ( )

Solution: Take u  Tan–1x and dv  1dx so that v  x. 

Therefore

Tan Tan1 1

21
x dx x x

x

x
dx

 x x
x

x
dxTan 1

2

1

2

2

1

 x x x ceTan 1 21

2
1log ( )  (See B.2)

 Formula    9  

a x dx
x a x a x

a
c2 2

2 2 2
1

2 2
Sin

Solution: Take u a x2 2  and dv  1dx so that v  x. 

Therefore

a x dx x a x x
a x

x dx2 2 2 2

2 2

1

2
2( )

 x a x
x

a x
dx2 2

2

2 2

 x a x
a x a

a x
dx2 2

2 2 2

2 2

x a x a x a
dx

a x

2 2 2 2 2

2 2

Therefore

2 2 2 2 2 2 1a x dx x a x a
x
a

cSin  (See A.9)

a x
x a x a x

a
c2 2

2 2 2
1

2 2
Sin

Similarly, we can prove the following.

 Formula    10  

x a dx
x x a a x

a
c2 2

2 2 2
1

2 2
Cosh

Try it out Since

Cot Tan1 1

2
x x

Compute Cot 1x dx.

Try it out Cos Sin1 1

2
x dx x dx ( )x x x x cSin 1 21

2
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 Formula    11  

x a dx
x x a a x

a
c2 2

2 2 2
1

2 2
Sinh

Try it out Prove Formulae 10 and 11.

Note: Formulae 9, 10 and 11 can be proved by substitution method using the substitutions x  a sin , x  a cosh  and 

x  a sinh , respectively. The reader is advised to prove them by the substitution method. The following formula is the 

most important consequence of by parts.

 Formula    12  

e f x f x dx e f x cx x[ ( ) ( )] ( )

Solution: By taking u  f (x) and dv  ex dx we get

 e f x dx e f x e f xx x x( ) ( ) ( )

 e f x dx e f x dx e f x cx x x( ) ( ) ( )

 e f x f x dx e f x cx x[ ( ) ( )] ( )

! Caution: Do not effect the simplification, until the last integral is computed.

 Examples 

Some of the examples illustrating Formula 12 are as  

follows:

 1. e x x dx e x cx x(sin cos ) sin

 2. e x x dx e x cx x(tan sec ) tan2

 3. e x
x

dx e x cx xSin Tan1

2

11

1

 4. e x
x

dx e x cx xlog log
1

 5. e x
x

dx e x cx xTan Tan1

2

11

1

 6. 
e x

x
dx e

x x
dx

e
x

c
x

x
x( )1 1 1

2 2

 Formula    13  

Generalized Formula for Integration by Parts

When integration by parts is to be applied repeatedly to 

compute an integral, the following is very useful.

f x g x dx f x g x f x g x f x g x( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3

f x g x( ) ( )4 � ( ) ( ) ( )( )1 n n
nf x g x c

where dashes denote the successive derivatives of f (x) 

and suffixes denote the integrals. That is

g x g x dx g x g x dx g xn1 2 1( ) ( ) , ( ) ( ) , , ( ) …

 
g x dxn 1( )
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We illustrate Formula 13 in the following illustration.

 Illustration    3  

4.4.1 Examples

 Example    4.76  

x xdxe
3 log  is equal to

(A) 
1

4

1

8

4 4x x x celog  (B) 
1

4 8

4
4

x
x

x celog

(C) 
1

4 16

4
4

x x
x

celog  (D) 
1

4 16

4
4

x x
x

celog

Solution: loge x is logarithmic and x3 is algebraic. In the 

word ILATE, L comes first and A comes next. Therefore, 

take u  loge x and dv  x3 dx so that v  x4 /4. Therefore

x xdx
x

x
x

x
dxe e

3
4 4

4 4

1
log log

 
1

4 4

4
3

x x
x

dxelog

 
1

4 16

4
4

x x
x

celog

Answer: (C)

 Example    4.77  

sin log (tan )x x dxe

(A) log tan cos log (tan )e e
x

x x c
2

(B) cos log tan log tanx
x x

ce e
2 2

(C) log tan cos log(tan )
x

x x c
2

(D) log tan cos log tane x x
x

c
2

Solution: Let

I x x dxesin log (tan )

Take u  loge (tan x) and dv  sin x dx so that v  –cos x. 
Therefore

I x x x
x
x

dxe[log (tan )]( cos ) ( cos )
sec

tan

2

 cos log (tan )x x x dxe cosec

 cos log (tan ) log tanx x
x

ce
2

 (See B.4)

Answer: (A)

Find out x e dxx4 2

Solution:

x e dx x
e

x
e

x
e

x
ex

x x x x
4 2 4

2
3

2
2

2 2

2
4

4
12

8
24

166

24
16

2e
dx

x

2

3

2

3

2

3

4

4 2
3 2 2 2 2 2x e

x e x e xe e
x

x x x xx c

 e
x

x x x cx2
4

3 2

2

3

2

3

2

3

4

 4.4 Integration by Parts
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 Example    4.78  

If

( )cos ( )sin ( )cosx x dx f x x f x x c3
1 21

then f1(x)  f2(x) is equal to

(A) x3 – 3x2  6x – 5 (B) x3  3x2  6x  5

(C) x3 – 3x2 – 6x  5 (D) x3  3x2 – 6x – 5

Solution: Let

I x x dx

x x dx x dx

( )cos

cos cos

3

3

1

 x x dx x3 cos sin  (4.10)

Let

I x x dx1
3 cos

Take u  x3, dv  cos x dx so that v  sin x. Therefore

 I x x x x dx1
3 23sin ( )sin  (4.11)

Let

I x x dx

x x x x dx

2
2

2

3

3 2

sin

[ ( cos )] ( )( cos )

3 6

3 6

2

2

x x x x

x x x x x c

cos cos

cos [cos sin ]

 (By Formula 6)

Substituting the value I2  in Eq. (4.11), we get

I1  x3 sin x  3x2 cos x – 6(cos x  x sin x)

Therefore substituting the value of I1 in Eq. (4.10), we 

have

I  x3 sin x  3x2 cos x – 6(cos x  x sin x)  sin x  c

 (sin x)(x3 – 6x  1)  (3x2 – 6)cos x  c

Therefore

f1(x)  x3 – 6x  1

and f2(x)  3x2 – 6

Hence

f1(x)  f2(x)  x3  3x2 – 6x – 5

Answer: (D)

 Example    4.79  

cos(log ) ( ) [cos(log ) sin(log )]e e ex dx f x x x c  

where f (x) equals

(A) 
x
2

 (B) 
x2

2

(C) x (D) x2

Solution: Let

I x dxecos(log )

Take u  cos(loge x) and dv  dx so that v  x. Then

I x x x
x

x
dxe

ecos(log )
sin(log )

 x x xe ecos(log ) sin(log )  (4.12)

Now, let

I x dxe1 sin(log )

Again using by parts we have

 
I x x x

x

x
dx

x x I

e
e

e

1 sin (log )
cos (log )

sin (log )

Substituting the value of I1 in Eq. (4.12), we have

I  x cos (loge x)  x sin (loge x) – I

Therefore

2I  x[cos (loge x)  sin (loge x)]

So

f x
x

( )
2

Answer: (A)
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 Example    4.80  

x x dxe
3 2(log )

(A) 
3

4

3

2

9

8

4 3 2( ) (log ) log/x x x ce e

(B) 
3

4

3

2

9

8

4 3 2( ) (log ) log/x x x ce e

(C) 
3

4

3

2

9

8

4 3 2( ) (log ) log/x x x ce e

(D) 
3

4

3

2

9

8

1 3 2( ) (log ) log/x x x ce e

Solution: We have

I x x dxe
3 2(log )

Take f x x g x xe( ) , ( ) (log ) .3 2  Now take u  (loge x)2, 

dv  x1/3 dx so that

v
x

x
( / )

/

( / )

1 3 1
4 3

1 3 1

3

4

Therefore

I x x x
x

x
dxe

e3

4

3

4

24 3 2 4 3/ /(log )
log

 
3

4

3

2

4 3 2 1 3x x x xdxe e
/ /(log ) log

3

4

3

2

3

4

3

4

14 3 2 4 3 4 3x x x x x
x

dxe e
/ / /(log ) log

 
3

4

9

8

9

8 1 3 1

4 3 2 4 3
1 3 1

x x x x
x

ce e
/ /

( / )

(log ) log
( / )

 
3

4

3

2

9

8

4 3 2x x x ce e
/ (log ) log

Answer: (C)

 Example    4.81  

Sin 1

2

2 2

4 8 13

x

x x
dx  is equal to

(A) 
3

2

2 2

3

2 2

3

1

3
2 31x x

x ceTan log ( )

(B) 

3

2

2 2

3

2 2

3

1

3

1

3
4 8 31 2x x

x x ceTan log

(C)

3

2

2 2

3

2 2

3

1

3
4 8 131 2x x

x x ceTan log

(D) 
3

2

2 2

3
4 8 3

2 2

3

1 2x
x x

x
ceTan log

(IIT-JEE 2001)

Solution: We have

I
x

x x
dxSin 1

2

2 2

4 8 13

 Sin 1

2 2

2 2

2 2 3

x

x
dx

( )

Now, put

2 2

3

x
tan

Then

dx d
1

2
3 2( sec )

Hence

I dSin 1 23

3

3

2

tan

sec
sec

 
3

2

1 2Sin (sin ) sec d

 
3

2

2sec d

 
3

2
tan tan d  (using by parts)

 
3

2
tan log sec c

3

2

2 2

3

2 2

3

1

3
4 8 131 2Tan

x x
x x celog

because

tan

sec tan

2 2

3

1 2

x

 4.4 Integration by Parts
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1
2 2

3

2x  
1

3
4 8 132x x

Answer: (C)

 Example    4.82  

[sin (log ) cos (log )]e ex x dx  is equal to

(A) x sin (loge x)  c (B) x cos (loge x)  c

(C) ex tan (loge x)  c (D) e x ce xsin (log ) cos

Solution: We have

I x x dxe e(sin (log ) cos (log )

Put loge x  t. Therefore x  et and dx  et dt. Now

I t t e dt

e t t dt

e t c e f x f x

t

t

t x

(sin cos )

(sin cos )

sin [ ( ) ( )∵ ]] ( )

sin (log )

dx e f x c

x x c

x

e

Answer: (A)

 Example    4.83  

x x dx
x

x f x xSin Sin1 2 1

4
1 ( )  where f (x) is

(A) 
2 1

4

2x
 (B) 

2

4

2x x

(C) 
2

4

2x x
 (D) 

2 1

4

2x

Solution: We have

I x x dxSin 1

Take u  Sin–1x, dv  x dx so that v  x2/2. Therefore

I
x

x
x

x
dx

2
1

2

22 2

1

1
Sin

 
x

x
x

x
dx

2
1

2

22

1

2

1 1

1
Sin

x
x x dx

dx

x

2
1 2

22

1

2
1

1

2 1
Sin

x
x

x x
x x

2
1

2
1 1

2

1

2

1

2

1

2

1

2
Sin Sin Sin

(By Formula 9)

 
x

x
x

x c
4

1
2

1

4

1

2

2
2

1Sin

 
x

x
x

x c
4

1
2 1

4

2
2

1Sin

Answer: (D)

 Example    4.84  

x x x x

x x
dx

2 2

21

( sec tan )

( tan )
 is equal to

(A) log sin cos
tan

e x x x
x

x x
c

2

1

(B) 2
1

2

log sin cos
tan

e x x x
x

x x
c

(C) 2
2

log cos sin
sec tan

e x x x
x

x x x
c

(D) log cos sin
sec tan

e x x x
x

x x x
c

2

2

Solution: Observe that

d
dx

x x x x x( tan ) sec tan1 2

Let

I
x x x x

x x
dx

2 2

21

( sec tan )

( tan )

Take

u x dv
x x x

x x
2

2

21
,

sec tan

( tan )
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so that

v
x x

1

1tan

Therefore

I x
x x x x

x dx2 1

1

1

1
2

tan tan
( )

 
x

x x
x

x x
dx

2

1
2

1tan tan

 
x

x x
x x

x x x
dx

2

1
2

tan

cos

sin cos

 
x

x x
dt
t

2

1
2

tan
 where t  x sin x  cos x

 
x

x x
x x x ce

2

1
2

tan
log sin cos

Answer: (B)

 Example    4.85  

x x
x

dx
sin

cos1
 is equal to

(A) x
x x

ctan sec
2 2

 (B) x
x x

csec tan
2 2

(C) x
x x

csin cos
2 2

 (D) x
x

ctan
2

Solution: We have

 
x x

x
dx

x
x x

x
dx

sin

cos

sin cos

cos
1

2
2 2

2
2

2

 
1

2 2 2

2x
x

dx
x

dxsec tan

 

x
x x

dx
x

dx

x
x

c

tan tan tan

tan

2 2 2

2

Answer: (D)

 Example    4.86  

If x x dx f x x g x x c4 cos ( )sin ( )cos , then f (x)  

g(x) is equal to

(A) x4  4x3 – 12x2 – 24x  24

(B) x4 – 4x3  12x2 – 24x  6

(C) x4  4x3  12x2 – 24x – 24

(D) x4 – 4x3 – 12x2  24x – 24

Solution: Take u  x4 and v xcos  and apply For-

mula 3. We get

x x dx x x x x x x

x x x c

x

4 4 3 24 12

24 24

cos sin ( cos ) ( sin )

cos sin

44 3 2

4 2

4 12 24

24

12 24

sin cos sin cos

sin

( )sin

x x x x x x x

x c

x x x (( )cos4 243x x x c

Therefore

f (x)  g(x)  x4  4x3 – 12x2 – 24x  24

Answer: (A)

 Example    4.87  

e
x x

x
dxx ( )

( ) /

3

2 3 2

1

1

(A) 
e x

x
c

x

2 1
 (B) 

xe

x
c

x

2 1

(C) 
xe

x
c

x

( ) /2 3 21
 (D) 

e

x
c

x

2 1

Solution: We have

 I e
x x

x
dxx ( )

( ) /

3

2 3 2

1

1

 e
x x

x
dxx ( )

( ) /

2

2 3 2

1 1

1

 4.4 Integration by Parts
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 e
x

x x
dxx

2 2 3 2
1

1

1( ) /

 e f x f x dxx[ ( ) ( )]  where f x
x

x
( )

2 1

e f x c

e
x

x
c

x

x

( )

2 1

Answer: (B)

 Example    4.88  

e
x
x

dxx 2

4

2

(A) 
xe
x

c
x

4
 (B) 

xe

x
c

x

( )4 2

(C) 
( )x e

x
c

x1

4
 (D) 

( )

( )

x

x
e cx1

4 2

Solution: We have

I e
x
x

dxx 2

4

2

 e
x x

x
dxx ( )

( )

4 4

4 2

 
e

x
x x

dx

e f x f x dx

x

x

4

4

4 2( )

[ ( ) ( )]

where f (x)  x/(x + 4). Therefore

I e
x

x
cx

4

Answer: (A)

 Example    4.89  

e
x

x
dxx ( )

( )

2

2

1

1

(A) 
xe
x

c
x

1
 (B) 

e

x
c

x

( )1 2

(C) 
x
x

e cx1

1
 (D) e

x
x

cx 1

1

Solution: We have

I
e x

x
dx

x ( )

( )

2

2

1

1

 

e
x

x
dxx

( )

2

2

1 2

1

 e
x
x x

dxx 1

1

2

1 2( )

 e f x f x dxx[ ( ) ( )]  where f x
x
x

( )
1

1

 

e f x c

e
x
x

c

x

x

( )

1

1
Answer: (D)

 Example    4.90  

e
x

x
dxx ( )

( )

1

1

2

2 2

(A) e
x

x
cx

1 2
 (B) e

x

x
cx 2

1 2

(C) e
x

cx 1

1 2
 (D) e

x

x

x
cx 2

1 12 2 2( )

Solution: We have

 e
x

x
dx e

x x

x
dxx x( )

( )

( )

( )

1

1

1 2

1

2

2 2

2

2 2

 e
x

x

x
dxx 1

1

2

12 2 2( )

e f x f x dxx[ ( ) ( )]  where f x
x

( )
1

1 2

 

e f x c

e

x
c

x

x

( )

1 2

Answer: (C)
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 Example    4.91  

e
x x

x
dxx ( )

( )

2

2

3 3

2

(A) e
x

x
cx

2
 (B) e

x

x
cx 1

2 2( )

(C) e
x
x

cx 1

2
 (D) 

e x x
x

c
x ( )1

2

Solution: We have

e
x x

x
dx e

x x

x
dxx x( )

( )

[( )( ) ]

( )

2

2 2

3 3

2

1 2 1

2

 e
x
x x

dxx 1

2

1

2 2( )

 e f x f x dxx[ ( ) ( )]  where f x
x
x

( )
1

2

 

e f x c

e
x
x

c

x

x

( )

1

2
Answer: (C)

 Example    4.92  

e
x x

x
dxx ( )

( )

3

2 2

2

1

(A) 
xe

x
c

x

2 1
 (B) 

( )x e

x
c

x1

12

(C) 
x e
x

c
x2

1
 (D) 

x e

x
c

x2

2 1

Solution: We have

e
x x

x
dx e

x x x x

x
dxx x( )

( )

[( )( ) ]

( )

3

2 2

2 2

2 2

2

1

1 1 1 2

1

 e
x

x

x x

x
dxx 1

1

1 2

12

2

2 2( )

 e f x f x dxx[ ( ) ( )]  where f x
x

x
( )

1

12

 

e f x c

e
x

x
c

x

x

( )

1

12

Answer: (B)

 Example    4.93  

log

( log )

( )

log

e

e e

x

x
dx

f x

x
c

1 12
 where f (x) is

(A) x (B) –x

(C) x2 (D) –x2

Solution: We have

I
x

x
dxe

e

log

( log )1 2

Put t  loge x. Therefore, et  x and et dt  dx. Hence

I
t

t
e dtt

( )
( )

1 2

 e
t

t
dtt ( )

( )

1 1

1 2

 e
t t

dtt 1

1

1

1 2( )

 e g t g t dtt[ ( ) ( )]  where g t
t

( )
1

1

 e g t ct ( )

 
e

t
c

t

1

 
x

x
c

elog 1

so that f (x)  x.

Answer: (A)

 4.4 Integration by Parts
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e
x x x

x
dxxsin ( cos sin )

cos

3

2
 is equal to

(A) esin x(x  cos x)  c  (B) esin x(x  sin x)  c

(C) esin x(x – sec x)  c    (D) esin x(x  sec x)  c

Solution: Let

I e
x x x

x
dxxsin cos sin

cos

3

2

 e x x x x dxxsin ( cos sec tan )

( cos ) sec tansin sine x x dx e x xdxx x

Using integration by parts, we get

I xe e dx e x e x xdx c

xe

x x x xsin sin sin sin

sin

sec cos sec

xx x x x

x x

x

e dx e x e dx c

xe e x c

e

sin sin sin

sin sin

sin

sec

sec

(xx x csec )

Answer: (C)

 Example    4.95  

e x
x x

dx x
xsec sin[ ( / )]

cos ( sin )

4

1
0

4
 is equal to

(A) 
1

2
e x x cxsec (sec tan )

(B) 
1

2
e x x cxsec (sec tan )

(C) 
1

2
e x x cxsec ( cot )cosec

(D) 
1

2
e x x cxsec ( cot )cosec 

Solution: We have

 I
e x

x x
dx

xsec sin[ ( / )]

cos ( sin )

4

1

 
1

2 1

e x x
x x

dx
xsec (sin cos )

cos ( sin )

1

2

1

1 2
e

x x x

x x
dxxsec (sin cos )( sin )

cos ( sin )

1

2

2

3
e

x x x x x

x
dxxsec (sin sin cos cos sin )

cos

1

2

2 2 2e x x x x x x x dxxsec (sec tan sec tan sec sec tan )

1

2

1

2
1

2 2e x x x dx

e x x x dx

x

x

sec

sec

(sec sec tan )

sec tan (sec )

1

2

1

2
1

d
dx

e x dx e t dtx t( tan ) ( )sec  (t  sec x)

1

2
[ tan ]sece x t e cx t

1

2
e x x cxsec (tan sec )

Answer: (B)

 Example    4.96  

If lim
( )

x

f x

x0 2
 exists finitely and lim

( )
,

/

x

x

x
f x

x
e

0

1
31  

then f x x dxe( ) log  is equal to

(A) 
2

3

1

3

3x x celog

(B) 
x

x ce

3

3

1

3
log

(C) 
2

3
13x x ce(log )

(D) 
2

3
13x x ce(log )

Solution: We have

 

lim
( )

lim
( )

/

x

x

x

x
f x

x
e

x
f x

x

0

1
3

0 2

1

1

1 1

//x

e3

lim
( ) ( )

( )

x

x

x f x

x f x
x x

x f x
x

e
0

2

1

31
2

2

 

x f x

x

f x x

2

2

2

3

2

( )

( )

 Example    4.94  
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Therefore

f x xdx x xdxe e( ) log log2 2

 2
3 3

13 3x
x

x
x

dxelog  (By Parts)

 
3

2

9

3 3x x x celog

 
2

3

1

3

3x x celog

Answer: (A)

 Example    4.97  

For 0 < x < 1, let

f x x x x x
n

n

( ) lim( )( )( ) ( )1 1 1 12 4 2�

then 
f x

x
xdxe

( )
log

1
 equals

(A) loge
x

x
c

1

(B) log
log

e
ex

x

x

x
c

1 1

(C) 
log

log ( )e
e

x

x
x c

1
1

(D) x x x ce elog log ( )1

Solution: We have

f x
x

x x x x
n

n

( ) lim [( )( )( ) ( )]
1

1
1 1 1 12 2�

 lim [( )( )( ) ( )]
n x

x x x x
n1

1
1 1 1 12 2 4 2�

 lim [( )( ) ( )]
n x

x x x
n1

1
1 1 14 4 2�

 lim
n

x
x x

n

1

1

1

1

2 1

Therefore

f x
x

( )
1

1

Let

I
f x

x
xdx

x

x
dxe

e( )
log

log

( )1 1 2

 
1

1

1

1

1

x
x

x x
dxelog

 
loge x

x x x
dx

1

1

1

1

 
log

loge
e

x

x
x

x
c

1 1

Answer: (B)

 Example    4.98  

x x

x
dx

x
x

x x x

f x c

2

2

2

1 1
2

2

cos

( sin ) sin
(sec tan )

log ( )

where f (x) is equal to

(A) sec x  tan x  (B) x(sec x  tan x)

(C) 1  sin x  (D) tan x (sec x  tan x)

Solution: Let

I
x x

x
dx

2

21

cos

( sin )

Take

u  x2 and dv
x

x
dx

cos

( sin )1 2

so that

v
x

1

1 sin

Therefore

I x
x x

x dx2 1

1

1

1
2

sin sin
( )

 
x

x
x

x
dx

2

1
2

1sin sin

 
x

x
x x

x
dx

2

21
2

1

sin

( sin )

cos

 
x

x
x xdx x x x dx

2
2

1
2 2

sin
sec sec tan

 

x
x

x x x dx

x x x dx

2

1
2

2

sin
tan tan

sec sec

 4.4 Integration by Parts
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x
x

x x x dx x x x dx
2

1
2 2 2 2

sin
tan tan sec sec

x
x

x x x x

x x c

e

e

2

1
2 2

2

sin
(tan sec ) log cos

log sec tan

 

x
x

x x x

x x x ce

2

1
2

2

sin
(tan sec )

log cos (sec tan )

 
x

x
x x x x ce

2

1
2 2 1

sin
(tan sec ) log sin

Answer: (C)

 Example    4.99  

sec

sin

2

7

7x

x
dx  is equal to

(A) cot x cosec7 x  c (B) tan x cosec6 x  c

(C) sec7 x cosec x  c (D) tan x cosec7 x  c

Solution: Let

 I
x

x
dx

sec

sin

2

7

7

sec2 7 77x x dx x dxcosec cosec

tan tan ( cot )x x x x x x dx

x dx

cosec cosec cosec

cosec

7 6

7

7

7

tan

tan

x x x dx x dx c

x x c

cosec cosec cosec

cosec

7 7 7

7

7 7

Answer: (D)

 Example    4.100  

(sin ) tan4
2

x e dxx

(A) 2
2 4e x cxtan cos  (B) 2

2 4e x cxtan sec

(C) 2
2 2e x cxtan sec  (D) 2

2 2e x cxtan cos

Solution: Let

 I x e dxx(sin ) tan4
2

4 2 2 2

sin cos (cos sin ) tanx x x x e dxx

 4 13 2 2

sin cos ( tan ) tanx x x e dxx

 4 14 2 2

tan cos ( tan ) tanx x x e dxx  (4.13)

Put t  tan2 x. Therefore

dt  2 tanx sec2x dx

Hence

I
x x

x
x e dxx2

2
1

2

6

2 2tan sec

sec
( tan ) tan

 2
1

1 3

t

t
e dtt

( )

 2
1 2

1 3

t

t
e dtt

( )

 2
1

1

2

12 3( ) ( )t t
e dtt

 2 [ ( ) ( )]f t f t et  where f t
t

( )
( )

1

1 2

 
2

1 2

e

t
c

t

( )

 

2

1

2

2

2

2 2

4

e

x
c

e x c

x

x

tan

tan

( tan )

cos

Answer: (A)

4.5 Fundamental Classes of Integrable Functions

In this section we would discuss various classes of integrable function and give examples so that students understand 

how to evaluate each class.
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4.5.1 Integration of Rational Functions of the Form P(x)
Q(x)

 [P(x) and Q(x) are Polynomials]

Method: Using partial fractions. For partial fractions, see Chapter 9 (Vol. 1).

 Example    4.101  

Evaluate 
x

x x x
dx

2

1 2 3( )( )( )
.

Solution: Write

x
x x x

A
x

B
x

C
x

2

1 2 3 1 2 3( )( )( )

so that

x2  A(x – 2)(x – 3)  B(x – 1)(sx – 3)  C(x – 1)(x – 2)

Put x  1, 2, 3 successively on both sides. Then

A B C
1

2
4

9

2
, ,

Therefore

x
x x x

dx
dx

x
dx

x
dx

x

2

1 2 3

1

2 1
4

2

9

2 3( )( )( )

1

2
1 4 2

9

2
3log log loge e ex x x c

 Example    4.102  

Evaluate 
x

x x
dx

2

21 2( ) ( )
.

Solution: Write

x

x x

A
x

B

x

C
x

2

2 21 2 1 1 2( ) ( ) ( )

Therefore

x A x x B x C x2 21 2 2 1( )( ) ( ) ( )

Now,
x B

x C

1 1

2 4

Equating the coefficient of x2 on both sides, we get

A  C  1  A  –3

Therefore

x

x x
dx

dx
x

dx

x

dx
x

2

2 21 2
3

1 1
4

2( ) ( ) ( )

3 1
1

1
4 2log loge ex

x
x c

4.5.2 To Evaluate Integrals of the Form px q

ax bx c
dx2

Case I: If ax2  bx  c  0 has real roots, use partial fractions.

Case II: If ax2  bx  c  0 has no real roots. Then write

px q
d
dx

ax bx c( )2

where  and  are constants which can be determined by equating the coefficients on both sides.

Case III: To evaluate 
P x

ax bx c
dx

( )
2

 where P(x) is a polynomial of degree greater than or equal two. Write

P(x)  Q(x)(ax2  bx  c)  (px  q)

so that

P x

ax bx c
dx Q x dx

px q

ax bx c

( )
( )

2 2

Now proceed as in Case II or Case I.

 4.5 Fundamental Classes of Integrable Functions
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 Example    4.103  

(Based on Case II)

Evaluate 
3 2

2 92

x

x x
dx.

Solution: Let

3 2 2 9

2 2

2x
d
dx

x x

x

( )

( )

Therefore

3  2  and 2     2

3

2
 and   –1

Now

3 2

2 9 2

2 2

2 9 2 92 2 2

x

x x
dx

x

x x
dx

dx

x x

 
3

2
2 9

1 8

2

2
log ( )

( )
e x x

dx

x

3

2
2 9

1

2 2

1

2 2

2 1log ( )e x x
x

cTan

 Example    4.104  

(Based on Case III)

Evaluate 
2 3 1

2 4 9

3 2

2

x x x

x x
dx.

Solution: Here

P(x)  2x3  x2  3x – 1

Divide P(x) with 2x2  4x  9. Therefore

2 3 1
3

2
2 4 9

25

2

3 2 2x x x x x x( )

So

2 3 1

2 4 9

3

2

25 2

2 4 9

3 2

2 2

x x x

x x
dx x dx

x x
dx

/

 
x

x
dx

x x

2

22

3

2

25

4 2 9 2( / )

 
x

x
dx

x

2

22

3

2

25

4 1 7 2( / )

 
x

x
x

c
2

1

2

3

2

25

4

2

7

2 1

7
Tan

( )

4.5.3 Integrals of the Form dx

ax bx c
(a 0)

2
 and px q

ax bx c
dx

2

1.  To evaluate 
dx

ax bx c
a

2
0( ),  make the coefficient of x2 as 1, complete the perfect square and use standard 

integrals.

2. To evaluate px q

ax bx c
dx

2
,  write

px q
d
dx

ax bx c( )2

so that

px q

ax bx c
dx

ax b

ax bx c
dx

dx

ax bx c2 2 2

2

 2 2

2
ax bx c

dx

ax bx c

Now, use (1) for 
dx

ax bx c2
.
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 Example    4.105  

Evaluate 
dx

x x3 4 52
.

Solution: Let

I
dx

x x
dx

x
x

3 4 5

1

3 4

3

5

3

2

2

dx

x

1

3 2

3

11

9

2

1

3

2 3

11 3

1

3

3 2

11

1

1

Sinh

Sinh

x
c

x
c

( / )

( / )

 Example    4.106  

Evaluate 
3 2

4 2 2

x

x x
dx.

Solution: Let

I
x

x x
dx

3 2

4 2 2

Let

3 – 2x  (–2x  2)  

so that – 2   –2, 2     3 and hence   1 and   1. 

Therefore

I
x

x x
dx

dx

x x

2 2

4 2 4 22 2

2 4 2
5 1

2

2
x x

dx

x( )

2 4 2
1

5

2 1x x
x

cSin

4.5.4 Integrals of the Form ( ) 2px q ax bx c dx

To evaluate ( ) ,px q ax bx c2  write

px q
d
dx

ax bx c( )2

and then use standard integrals.

 Example    4.107  

Evaluate ( ) .2 5 2 3 2x x x dx

Solution: We have

2x – 5  (–2x  3)  

so that   –1,   –2. Therefore

( ) ( )2 5 2 3 3 2 2 3

2 2 3

2 2

2

x x x x x x dx

x x dx

 
( )

( / )

( / )2 3

1 2 1
2

17

4

3

2

2 1 2 1 2x x
x dx

2

3
2 3

2 3

2
2 3

17

4

2 3

17

2 3 2 2

1

( ) /x x
x

x x

x
cSin

 4.5 Fundamental Classes of Integrable Functions
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Note: In the above integral ( ) ,px q ax bx c dx2  if p  0 and q  1 then the integral can be reduced to the form 

a x dx2 2  or x a dx2 2 .

4.5.5 Integral of the Form x

x kx
dx

2

4 2

1

1

To evaluate 
x

x kx
dx

2

4 2

1

1
 where k  –1, 0, or 1, divide numerator and denominator by x2 and put the substitution 

x  (1/x)  t or x – (1/x)  t according as the numerator is 1 – (1/x2) or 1  (1/x2).

 Example    4.108  

Evaluate 
x

x x
dx

2

4 2

1

1
.

Solution: We have

x

x x
dx

x

x x
dx

2

4 2

2

2 2

1

1

1 1

1 1

( / )

( / )

 
dt

t2 3
 where t x

x
1

 

1

3 3

1

3

1

3

1

1

Tan

Tan

t
c

x x
c

( / )

4.5.6 Special Cases

In this section we discuss four special cases: To evaluate

 
dx

f x f x1 2( ) ( )

where

1. both f1 and f2 are linear expressions. In this case put f x t2( ) .

2. f1 is quadratic and f2 is linear. Then also put f x t2 ( ) .

3. f1 is linear and f2 is quadratic. In this case put f1(x)  1/t.

4. (a) To evaluate 
x

ax b px q
dx

( )
,

2 2
 put px q t2 .

 (b) To evaluate 
dx

ax b px q
dx

( )
,

2 2
 first put x

t
1

,  simplify the integral and then put p qt z2 .

 Example    4.109  

Evaluate 
dx

x x( )
.

2 3 1

Solution: We have

 I
dx

x x( )2 3 1

 
1

2 1 3
2

2[ ( ) ]
( )

t t
t dt  where t x 1

 2
2 52

dt

t

 
dt

t2 5 2( / )

1

5 2 5 2

1

/ /
Tan

t
c

2

5

2

5
11Tan ( )x c
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 Example    4.110  

Evaluate 
dx

x x( )
.

2 1

Solution: Let

 I
dx

x x( )2 1

 
1

1
2

4( )
( )

t t
t dt  where t x

 
2

14t
dt

 
( ) ( )t t

t
dt

2 2

4

1 1

1

 
t

t
dt

t

t
dt

2

4

2

4

1

1

1

1

1
1

1

1
1

1

2

2

2

2

2

2

t

t
t

dt t

t
t

dt

dz

z

du

u2 22 2
  where andz t

t
u t

t
1 1

1

2 2

1

2 2

2

2

1Tan
z u

u
celog

1

2

1

2

1

2 2

1 2

1 2

1Tan
t t t t

t t
ce

( / )
log

( / )

( / )

1

2

1

2

1

2 2

2 1

2 1

1Tan
x

x

x x

x x
celog

 Example    4.111  

Evaluate 
x

x x
dx

( )
.

1 12 2

Solution: We have

I
x

x x
dx

( )1 12 2

Put x t2 1 .  Therefore x2  t2 – 1 and x dx  t dt. So

 I
t

t dt
1

2 2( )
( )

 
dt

t2 2

 
1

2 2

1

2

1

2t t
dt

 
1

2 2

2

2
loge

t

t
c

 
1

2 2

2 1

2 1

2

2
loge

x

x
c

 Example    4.112  

Evaluate 
dx

x x( )
.

2 21 1

Solution: We have

I
dx

x x( )2 21 1

Put x  1/t so that dx  –(1/t2)dt. Therefore

I
( / )1

1
1

1
1

1

2 2

2

t

t t

t
dt

 
dt

t t( )1 12 2

Now proceed as in Example 4.111.

 4.5 Fundamental Classes of Integrable Functions
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4.5.7 Integrals of the Form R x, x , x , x dx
p
q

p
q

p
q

1

1

2

2

k

k( ),…

To evaluate R x x x x dx
p
q

p
q

p
q

k

k( , , , , )

1

1

2

2 …  where R is a rational function of its variables x x xp q p qk k, , , ,/ /1 1 …  put x  tn 

where n is the L.C.M. of the denominators of the fractions p q p q p qk k1 1 2 2/ , / , , /… . If R is a rational function of linear 

fractions of the form 
ax b
cx d

p q/

,  then put

ax b
cx d

n

where n is the L.C.M. of the denominators of fractional powers of (ax  b)/(cx  d).

 Example    4.113  

Evaluate 
x x

x x
dx

3

54 76
.

Solution: We have

I
x x

x x
dx

3

54 76

Here the powers of x are 1/2, 1/3, 5/4, 7/6 and the L.C.M. 

of the denominators is 12. Hence put x  t12 so that dx  

12 t11 dt. Therefore

 I
t t

t t
t dt

6 4

15 14

1112( )

 12
1

3t t
t

dt

 12 2
2

1

2t t
t

dt

 12
3 2

2 2 1
3 2t t

t t celog

where t  x1/12.

 Example    4.114  

Evaluate 
( )

( )
.

/

( / )

2 1

2 1 1

1 2

1 3

x

x
dx

Solution: We have

I
x

x
dx

( )

( )

/

( / )

2 1

2 1 1

1 2

1 3

Here the powers of 2x  1 are 1/2 and 1/3. Put 2x 1  t6 
so that dx  3t5 dt. Therefore

I
t

t
t dt

3

2

5

1
3( )

 3
1

8

2

t

t
dt

 3 1
1

1

6 4 2

2
t t t

t
dt

 3
7 5 3

7 5 3
1t t t

t t c+ Tan

where t  (2x  1)1/6.

4.5.8 The Binomial Differential

The integral x a bxm n p( )  (m, n, p are rational numbers) can be evaluated in the following four cases:

Case I: If p is a positive integer, then use binomial expansion for positive integral index and then integrate.

Case II:  If p is a negative integer, then put the substitution x  t  where  is the L.C.M. of the denominators of the 

fractions of m and n.
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 Example    4.115  

Evaluate 
1 43 x

x
dx.

Solution: We have

I
x

x
dx

1 43

x x1 2 1 4 1 31/ / /( )

Here

m
n

1 1 2 1

1 4
2

( / )

/  (Integer)

So put

 1  x1/4  t3

  x  (t3 – 1)4

  dx  12 t2(t3 – 1)3 dt

Therefore

 I t t t t dt( ) [ ( ) ]3 2 2 3 31 12 1

 12 13 3t t dt( )

 
12

7
37 4t t c

 
12

7
1 3 14 7 3 4 4 3( ) ( )/ /x x c

 Example    4.116  

Evaluate 
dx

x x23 23
1( )

.

Solution: We have

 I
dx

x x23 23
1( )

 x x dx2 3 2 3 11/ /( )

Here p  –1 is a negative integer and m  –2/3, n  2/3. Put 

x  t3. Then dx  3t2dt. So

I t t t dt2 2 1 21 3( )

3
1

3

3

2

1

1 3

dt

t

t c

x c

Tan

Tan ( )

4.5.9 Euler’s Substitution

To evaluate R x ax bx c( , ),2  we use one of the following three substitutions called Euler’s substitutions.

1. Put ax bx c t x a2  if a > 0.

2. Put ax bx c tx c2  if c > 0.

3. If ax2  bx  c  a(x – )(x – ) where ,   are real roots of ax2  bx  c  0, then put the substitution

ax bx c t x2 ( )  or t(x – )

and simplify the integral and perform integration.

 4.5 Fundamental Classes of Integrable Functions

Case III: If 
m

n
1

 is an integer, then put the substitution a  bxn  tk where k is denominator of p.

Case IV: If 
m

n
p

1
 is an integer, then put the substitution a  bxn  tkxn where k is the denominator of p.
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4.5.10 Integration of Trigonometric Functions

To evaluate sin cosm nx x dx  where m and n are rational numbers, use the substitution t  sin x or cos x. The integral 

will be reduced to the form t t dtm n( ) .( )/1 2 1 2  Hence, it can be integrated in elementary functions only. See the fol-

lowing cases.

Case I: n is odd positive integer so that 
n 1

2
 is an integer.

Case II: If m is an odd positive integer then 
m 1

2
 is an integer.

Case III: m  n is even and 
m n1

2

1

2
 are integers, then

(a) put t  sin x if n is odd.

(b) put t  cos x if m is odd.
(c) put tan x  t or cot x  t when m  n is even.

 Example    4.118  

Evaluate I x x dxsin cos .5 4

Solution: Put cos x  t so that sin x dx  –dt. Therefore

I t t dt( ) ( )1 2 2 4

 
( )t t t dt8 6 42

 
1

9

2

7

1

5

9 7 5t t t c

where t  cos x.

 Example    4.117  

Evaluate I
dx

x x x2 1
.

Solution: Put

x x t x2 1

  x2  x  1  t2 – 2tx  x2

  x (2t  1)  t2 – 1

 x
t

t

2 1

2 1

Therefore

dx
t t t

t
dt

2 2 1 2 1

2 1

2

2

( ) ( )

( )

 
2 2 2

2 1

2

2

t t

t
dt

( )
 (4.14)

Again

x x x x t x t2 1

Therefore

 I
t

t t

t
dt

1 2 2 2

2 1

2

2

( )

( )
 [from Eq. (4.14)]

 2
1

2 1

2

2

t t

t t
dt

( )
 (use partial fractions)

Note: Sometimes the integrals which can be evaluated by using Euler’s substitution can also be evaluated by other 

substitution methods.
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 Example    4.119  

Evaluate I x x dxsin cos .2 3

Solution: Put sin x  t so that cos x dx  dt. Therefore

I t t dt2 21( )

1

5

1

3

1

5

1

3

5 3

5 3

t t c

x x csin sin

 Example    4.120  

Evaluate I
x

x
dx

sin

cos
.

3

4

Solution: Put cos x  t so that sin x dx  –dt. Therefore

I
t

t
dt

1 2

4
( )

1 1
2 4t t

dt

1 1

3

1

3

3

3

t
t c

x x csec sec

4.5.11 Reduction

At plus 2 level and in IIT-JEE, we have simple Reduction, viz. evaluation of integrals of the form sin ,n x dx   

cos , tan , sec ,n n n nx dx x dx x dx x dxcosec and cotn x dx  where n  2 integer.

 Examples 

 4.5 Fundamental Classes of Integrable Functions

1. Let

 I x dxn
nsin

sin sinn x x dx1

Using by parts, we get

I x x

n x x x dx

n
n

n

sin ( cos )

( )sin cos ( cos )

1

21

cos sin ( ) sin cosx x n x x dxn n1 2 21

cos sin ( ) sin ( sin )

cos sin ( )

x x n x x dx

x x n I

n n

n

1 2 2

1

1 1

1 nn nn I2 1( )

Therefore

nIn  (n – 1)In – 2 – cos x sinn – 1 x

or I
n

n
I

n
x xn n

n1 1
2

1cos sin

Similarly, if I x dxn cos ,2  then

I
n

n
I

n
x xn n

n1 1
2

1sin cos

 2. Let

I x dx

x x dx

x x dx

x

n
n

n

n

n

tan

tan tan

tan (sec )

tan sec

2 2

2 2

2

1

22
2

1

2
1

x dx I

x
n

I

n

n

n
(tan )

Therefore

I
x

n
In

n

n
(tan ) 1

2
1
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Single Correct Choice Type Questions

1.  
x

x x mx
dx

f x

mx
c

m

m m m m

1

1 21 2

( )
 where f (x) is 

equal to

(A) 1 2 2x mxm m  (B) 1 2x xm m

(C) x
x

m
m

1
 (D) x

x
m

m
2

2

1

Solution: Let

I
x

x x mx
dx

m

m m m

1

1 21 2

Dividing numerator and denominator with x2m+1 we get

I x x

x x
m

dx
m m

m m

1 1

1 2

1 2 1

2

Put

t
x x

mm m
2

2

1 2

Therefore

2
2 2

1 1

2 1 1

1 2 1

t dt
m

x

m

x
dx

t dt m
x x

dx

m m

m m

 

 

Hence

I
t

t
m

dt

t
m

c

m x x
m c

mx
x mx c

m m

m
m m

1

1 1 2

1
1 2

2

2

Answer: (A)

2. If 
dx

x x k
x

x
e

( )
log

2 4 1

1 1 3

1 3

1

2
11Tan x c

 
then k equals

(A) 2 3  (B) 4 3

(C) 
1

4 3
 (D) 

1

3 3

Solution: Let

I
dx

x x( )2 4 1

Put x t1  so that dx = 2t dt. Therefore

I
t t

t dt

t t
dt

dt

t

1

1 4
2

2

1 2 1 2

2
3

2 2

2 2

2

( )
( )

( )( )

( )(

 

 

tt

t t
dt

2

2 2

1

1

2

1

3

1

1

)

1

2 3

1

2 1

1

2

1

2 3

3

3

1

2

1

4 3

2 2

1

dt

t

dt

t

t

t
t celog Tan

lloge
x

x
x c

1 3

1 3

1

2
11Tan

Answer: (B)

3. 
dx

x a x a( ) ( )/ /3 2 1 2
 is equal to

(A) 
1

a
x a
x a

c  (B) 
1

2a
x a
x a

c

(C) 
1

a
x a
x a

c  (D) 
1

a
x a
x a

c

Solution: Let

I
dx

x a x a2 2 ( )

Put x  a = 1/t so that dx = ( 1/t 2)dt. Therefore

I

t
a a

t

t
dt

dt

at

a
a

1

1 1

1

1 2

1

2

1 2

2
2

2

( tt
c

) ( / )1 2 1

1

2
1

WORKED-OUT PROBLEMS
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 1
1 2

a
at c

 

1
1

2

1

a
a

x a
c

a
x a
x a

c

 Answer: (D)

4. 
dx

x x x( )3 6 422
 is equal to

 (A) 
x x

x
c

2 6 4
5 3

 (B)  
x x

x
c

2 6 4
5 3

 (C) 
x x

x
c

2 6 5

5 3
 (D) 

x x
x

c
2 6 5
5 3

Solution: Let

I dx
x x x( )3 6 42 2

Put x  3  1/t so that dx = (1/t2)dt. Therefore

I t

t t

t
dt

t
t t

2

2 2

2

1 3 6 1 3 4

1

1 3 6 1( ) ( 33 4

1 5

2

2

t t
dt

t
t

dt

)

 
1

5
1 5

1

3

2t c t
x

where

 Answer: (A)

5. 
dx

x x x xtan cot sec cosec 
 is equal to

 (A) 
1

2
(sin cos )x x x c

 (B) 
1

2
(sin cos tan cot )x x x x c

 (C) 
1

2
(sin cos )x x x c

 (D) 
1

2
(sin cos tan cot )x x x x x c

Solution: Let I be the given integral. Then

I
x x
x x

dx
sin cos

cos sin1

 

sin

sec tan

x
x x

dx
1

sin ( tan sec )

( tan ) sec

sin ( tan sec )

tan

x x x

x x
dx

x x x

1

1

1

2

2 2

xx
dx

1

2
1

1

2
1

1

2

cos ( tan sec )

(cos sin )

(sin cos )

x x x dx

x x dx

x x x c

 Answer: (C)

6. 
a b x

b a x
dx

sin

( sin )2
 equals

 (A) 
a x

b a x
c

cos

sin
 (B) 

sin

cos

x
a b x

c

 (C) 
cos

sin

x
b a x

c  (D) 
sin

cos

x
a b x

c

Solution: Let

 

I
a b x

b a x
dx

b
a

a
b

b b a x

b a x
dx

a b

sin

( sin )

( sin )

( sin )

2

2

2

2 22

2a
dx

b a x

b
a

dx
b a x( sin ) sin

 (4.15)

Let

f x
a x

b a x
cos

sin

so that

 

f x
a b x

b a x

b
a

a x b
a
b

b

b a x

sin

( sin )

sin

( sin )

2

2

2

b
a b a x

a b
a b a x

1 12 2

2sin ( sin )
 (4.16)

Therefore

f x f x c

b
a

dx
b a x

a b
a

dx

b a x
c

( ) ( )

sin ( sin )

2 2

2

 [By Eq. (4.16)]
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Hence from Eq. (4.15),

I f x c
a x

b a x
c( )

cos

sin

 Answer: (A)

7.  If I x x dxn
n(sin cos )  (n  2), then nIn

 2(n 1) In 2
 

is equal to

 (A) (sin cos ) (sin cos )x x x xn

 (B) (sin cos ) (sin cos )x x x xn 1

 (C) (sin cos ) (sin cos )x x x xn 1

 (D) (sin cos ) (sin cos )x x x xn 1

Solution: Let

I x x x x dxn
n(sin cos ) (sin cos )1

Take

u = (sin x + cos x)n 1

and

dv = (sin x + cos x)dx

so that

v = sin x  cos x

Therefore, using integration by parts we have

I x x x x

n x x

x

n
n

n

(sin cos ) (sin cos )

( )(sin cos )

(cos si

1

21

nn )(sin cos )

(sin cos ) (sin cos )

( ) (sin cos

x x x dx

x x x x

n x

n 1

1 xx x x dx

x x x x

n x

n

n

) (cos sin )

(sin cos ) (sin cos )

( ) (sin

2 2

1

1 cos ) [ (sin cos ) ]

(sin cos ) (sin cos )

(

x x x dx

x x x x

n

n

2 2

1

2

2 nn I n In n1 12) ( )

Therefore

I n I n I x x x x

nI n

n n n
n

n

( ) ( ) (sin cos ) (sin cos )

( )

1 2 1

2 1

2
1

II x x x xn
n

2
1(sin cos ) (sin cos )

 Answer: (B)

8. 
x n n

x x n x
dx

2

2

1

sin cos
 is equal to

 (A) 
x x

x x n x
x c

cos

sin cos
tan

 (B) 
sec

sin cos
tan

x
x x n x

x c

 (C) 
x x

x x n x
x c

sec

sin cos
cot

 (D) 
x x

x x nx x
x c

n

n n

sec

sin cos
tan

1

Solution: Let I be the given integral. Therefore

 

I
x n n x

x x n x x
dx

x n n x

n

n

[ ( )]

( sin cos )

[ ( )]

( )

( )

2 2 1

2 2 1

2 2

1

1 nn

n nx x nx x
dx

1

1 2( sin cos )
 (4.17)

Put t x x nx xn nsin cos1  so that

 

dt nx x x x n n x x

nx x dx

x n n

n n n

n

[ sin cos ( ) cos

sin ]

[ (

1 2

1

2

1

1))] cosx x dxn 2  
 

(4.18)

So from Eq. (4.17),

I
x n n x x x x

x x nx x
dx

n n

n n

[ ( )] cos sec

( sin cos )

2 2

1 2

1  

Take u = xn sec x and

dv
x n n x x

x x nx x
dx

n

n n

[ ( )] cos

( sin cos )

2 2

1 2

1  

So from Eq. (4.18),

I x x
x x nx x

x x nx x
nx

n
n n

n n
n

( sec )
sin cos

sin cos
(

1

1

1

1

11

1

2

sec sec tan )

sec

sin cos
sec

x x x x dx

x x

x x nx x
x dx

x

n

n

n n

n

 

ssec

sin cos
tan

x

x x nx x
x c

n n 1

Answer: (D)

9. 
dx

x xcos sin6 6
 equals

 (A) Tan 1(tan cot )x x c

 (B) 
1

3 3

1Tan
(tan cot )x x

c

 (C) 
1

3

1Tan (sin cos )x x c

 (D) 
1

3 3

1Tan
(sin cos )x x

c

Solution: We have

I
dx

x xcos sin6 6
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dx

x x

dx

x x x x

x

(cos ) (sin )

cos sin cos sin

sec

tan

2 3 2 3

4 2 2 4

4

1 22 4x x
dx

tan

1

1

2

2 4

t

t t
dt  where t = tan x

1 1

1 1

2

2 2

( / )

( / )

t

t t
dt  (see Sec. 4.5.5)

dz

z2 3
where z t

t
1

1

3 3

1

3

1

3

1

3

1

1

1

Tan

Tan

Tan

z
c

t t
c

x

( / )

tan cot xx
c

3

Answer: (B)

10. 
x

x
dx

2

4

2

4
 equals

(A) 
1

2

2

2

1
2

Tan
x

x
c  (B) 

1

2

21
2

Tan
x

x
c

(C) 
1

2

2

2

1
2

Tan
x

x
c  (D) 

1

2

21
2

Tan
x

x
c

Solution: Let

I
x

x
dx

x

x x
dx

2

4

2

2 2

2

4

1 2

4

( / )

( / )

Put t = x (2/x) (see Sec. 4.5.5). Therefore

dt
x

dx1
2
2

This gives

I
dt

t
t

c

x
x c

2

1

1

4

1

2 2

1

2

2

2

Tan

Tan

1

2

2

2

1
2

Tan
x

x
c

Answer: (C)

11. 
x

x
dx

2

4

2

4
 is equal to

(A) 
1

4

2 2

2 2

2

2
loge

x x

x x
c

(B) 
1

16

2

2

1
2

Tan
x

x
c

(C) 
1

4

2 2

2 2

2

2
loge

x x

x x
c

(D) 
1

16

2 2

2 2

2

2
loge

x x

x x
c

Solution: Let

I
x

x
dx

x

x x
dx

2

4

2

2 2

2

4

1 2

4

( / )

( / )

Put x +(2/x) = t. Therefore

I
dt

t
t
t

ce

2 4

1

2 2

2

2
log

1

4

2
2

2
2

loge

x
x

x
x

c

1

4

2 2

2 2

2

2
loge

x x

x x
c

(∵ the expression within the logarithm is positive)

Answer: (C)

Try it out Solve
dx

x4 4
.

Hint: Using Problems 10 and 11, this integral can be 

evaluated because

d

x x
dx

x

x

x
dx

2 2

4

2 2

4

4

1

4 4

1

4

2

4

1

4

2

4

dx

x4 4

1

4

x

x
dx

2

4

2

4

1

4

( )x2 ( )x2 2x2x
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12. 
x

x

dx

x

2

2 4

1

1 1
is equal to

 (A) Cos 1
2 1

x

x
c  (B) 

1

2 1

1
2

Cos
x

x
c

 (C) 
1

2

2

1

1
2

Tan
x

x
c  (D) 

1

2

2

1

1
2

Cos
x

x
c

Solution: Let

I
x

x

dx

x

2

2 4

1

1 1

Dividing numerator and denominator with x2 we get

I
x

x x
dx

x x

1 1

1 1

2

2 2

( / )

( / ) ( / )

Put x + (1/x) = t. Therefore

I
dt

t t
t

c

t
c

2

1

1

2

1

2 2

1

2

2

Sec

Cos

 Answer: (D)

13. 
x x

x x x x x
dx

( )

( )( )

1

1 12 3 2
 is equal to

 (A) 
1

2

1

1

2

2
loge

x x x

x x x
c

 (B) 
1

2

1

1

12

2

1
2

loge
x x x

x x x

x x
x

cTan

 (C) 
1

4

1

1

12

2
1

2

loge
x x

x x

x x
x

cTan

 (D) 
1

2

1

1

1

1

2

2
1

2

2
loge

x

x

x

x
cTan

Solution: Let

I
x x

x x x x x
dx

x x

x x x x x
d

( )

( )( )

( )

( )( )

1

1 1

1

1 1

2 3 2

2

2 2 3 2
xx

x x

x x x

dx

x x x

( )

( )( )

2

2 2 3 2

1

1 2 1

Dividing numerator and denominator with x3 we get

I
x

x
x

x
x

dx

x
x

1 1

1 1
2

1
1

2( / )

Put x  (1/x)  1= t2 so that

1
1

2
2x

dx t dt 

Therefore

 

I
t t t

t dt

t t
dt

t t

1

1 1

1
2

2

1 1

1

1

1

1

2 2

2 2

2 2

( )( )
( )

( )( )

 dt

1

2

1

1

1

2

1

1

1

1

2

2

1
2

log

log

e

e

t
t

t c

x x x

x x x

x x
x

Tan

Tan c

 Answer: (B)

14.  If dx

x x
a x b x

( )
( ) ( )

1
1 1

4 10
4 8 4 9  then 

a  b is

 (A) 
1

8
 (B) 

1

18

 (C) 
1

72
 (D) 

1

72

Solution: Let

I
dx

x x

x x dx

( )

( )/

1

1

4 10

1 2 4 10

According to integration of Binomial differential (see 

Sec. 4.5.8) put x t4 so that dx = 4t3dt. Then

I t t t dt

t

t
dt

t

t
dt

2 10 3

10

10

1 4

4
1

4
1 1

1

( ) ( )

( )

( )

 

4
1

4
1

4

8

1

1

4

9

1

1

9 10

8 9

dt

t

dt

t

t t
c

( ) ( )

( ) ( )

 Answer: (B)
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15. 
x

x x x
dx

4

2 4 2

1

1
 equals

 (A) 
x x

x
c

4 2 1
 (B) 

x x
x

c
4 2 1

 (C) Tan 1 2
2

1
x

x
c  (D) loge

x x

x x
c

2

2

2 2

2 2

Solution: Let

I
x

x x x
dx

4

2 4 2

1

1

 

x
x

x
x

dx

1

1
1

3

2
2

 (See Sec. 4.5.5)

Put x x t2 2 21 1( / )  so that

 x
x

dx t dt
1
3

 

Therefore

I
t

t dt

t c

x
x

c

1

1
12

2

( )

 Answer: (A)

16.  
x

x x x
dx f x ce

2

4 2

1

3 1
log ( ( ))

where f (x) is given by

 (A) 
x

x

2 1
 (B) 

1
3 14 2

x
x x

 (C) 
x x

x

4 2

2

3 1
 (D) 

1
1 3 12 4 2

x
x x x( )

Solution: Let

I
x

x x x
dx

x

x x
dx

x

x
x

2

4 2

2

2 2

2

1

3 1

1 1

1 3

1 1

1

( / )

( / )

( / )

2

1

dx

 
dt

t2 1
 where t x

x
1

 

log ( )

log

e

e

t t c

x
x

x
x

c

2

2

1

1 1
1

 Answer: (D)

17. If 
dx

x
x f x c

1

1

24sin
tan ( )  then f (x) is

 (A) Tan 1 2( tan )x

 (B) 
1

2
21Tan ( tan )x

 (C) 
1

2 2
21Tan ( tan )x

 (D) 
1

2 2
21Tan ( sin )x

Solution: Let

 

I
dx

x

x

x
dx

x x

x
dx

1

1

1 2

4

2

2

2 2

2

sin

sec

sin

sec sec

tan

 
1

1 2

2

2

t

t
dt  where t = tan x

 

1

2

1 1 2

1 2

1

2

1

2 1 2

2

2

2

t

t
dt

dt
dt

t
dt

t
t c

x x c

2

1

2 2
2

1

2

1

2 2
2

1

1

Tan

Tan

( )

tan ( tan )

Answer: (C)

18.  If 
cos sin

cos ( cos )

2 4

1 24 2

x x

x x
dx

 
 = 2 1 2log ( cos )e x  

loge(1  cos2 2x)  f (x)  c then f (x) is

 (A) sec2x (B) tan x

 (C) cosec2x (D) cot x
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Solution: Let

I
x x

x x
dx

x x

x

cos sin

cos ( cos )

cos sin

( cos ) (

2 4

1 2

8
2 2

1 2 1

4 2

2

2

 

 

ccos )2 2x
dx

Put cos 2x = t so that 2sin 2x dx = dt. Therefore

I
t

t t
dt4

1 1

2

2 2( ) ( )

Using partial fractions we have

t

t t t t
t

t

2

2 2 2 21 1

1

2 1

1

2 1 2 1( ) ( ) ( ) ( ) ( )

Therefore

 

I
t t

t

t
dt

t
t

t
e

4
1

2 1

1

2 1 2 1

2

1
2 1

2

1

2 2( ) ( ) ( )

log
t

dt
2

2

1 2
2 1 2 1 2

2 1

2

2

cos
log ( cos ) log ( cos )

sec log ( co

x
x x c

x

e e

e ss ) log ( cos )2 1 22x x ce

Therefore f (x) = sec2x.

 Answer: (A)

19.  If x x dx x c3 43 1 7 43
1 1( ) ( )/ , then 

1  is

 (A) 
7

6
 (B) 

32

49

 (C) 
7

9
 (D) 

49

32

Solution: Let

I x x dx3 43 1 71( ) /

This is Binomial differential (see Sec. 4.5.8) in which m = 

1/3, n = 4/3 and p = 1/7. Now,

m
n

1 1 3 1

4 3
1

( / )

/  (integer)

Hence put 1 43 7x t  so that x t( ) ./7 3 41  Therefore

dx t t dt
3

4
1 77 1 4 6( ) ( )/

Hence

I t t t t dt

t dt

( ) ( ) ( ) ( )/ /7 1 4 7 1 4 6

7

1
21

4
1

21

4

 

21

4 8

21

32
1

8

3 4 8 7

t
c

x c( ) /

So

1 21

32

7

8

49

32

 Answer: (D)

20. x x dx6 3 2 31 2( ) /  equals

 (A) 
1

5
2 3 5 3( ) /x c  (B) 

1

5
23 5 3( ) /x c

 (C) 
3

5
2 3 5 3( ) /x c  (D) 

3

5
23 5 3( ) /x c

Solution: Let I be the given integral which is Binomial 

differential (See Sec. 4.5). In this case m = 6, n = 3 and 

p = 2/3 so that

m
n

p
1 5

3

2

3
1  (integer)

Put 1 + 2x3= x3t3 so that x3(t3 2) = 1. Therefore

 x t( ) /3 1 32

dx t t dt

t t dt

1

3
2 3

2

3 4 3 2

2 3 4 3

( ) ( )

( )

/

/

Hence

I t t t t t dt

t t

( ) ( ) ( )( )

( ) (

/ /3 2 3 1 3 2 3 2 3 4 3

3 2 3

2 2 2

2 22 2

2

1

5

2 3 4 3 4 3

4 3 2 2 3 4 3

4

5

) ( )

( )

/ /

/ /

t t dt

t t dt

t dt

t c

1

5

1 2

1

5
2

3

3

5 3

3 5 3

x

x
c

x c

/

/( )

 Answer: (A)

21. x x dx 2 3 1 3 1 21/ / /( )  is equal to

 (A) 2 1 1 3 2 3( )/ /x c  (B) 2 1 1 3 3 2( )/ /x c

 (C) 3 1 1 3 2 3( )/ /x c  (D) 3 1 1 3 3 2( )/ /x c
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Solution: Let

I x x dx 2 3 1 3 1 21/ / /( )

This is a case of Binomial differential (see Sec. 4.5.8) in 

which m = 2/3, n = 1/3 and p = 1/2 so that

m
n

1 2 3 1

1 3
1

( / )

/
 (integer)

Now put 1 1 3 2x t/  so that

x t( )2 31

and dx t t dt6 12 2( )

Therefore

I t t t t dt

t dt

t c

x c

( ) ( )( )

( )/ /

2 2 2 2

2

3

1 3 3 2

1 6 1

6

2

2 1

Answer: (B)

22. If

x x dx x x x x

x

a b

c

11 4 1 2 4 5 2 4 3 21
1

10
1

1

3
1

1

2

( ) ( ) ( )

(

/ / / 

11 4 1 2x k) /

then a + b + c equals

 (A) 10 (B) 14

 (C) 16 (D) 18

Solution: Let

I x x dx11 4 1 21( ) /

This integral is again integration of Binomial differential 

(see Sec. 4.5) in which m = 11, n = 4 and p = 1/2 so 

that

 m
n

p
1 11 1

4

1

2

5

2

1

2
3  (integer)

Therefore put 1 4 4 2x x t so that

x
t

x t

4

2

2 1 4

1

1

1( ) /

Thus

dx t t dt
1

4
1 22 5 4( ) ( )/ t

t dt
2

12 5 4( ) /

Therefore

x t

x x t t t

11 2 11 4

4 4 2 2 1 2

1

1 1

( )

( )

/

Hence

I t t
t

t
t dt

t dt

( ) ( ) ( )

( )

/ / /2 11 4 2 1 2 2 5 4

2 2

1 1
1

2
1

1

2
1

1

2 5

2

3

1

10

1 1

3

1

5
3

4

4

5 2 4

4

t
t t k

x

x

x

x

/ 3 2 4

4

1 2

10 4 5 2 6 4 3 2

1

2

1

1

10
1

1

3
1

/ /

/ /( ) ( )

x

x
k

x x x x

1

2
12 4 1 2x x k( ) /

Therefore

a b c 10 6 2 18

 Answer: (D)

23. If

5 4

2 5
2 5

2

2 1 5x

x x
dx x x f x c( ) ( )/

then f (x) is equal to

 (A) 
1

2
1 2 52log ( )e x x x

 (B) log ( )e x x x1 2 52

 (C) 
1

2
1 2 52log ( )e x x x

 (D) 
( )x

x x
1

2
2 52

Solution: Let

I
x

x x
dx

5 4

2 52

Refer to Sec. 4.5.3. Let

5 4 2 5

2 2

2x
d
dx

x x

x

( )

( )

Therefore 5 2 1/ , .  Hence

I
x

x x
dx

dx

x x

2 2

2 5 2 52 2
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2 2 5
1 4

2 2 5
1

2

2 2 5

2

2

2 1

2

x x
dx

x

x x
x

c

x x e

( )

log (

Sinh

xx x x c1 2 52 )

So

f x x x xe( ) log ( )1 2 52

Answer: (B)

24. If

2 5

9 6 2
9 6 2

3 1 9 6 2

2

2

2

x

x x
dx a x x

b x x x celog ( )

then 9(a + b) is equal to

 (A) 9 (B) 4

 (C) 41 (D) 2

Solution: Refer Sec. 4.5.3. Let

2 5 9 6 2

18 6

2x
d
dx

x x

x

( )

( )

Therefore

2

18

1

9

and 5 6 5
6

9

13

3

Hence

2 5

9 6 2

1

9

18 6

9 6 2

13

3 3 1 1

2

9
9 6

2 2 2

2

x

x x
dx

x

x x

dx

x

x x

( )

22
13

3
3 1 9 6 22log ( )e x x x c

Therefore

9 9
2

9

13

3
41( )a b

 Answer: (C)

25. If

4 4 3
1

2
2 1 4 4 32 2x x dx x x x f x ce log ( ) ( )

then f (x)equals

 (A) 
2 1

4
4 4 32x

x x  (B) 
x

x x
1

4
4 4 32

 (C) 
x

x x
4

4 4 32  (D) 
2 1

4
4 4 32x

x x

Solution: Let

I x x dx4 4 32  

 

2
3

4

2
1

2

1

2

2

2

x x dx

x dx

 

 

According to Formula 11

I
x

x x2
1 2

2

1

2

1

2

1

4

1

2
2

2
1( / )

Sinh c

x
x x

x x x
c

x
x

e
2 1

4
4 4 3

1

2

2 1

2

4 4 3

2

2 1

4
4

2
2

2

log

44 3
1

2
2 1 4 4 32x x x x celog ( )

Therefore

 f x
x

x x( )
2 1

4
4 4 32

Answer: (A)

26. 
2

2

2

22

1 3

( )

/

x

x
x

dx

 (A) 
2

2

2 3x
x

c
/

 (B) 
2

2

2 3x
x

c
/

 (C) 
3

4

2

2

2 3x
x

c
/

 (D) 
3

4

2

2

3 2x
x

c
/

Solution: Let I be the given integral. Put

2

2

3x
x

t

so that

x
t

t

x
t

t

t

t

2 2

1

2 2
2 2

1

4

1

3

3

3

3

3

3

and dx
t t t t

t
dt

t

t
dt

6 1 3 2 2

1

12

1

2 3 2 3

3 2

2

3 2

( ) ( )

( ) ( )
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Therefore

I
t

t
t

t

t
dt

dt

t

t

2 1

16

12

1

3

2

3

2 3 1

3 2

6

2

3 2

3

3 1

( )
( )

( )

c

t
c

3

4

1
2

 

3

4

3

4

2

2

3

4

2

2

2

2 3

2 3

( )

/

/

t c

x
x

c

x
x

c

Answer: (C)

27. 
sin

sin cos

x
x x

dx  equals

 (A) 
1

2 2
log sin cose x x

x
c

 (B) 
1

2 2
log sin cose x x

x
c

 (C) log tan cote x x
x

c
2

 (D) 
1

2 2
log sece x x

x
ccosec 

Solution: We have

 

I
x

x x
dx

x x x x
x x

dx

sin

sin cos

sin cos sin cos

sin cos

s

1

2

1

2
1

iin cos

sin cos

x x
x x

dx

 

x
d
dx

x x

x x
dx c

x
x x ce

2

1

2

2

1

2

sin cos

sin cos

log sin cos

Answer: (A)

28. 
dx

x x x x( )2 21 1

 (A) 4
8 3 2

du

u
where u z z

t
1

12 ,

 and x
1

2

5

2

t

 (B) 4
8 3 2

du

u
where u z z

t
1

12 ,

 and x
t1

2

5

2

 (C) 5
5 3 2

du

u
where u z z

t
1

12 ,

 and x
t1

2

5

2

 (D) 5
8 32

du

u
where u z z

t
1

12 ,

 and x
1

2

5

2

t

Solution: Let

I
dx

x x x

dx

x x

( )x2 2

2 2

1 1

1

2

3

4

1

2

5

4

Put

x
t1

2

5

2

Then

dx dt
5

2

Therefore

I
t

t

dt

dt

t t

1

5

4

3

4

5

2
1

5

2

4
5 3 1

2
2

2 2( )

Put t = 1/z so that dt z dz( / ) .1 2  Then

I
z

z z
dz4

5 3 12 2( )

Now, put 1 2 2z u .  Then

I
u u

u du

du

u

4
1

5 3 1

4
8 3

2

2

( )
( )

Answer: (A)
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29. 
dx

x x( ) ( )/ /1 12 3 4 3
 equals

 (A) 
3

2

1

1

1 3x
x

c
/

 (B) 
2

3

1

1

1 3x
x

c
/

 (C) 
3

2

1

1

1 3x
x

c
/

 (D) 
2

3

1

1

1 3x
x

c
/

Solution: Let

I
dx

x x

dx

x
x

x

( ) ( )

( )

/ /

/

1 1

1

1
1

2 3 4 3

2 3
2

Put 
x
x

t
1

1

3  so that

x
t

t
x

t

3

3 3

1

1
1

2

1

and dx
t

t
dt

6

1

2

3 2( )

Therefore

I

t
t

t

t
dt

1

4

1

6

12

3 2

2

3 2

( )

( )

3

2

3

2

1

1

3

2

1

1

1 3

1 3

dt

x
x

c

x
x

c

/

/

Answer: (A)

30. 
dx

x x x( )1 1 2
 equals

 (A) 2
1 1

1
2

tan
x x

x
c

 (B) 2
1 1

11
2

 Tan
x x

x
c

 (C) 2
1 1

1
2

loge
x x

x

 (D) 2
1 1

1
2x x

x
c

Solution: Let

I
dx

x x x( )1 1 2

Put 1 12x x tx  (Euler’s substitution). Therefore

1 2 12 2 2x x t x tx

 

1 2

1 2

1

2

2

x t x t

x
t

t

Hence

dx
t t t

t
dt

t t

t
dt

2 1 2 1 2

1

2 1

1

2

2 2

2

2 2

( ) ( )

( )

( )

( )

Now

1 1

1 2

1
1

1

1

2

2

2

2

x x tx

t t

t

t t

t

( )

Therefore

I
t

t
t t

t

t t

t
dt

1

1
1 2

1

1

1

1

2 1

1
2

2

2

2

2 2

( )

( )

2
2 2

2
1 1

2 1

2 1
1

2

2

1

1

dt

t t
dt

t

t c

x

( )

( ) Tan

 Tan
xx

x
c

2 1

Answer: (B)

31. 
x

x x x x
dx

( )2 23 2 4 3
 is equal to

 (A) 2
1

2

4 3

1

1
2

 Sin
x

x x
x

c

 (B) 2
1

2

4 3

1

1
2

 Sin
x

x x
x

c
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 (C) 2
1

2

4 3

1

1
2

 Sin
x

x x
x

c

 (D) 2
1

2

4 3

1

1
2

 Sin
x

x x
x

c

Solution: Let

I
x

x x x x
dx

( )2 23 2 4 3

 

x

x x x x
dx

x x
dx

x x

( )( )2 1 4 3

2

2

1

1 4 3

2

2

Therefore

I
dx

x x x

dx

x x x
2

2 4 3 1 4 32 2( ) ( )
 (4.19)

Let

I
dx

x x x

dx

x x

x

x

d

1
2

2

2

2

2 4 3

2 2 1

1

2

1
1

2

( )

( ) ( )

( )
xx

x
Sin 1 1

2

Now, let

I
dx

x x x

dx

x x

dx

x
x

x

2
2

3 2 1 2

3 2

1 4 3

1 3

1

3

( )

( ) ( )

(

/ /

/

3 2)

Put

x
x

t
1

3

2

so that

x t
t t

1 3
1

3 2
1

2

2 2

x
t

3
2

1 2

Therefore

dx
t

t
dt

4

1 2 2( )

This gives

I

t
t

t

t
dt2

3

2 2

2 2

1

4

1

4

1

( )

( )

 

dt

t

t

x
x

2

1

3

1

 

( )( )

( )

x x

x

x x
x

3 1

1

4 3

1

2

2

Substituting the values of I
1
 and I

2
 in Eq. (4.19), we have

I
x

x x
x

c2 1
2

4 3
1

1
2

 Sin

Answer: (C)

32. 
dx

x xsin sec
 is equal to

1

2 3

3

3

1loge
t

t
z cTan

where

 (A) t x x z x xsin cos , sin cos

 (B) t x x z x xsin cos , sin cos

 (C) t x x z x xtan cot , tan cot

 (D) t x x z x xsin , cos sincosec 

Solution: Let

I
dx

x x
x

x x
dx

x
x x

dx

x

sin sec

cos

sin cos

cos

sin cos

(cos

1

2

2 2

sin ) (cos sin )

sin cos

x x x
x x

dx
2 2
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cos sin

sin cos

x x
x x

dx
2 2

ccos sin

sin cos

cos sin

(sin cos )

cos s

x x
x x

dx

x x

x x
dx

x
2 2

3 2

iin

(sin cos )

x

x x
dx

1 2

 
dt

t

dz

z3 12 2  where t x xsin cos and

 z x xsin cos

 
1

2 3

3

3

1loge
t

t
z cTan

Answer: (B)

33. 
x

x x
dx

2

3 2

2

1
 equals

 (A) 
x

x
c

2

2

1
 (B) 

x
x

c
2

2

1

 (C) 
( ) /x

x
c

2 3 2

2

1
 (D) 

x
x

c
2 1

Solution: Let

I
x

x x
dx

2

3 2

2

1

Put x t2 21  so that xdx = tdt. Therefore

I
t

t
dt

t

t
dt

dt

t

dt

t

2

2 2

2

2 2

2 2 2

1

1

1 2

1

1
2

1

( )

( )

( )

Hence

 I t
dt

t
Tan 1

2 2
2

1( )
 (4.20)

Now let

I
dt

t
1 2 21( )

Put t tan  Therefore

I d

d

d

1

1 2

2

2

2

4

4
2

2

sec
(sec )

cos

cos

sin

1

2 2 1

1
2

Tan t
t

t( )

Substituting the value of I
1
 in Eq. (4.20), we get

I t t
t

t
cTan Tan1 1

2
2

1

2 2 1( )

t

t
c

x

x
c

1

1

2

2

2

Answer: (A)

34. 
dx

x1 44
 is

 (A) 1

4

1

1

1

2

14 1 4

4 1 4

1
4 1 4

log
( )

( )

( )/

/

/

e
x x

x x

x
x

cTan

 (B) 1

4

1

1

1

2

11 4

1 4

1
1 4

log
( )

( )

( )/

/

/

e
x x

x x

x
x

cTan

 (C) 
1

4

1

1

1

2

14 1 4

4 1 4

1
4 1 4

log
( )

( )

( )/

/

/

e
x x

x x

x
x

cTan

 (D) 
1

4

1

1

1

2

14 1 4

4 1 4

1
4 1 4

log
( )

( )

( )/

/

/x x

x x

x
x

cTan

Solution: Let

I
dx

x1 44

Put 1 4 4 4x t x  (see Binomial differential). Then

x t( ) /4 1 41

and dx t t dt3 4 5 41( ) /

Also

( ) ( )/ /1 14 1 4 4 1 4x tx t t

Therefore

I
t

t
t t dt

t

t
dt

t t

( )
( )( )

/
/

4 1 4
3 4 5 4

2

4

2 2

1
1

1

1

2

1

1

1

1
dt

t
t

t ce
1

2

1

2

1

1

1

2

1log Tan
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1

4

1

1

1

2

14 1 4

4 1 4

1
4 1 4

log
( )

( )

( )/

/

/

e
x x

x x

x
x

cTan

Answer: (C)

35.  If F x x dxn
n( ) (log )  and n n nF nF 1, then 

n ne( ) ( )1  is equal to

 (A) 0 (B) 1

 (C) ne (D) e

Solution: Using integration by parts, we get

F x x x x n
x
x

dx

x x nF x c

n
n

n

n
n

( ) (log )
(log )

(log ) ( )

1

1

Therefore

F x nF x x x cn n
n( ) ( ) (log )1

This implies

n
nx x x c( ) (log )

n ne e( ) ( )1

 Answer: (D)

36. If f :� �  is a function satisfying the following:

 (i) f x f x( ) ( )

 (ii) f x f x( ) ( )1 1

 (iii) f
x

f x

x
x

1
0

2

( )

then e f x dxx ( )  is equal to

 (A) e x cx( )1  (B) e x cx log

 (C) 
e
x

c
x

 (D) 
e

x
c

x

1

Solution: First, we determine f (x).

f f f f( ) ( ) ( ) ( )0 0 0 0 0

and 0 0 1 1 1 1 1 1f f f f( ) ( ( )) ( ) ( )

Therefore f (0) = 0 and f ( 1) = 1. Let x  0 and 1. 

From (ii), we have

 f
x

f
x

f x

x

1
1

1
1 1

2

( )
 [By (iii)]

Therefore

 f
x

x
f x

x

1
1

2

( )
 (4.21)

Again

 

f
x

x
f

x
x

1

1

1

 

f
x

x

x
x

1

1
2

 

x
x

f x

x1
1

2

2

( )

 

[By Eq. (4.21)]

Therefore

 ( ) ( )1
1

2 2x f
x

x
f x x  (4.22)

Also

( ) ( )1
1

1 1
1

1

2 2x f
x

x
x f

x

 ( )1
1

1
12x f

x

 ( )1
1

1
12x f

x

[ ( ) ( )]∵ f x f x

 ( )
( )

( )
1

1

1
12

2
x

f x

x

∵ f
x

f x

x

1
2

( )

 

f x x

f x x

f x x x

( ) ( )

( ( ) ) ( )

( )

1 1

1 1

2

2

2

2   (4.23)

Therefore from Eqs. (4.22) and (4.23), we have

f x x f x x x

f x x

f x x

( ) ( )

( )

( )

2 2 2

2 2

Thus f f( ) , ( )0 0 1 1  and f x x x( ) , .0 1  So, 

f x x x( ) .�  Hence

e f x dx e xdx

xe e dx

xe e c

e x c

x x

x x

x x

x

( )

( )1

 Answer: (A)
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37. 
sin cos

(sin cos ) sin cos sin cos

x x

x x x x x x
dx

2 2

 (A) sin(sin )2 1x c  (B) cosec(sin )2 1x

 (C) Sec 1 2 1(sin )x c  (D) Tan 1 2 1(sin )x c

Solution: Let I be the given integral. Then

I
x x

x x x x x x
dx

x

sin cos

(sin cos ) sin cos sin cos

cos

( s

2 2

2 2 2

2

1 iin ) sin cos

cos

( sin ) (sin )

2
1

2

1

4

2 2

1 2 2 1

2

2

x x x

dx

x

x x 11

 
dt

t t2 1
 where t = 1 + sin 2x

 
Sec

Sec

1

1 1 2

t c

x c( sin )

 Answer: (C)

38.  If f  (x) is a quadratic expression such that 

f f f( ) ( ) ( ) ,0 1 3 2 3  then 
f x

x
dx

( )
3 1

 (A) log log ( )e ex x x
x

c1 1
2

3

2 1

3

2 1Tan

 (B) log log ( )e ex x x
x

c1 1
1

3

1

3

2 1Tan

 (C) log ( ) loge ex x x
x

c2 11
2

3

2 3

3
Tan

 (D) loge x x x
x

c3 2 12

3

2 1

3
Tan

Solution: Let f x ax bx c( ) 2 . Then

f c( )0 3 3

and

f

a b c

( )1 3

3

 a b 0  (4.24)

and

f

a b c

( )2 1

4 2 1

 4 2 2

2 1

a b

a b
 

(4.25)

From Eqs. (4.24) and (4.25), a b1 1, .  Therefore

 f x x x( ) 2 3

So

f x

x
dx

x x

x
dx

( )
3

2

31

3

1

 

1

1

2 2

12x
x

x x
dx 

1

1

2 1

1 1

2

3

4

1

2 2

2

x
dx

x

x x
dx

dx

x

x xe e

  

log log ( x
x

c1
2

3

2 1

3

1) Tan

Answer: (A)

39. cos log
cos sin sin

2
2

2
e d

cos sin

 

log
sin

( )e f x c
cos

cos sin

1

2

where f x( )  is

 (A) sec 2  (B) log (sec )e 2

 (C) 2 1 Tan  (D) tan 2

(IIT-JEE 1994)

Solution: Let I be the given integral. We can see that 

the derivative of log
cos sin

cos sin
e  is 2 2sec ,  so that 

using integration by parts we have

I de
sin2

2

cos +sin

cos sin

sin2

2
log ( sec )2 2

 

sin2

2

cos +sin

cos sin
 log tane d2

 sin2

2

cos +sin

cos sin

1

2
log log (sec )e e c2

Therefore

f x e( ) log (sec )2

Answer: (B)

40. cosec2x x dxelog (sin )  equals

 (A) cot [ log (sin )]x x ce1

 (B) cot [ log (sin )]x x x ce1

 (C) cot log (sin )x x x ce

 (D) cosec x x x celog (sin )
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Solution: Using integration by parts, we get

cosec2x x dx x x x xdx

x

e elog (sin ) cot log (sin ) ( cot )cot

cot loog (sin ) ( )

cot log (sin ) cot

cot [

e

e

x x dx

x x x x c

x

cosec2 1

1 log (sin )]e x x c

Answer: (B)

41. log( )x x2 1 dx =

(A) x x x x celog ( )2 21 1

(B) x x x x celog ( )2 21 1

(C) 
x x

x x ce

2
21

2
1log ( )

(D) 
x

x x ce

2
21

2
1log ( )

Solution: Using integration by parts we have

log ( ) log ( )e ex x dx x x x

x
x x

x

x
d

2 2

2 2

1 1

1

1
1

1
xx

x x x
x

x
dx

x x x x c

e

e

log ( )

log ( )

2

2

2 2

1
1

1 1

Answer: (A)

Try it out Using Problems 40 and 41, evaluate

log (cos cos )

cos

e xcos

x
dx

2

1 2

42. If 
dx

x
x

a c
1 2sin

tan ,  then a is equal to

(A) 
4

 (B) 
2

(C) 
2

 (D) 
4

Solution: We have

dx
x

x

x
dx

1

1
2sin

sin

cos

sec sec tan

tan sec

sin

cos

tan( / )

2

1

2 2

1

xdx x xdx

x x c

x
x

c

x

ttan ( / )

tan ( / )

tan ( / )

2

2

2

2
1

1 2

1 2

x

x

x

c

( tan( / ))

tan ( / )

tan( / )

tan( / )

tan

1 2

1 2

2 1

1 2

2 4

2

2

x

x

x
x

x
c

Therefore a =  /4.

Answer: (D)

43. x x xdxtan sec2

(A) 
x x x x

c
sec tan2

2 2

(B) 
x x

x c
sec

tan
2

2

1

2

(C) 
x x x

c
sec tan

2 2

(D) 
x x x

c
sec tan2

2 2

Solution: Take u x dv x xdxand tan sec2  so that

v x xdx xtan sec sec2 21

2

Therefore

x x xdx x x xdxtan sec sec sec2 2 21

2

1

2

 
x x

x c
sec

tan
2

2

1

2

Answer: (B)

44. 
1

1

x

x
dx

 (A) 2 1 1 2x x x x cCos

 (B) 2 1 1 2x x x x cCos
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 (C) 2 1 1 2x x x x cCos

 (D) 2 1 2 Cos x x x c

Solution: Let

I
x

x
dx

1

1

Put x cos2  so that

dx d d2 2cos sin sin

Therefore

 

I d

d

1

1
2

2
2

cos

cos
( sin )

tan sin

 

sin( / )

cos( / )
( sin cos )

sin( / )

cos( / )
sin co

2

2
2

4
2

2 2

d

ss cos

sin cos

( cos )cos

2

4
2

2 1

2

d

d

d

2 2

2 1 2

2
1

2
2

2cos cos

cos ( cos )

sin sin

d

d

c

 

2 1

2 1 1

2 1

2 1

1

cos sin cosCos

Cos

Cos

x c

x x x x c

x 1 2x x x c

Answer: (A)

45. 
x x

x
dx f x x c

4 4

2
11

1
4

( )
( )  Tan  where f (x) is

 (A) 
x

x x
x

x
7

6 5
3

7

2

3

4

3
4

 (B) 
x

x x x x
7

6 5 3

7

2

3

4

3
4

 (C) 
x

x x
x

x
7

6 5
3

7

2

3

4

3
4

 (D) 
x

x x
x

x
7

6 5
3

7

2

3

4

3

Solution: Dividing x x4 41( ) with 1  x2, we have

x x

x
dx x x x x

x
dx

x
x

4 4

2
6 5 4 2

2

7
6

1

1
4 5 4 4

4

1

7

2

3

( )
 

xx x x x c5 3 14

3
4 4 Tan

Therefore

f x
x

x x x x( )
7

6 5 3

7

2

3

4

3
4

Answer: (A)

46. 
Sin Cos

Sin Cos

1 1

1 1

x x

x x
dx

 (A) 
4

2

1

2
1

2
1 1x x

x x x x c Sin Sin

 (B) 
2

12 1 1x x x x x x c Sin Sin

 (C) 
2 1

2
12 1 1x x x x x x c Sin Sin

 (D) 
2 1

2
12 1 1x x x x x x c Sin Sin

Solution: Let I be the given integral. Since

Sin Cos1 1

2
x x

we have

 

I x dx

xdx x

2
2

2

4

1

1

 Sin

Sin  (4.26)

Now, let I x dx1
1Sin .  Using integration by parts, 

we get

I x x
x

x x
dx

x x x x dx

1
1

1 1 2 1 2

1

1

2

1

2
1

 Sin

 Sin / /( )

Let 1  x = t2 so that dx = 2t dt. Then

I x x
t

t
t dt

x x t dt

x x
t t

1
1

2

1 2

1
2

1

2

1
2

1

1

 Sin

 Sin

Sin

( )

22

1

2

2

1

2
1

1

1
2

1

Sin

 Sin  Sin

t

x x
x x

x
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Substituting the value of I
1
 in Eq. (4.26), we have

I x x x x x x c
4 1

2

1

2
11 2 1 Sin  Sin

Answer: (A)

47. 
dx

x

dx

x( )6 2 61

5

6 1
 is equal to

 (A) 
x

x6 16( )
 (B) 

x

x

5

66 1( )

 (C) 
6

1

5

6

x

x
 (D) 

6

16

x

x

Solution: Let

I
dx

x

x

x x
dx

( ) ( )6 2

5

5 6 21

1

6

6

1

Take

u
x

1
5

 and dv
x

x

6

1

5

6 2( )

so that

v
x

1

16

Therefore using integration by parts, we get

I
x x x

x dx

x x

dx

x x

1

6

1

1

1

1
5

1

6 1

5

6

5 6 6
6

5 6 6

( )
( )

( ) ( 66

5 6 6 6

5 6 5

1

1

6 1

5

6

1 1

1

1

6 1

1

6

5

)

( )

( )

x x x x
dx

x x x 66 16

dx

x

So,

dx

x

dx

x x x x

x

x

( ) ( )

( )

6 2 6 5 6 5

6

1

5

6 1

1

6 1

1

6

6 1

Answer: (A)

48. If f :� �  is a function such that

f x f
x

x x( ) 2
1

3 0

then xf x dx( )  is equal to

 (A) 2
1

3

3x x c  (B) 2
1

3

3x x c

 (C) loge x x c
1

2

2
 (D) loge x x c

1

2

2

Solution: Given that

 f x f
x

x( ) 2
1

3  (4.27)

Replacing x with 1/x we get

 2
1 3

f x f
x x

( )  (4.28)

Solving for f (x), we have

f x
x

x
( )

2 2

Therefore

xf x dx x dx x x c( ) ( )2 2
1

3

2 3

Answer: (A)

49. 
e x

x x
dx

x 2 2

2

1

1 2 1 2

( )

( )
 is equal to

 (A) 
1

2 2

1 2

1 2

2e
x

x
cx

 (B) 
1

2 2

1 2

1 2

2e
x

x
cx

 (C) 
1

2 2

1 2

1 2

2e
x

x
cx

 (D) 
1

2 2

1 2

1 2

2e
x

x
cx

Solution: Let

I
e x

x x
dx

x 2 2

2

1

1 2 1 2

( )

( )

Put x t2 . Then

 

I
e t

t t
dt

e t

t t
dt

t

t

1

2

1 2

1 1

1

2 2

1 1

1 1

2

2

2

2

[ ( / )]

( )

( )

( )

1

2 2

1

1

1

1 1 2
e

t
t t t

dtt

 
1

2 2

1

1
2e

t
t

c t xt where

Answer: (C)
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50. 
(sin cos )( sin )

sin

x x x

x
dx

2 2

22

 (A) 
sin cos

sin

x x
x

c
2

 (B) 
sin cos

sin

x x
x

c
2

 (C) 
sin

sin cos

x
x x

c  (D) 
sin

sin cos

x
x x

c

Solution: Put t x xsin cos  so that

dt x x dx(cos sin )

and 1 2 2sin x t

Therefore

I
t

t
dt

t

t t
dt

dz

z

( )

( )

( / )

[( / ) ]

1

1

1 1

1

2

2 2

2

2 2

where z t t( / ) .1  So

I
z

c

t t
c

t

t
c

x x
x

c

1

1

1

1

2

2

( / )

sin cos

sin

Answer: (B)

51. 
3 2

2 2 2 5

2

6 5 4 3 2

x x

x x x x x
dx equals

 (A) Sinh 1
3 2 1

2

x x
c

 (B) 2
1

2

1
3 2

 Cosh
x x

 (C) Sin 1
3 2 1

2

x x
c

 (D) 2
1

2

1
3 2

 Cos
x x

c

Solution: The expression under the square root is

( ) ( )x x x x3 2 2 3 22 5

Let I be the given integral. Put x x t3 2 .  Then

 

I
dt

t t
d

2 2 5

dt

t 21 4( )

 
Sinh 1 1

2

t
c

Sinh 1
3 2 1

2

x x
c

Answer: (A)

52. (sin ) (cos )/ /x x dx3 2 5 2

 (A) 
2

3
2 3cot tanx x c

 (B) 2
2

3

3tan cotx x c

 (C) 2
2

3

3cot tanx x c

 (D) 2
2

3

3cot tanx x c

Solution: We have

I x x dx

dx

x x

dx

x

(sin ) (cos )

(sin ) (cos )

(sin /co

/ /

/ /

3 2 5 2

3 2 5 2

ss ) cos

sec

(tan )

/

/

x x

x

x
dx

3 2 4

4

3 2

 
1 2

3 2

t

t
dt

/
 where t = tan x

 

( )

( / ) /

/ /

/ /

/ /

t t dt

t t
c

t t

3 2 1 2

3 2 1 3 2

1 2 3 2

3 2 1 3 2

2
2

3
cc

x x c2
2

3

3 2cot (tan ) /

Answer: (C)

53. If

a x b x
c x d x

dx px q c x d x ce
sin cos

sin cos
log sin cos

where p  q is equal to
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(A) c a b d a b

c d

( ) ( )
2 2

 (B) c a b d a b

c d

( ) ( )
2 2

(C) 
a d c b d c

a b

( ) ( )
2 2

 (D) 
a d c b d c

a b

( ) ( )
2 2

Solution: Write

a x b x c x d xsin cos ( sin cos )

d
dx

c x d x

c x d x d x c x

( sin cos )

sin cos ( sin cos )( )

Equating the corresponding coefficients of sin x and cos x 

on both sides we get

 c d a - (4.29)

 c d b  (4.30)

Solving Eqs. (4.29) and (4.30) for  and , we have

ac bd

c d

ad bc

c d2 2 2 2
and

( )

Therefore

I
c x d x
c x d x

dx

dx
c x d x
c x

cos sin

sin cos

cos sin

sin d x
dx

x c x d x c

ac bd

c d
x

ad bc
e

cos

log sin cos

(
2 2

))
log sin cos

c d
c x d x ce2 2

Answer: (A)

Important Formula:

QUICK LOOK 

a x b x
c x d x

dx
ac bd

c d
x

ad bc

c d

sin cos

sin cos

( )

l

2 2 2 2

oog sin cose c x d x c

54. If

3 2

2 3
2 3

sin c

sin cos
log sin cos

x x
x x

dx lx m x x ce
os

 then

 (A) l m
5

13

12

13
,  (B) l m

12

13

5

13
,

 (C) l m
5

13

12

13
,  (D) l m

12

13

5

3
,

Solution: In the above formula, take a 3, b 2, c  2, 
d  3, so that

l
ac bd

c d

m
ad bc

c d

2 2

2 2

12

13

5

13

( )

Answer: (B)

55. If

dx
x

px q x x ce
1 tan

log cos sin

then p + q equals

(A) 
3

2
 (B) 2

(C) 
1

2
 (D) 1

Solution: We have

dx
x

x
x x

dx

x x
x x

1

0

tan

cos

sin cos

( ) cos

sin cos

sin

Now a b c d0 1 1 1, , , .  Therefore

p
ac bd

c d

q
ad bc

c d

2 2

2 2

1

2

0 1

2

1

2

( ) ( )

So

p q
1

2

1

2
1

Answer: (D)

56. 
x x

x x
dx

4 10

20 10

1

3 1

( )
 equals

(A) Tan 1 5
5

1
x

x
c

(B) 
1

5

11 5
5

Tan x
x

c

(C) 5
11 5
5

 Tan x
x

c

(D) 
1

10

11 10
10

Tan x
x

c
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Solution: Let

I
x x

x x
dx

4 10

20 10

1

3 1

( )

Put t = x5 so that ( / ) .1 5 4dt x dx   Therefore

I
t

t
t

t

t t
dt

2

4 2

2

2 2

1

1

1

5

1

5

1 1

1 3

1

5

1 1

t 3
d

( / )

( / )

( / tt

t t
dt

t
t

c

x
x

2

2

1

1 5

5

1 1

1

5

1

1

5

1

)

[ ( / )]

Tan

Tan c

Answer: (B)

57. 
x

x x x
dx

2

2( sin )cos
 equals

 (A) 
cos sin

sin cos

x x x
x x x

c  (B) 
cos sin

cos sin

x x x
x x

c
x

 (C) 
sin cos

sin cos

x x x
x x x

c  (D) 
sin cos

sin cos

x x x
x x x

c

Solution: Let 

I
x

x x x
dx

2

2( sin cos )

We know that 

d
dx

x x x x x( sin cos ) cos

Therefore 

I
x x

x x x

x
x

dx
cos

( sin cos ) cos2

Take

u
x

xcos
 and dv

x x

x x x
dx

cos

( sin cos )2

so that

v
x x x

1

sin cos

Hence

I
x

x x x x

x x x
x x x

x

cos sin cos

sin cos

cos ( sin )

cos

1

1
2

dx

x
x x x x x x x

x x x

x
dx

x

cos ( sin cos ) sin cos

cos sin

cos

1
2

ccos ( sin cos )
sec

cos ( sin cos )
tan

si

x x x x
xdx

x
x x x x

x c

x

2

nn ( sin cos )

cos ( sin cos )

x x x x
x x x x

c

x x x x
x x x x

c

x x x x

( sin ) sin cos

cos ( sin cos )

cos (sin cos )

co

1 2

ss ( sin cos )

sin cos

sin cos

x x x x
c

x x x
x x x

c

Answer: (C)

58. [ ] ( )x x dx n
n

2 1 1  is

 (A) 
1

2

1

1

1

1

2 1 2 1( ) ( )x x
n

x x
n

c
n n

 (B) 
( )

( )

x x
n n

c
n2 21

1

 (C) 
1

2
1

1

1

12
2

( )x x
x x

n n
cn

 (D) 
( )

( )

( )

( )

x x
n

x x
n

c
n n2 1 2 11

2 1

1

2 1

Solution: Let

I x x dx
n

[ ]2 1

Put t x x2 1 so that 

1
12

t
x x

Therefore

t
t

x
1

2  

and t
t

x
1

2 12

Now,

dt
x

x
dx

t
t t

dx

1
1

1 2 1

2

( / )[ ( / )]
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or
 

dx
t t

t
dt

t

t
dt

( / )1

2

1

2

2

2

Therefore

I t
t

t
dtn

2

2

1

2

1

2

2( )t t dtn n

1

2 1 1

1 1t
n

t
n

c
n n

1

2

1

1

1

1

2 1 2 1( ) ( )x x
n

x x
n

c
n n

Answer: (A)

Try it out Try the case when n 1.

59. 
cos cos

cos

/
x x

x
dx

3

3

1 2

1

(A) 
2

3

1Sin cos x c  (B) 
2

3

1 3 2Sin (cos )/ x c

(C) 
2

3

1 3 2Sin (sin )/ x c  (D) 
2

3

1Cos cos x c

Solution: Let the given integral be I. Then

I
x x

x
dx

cos (sin )

cos1 3

Put cos /3 2 x t  so that

3

2
cos ( sin )x x dx dt  and cos3 2x t

Then

I
t

dt

t c

x c

1

1

2

3

2

3

2

3

2

1

1 3 2

Sin

Sin (cos )/

Answer: (B)

60.  (sin ) (cos )
( tan )

( )
,/ /x x dx

x
H x

c11 3 1 3
23 1 4

8
 

where H x( ) is

(A) tan3 x (B) (tan ) /x 5 3

(C) (tan ) /x 2 3  (D) (tan ) /x 8 3

Solution: Since sum of the indices of sin x  and cos x  

is 4 (even), put t xtan  [see Sec. 4.5.10, Case III, part 

(c)]. Now

I
x
x

xdx

x
xdx

t

sin

cos
cos

(tan )
sec

/

/

/

11 3
4

11 3

4

11 3

1

1
(( )

( )/ /

1 2

11 3 5 3

t dt

t t dt

t t
c

t t

( / ) ( / )

/ /

( / ) ( / )

11 3 1 5 3 1

8 3 2 3

11 3 1 5 3 1

3

8

3

2

3

8

1 4
8 3 2 3t t

c
/ /

3

8

1 4

3

8

1 4

2 2 3 2 3

2

2

tan (tan ) (tan )

tan

tan (ta

/ /x x x
c

x

x nn ) /x
c

2 3

Therefore H x x( ) (tan ) ./8 3

Answer: (D)

61. cos(log )e x dx  is equal to

(A) x x x ce e[cos(log ) sin(log )]

(B) 
x

x x ce e
2

[cos(log ) sin(log )]

(C) 
x

x x ce e
2

[cos(log ) sin(log )]

(D) 
x

x x ce e
2

[sin(log ) cos(log )]

Solution: Let 

I x dx

x x x
x

x
dx

e

e
e

cos(log )

cos(log )
[ sin( )]log

x x x dx

x x x x x

e e

e e

cos(log ) sin(log )

cos(log ) sin(log )
cos(logge

e e

x
x

dx

x x x I

)

[cos(log ) sin(log )]
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Therefore

2

2

I x x x

I
x

x x

e e

e e

[cos(log ) sin(log )]

[cos(log ) sin(log )]

Answer: (C)

62.  
sin

cos
log

sin

sin
( )

4 1 1

1

x
x

dx
x
x

g x ce
2

 where g x( )

equals

 (A) 
1

3

3sin sinx x  (B) 
1

3

3cos cosx x

 (C) 
1

3

3sin sinx x  (D) 
1

3

3cos cosx x

Solution: Let

 

I
x
x

dx

x x

x
dx

t

t
dt t x

sin

cos

sin cos

cos

sin

4

4

2

4

21
where 

 

t

t
dt

t dt
dt

t

4

2

2
2

1 1

1

1
1

( )

t
t

t
t

c

x x
x
x

e

3

3

3

1

2

1

1

1

3

1

2

1

1

log

sin sin log
sin

sin
c

Answer: (A)

63. 
log x

x
dx

2
 is equal to

 (A) log x
x

c
1

 (B) log x
x

c
1

 (C) 
log x

x x
c

1
 (D) 

( log )1 x
x

c

Solution: Let

I
x

x
dx

x
x

x x
dx

log

log

2

1 1 1

 

log

log

x
x

dx

x
x x

c

1

1

2x

Answer: (D)

64. 
e

e
dx

x

x( )1 2 2

 (A) 
e

e
e c

x

x
x

1 2
1Tan

 (B) 
1

2 1 2

1e

e
x c

x

x
Tan

 (C) 
1

2 1 2

1e

e
e c

x

x
x+

1

2
Tan

 (D) Tan 1

22

1

2 1

e e

e
c

x x

x

Solution: Let

I
e

e
dx

dt

t
t e

x

x

x

( )

( )

1

1

2 2

2 2
where 

Put t tan . Then 

 

I d

d

c

sec

sec

cos

sin

2

4

1 2

2

2

1

4
2

1

2

1

4

2

1

1

2 1

1
2

1
2

Tan

1

2
Tan

e c

e
e

e

x

x
x

x

tan

tan

++c

Answer: (C)

65. 
x

a x
dx

3 3

 (A) Cos 1
3 2x

a
c

/

 (B) 
2

3

1
3 2

Sin
x
a

c
/

 (C) 
2

3

1
3 2

Cos
x
a

c
/

 (D) Sin 1
3 2x

a
c

/

Solution: Let

I
x

a x
dx

x a x dx

3 3

1 2 3 3 1 2/ /( )

Put x asin /2 3  so that 

dx
a

d
2

3

1 3sin cos/
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Therefore

I a
a

a dsin
cos

sin cos
/

/
/

1 3

3 2
1 32

3
2

3

2

3

2

3

1
3 2

d

c

x
a

cSin
/

Answer: (B)

66.  Let f be a positive differentiable function defined 

on ( , )0  and 

( ) lim
( )

x
f x

n
f xn

n
1

Then log ( ( ))e x dx  is equal to

(A) 
1

2

2( ( ))f x c  (B) f x f x( ) ( )

(C) log ( ( ))e f x c  (D) log
( )

( )
e

f x
f x

c

Solution: We have

( ) exp lim
( ( / ))

( )

exp lim
(

x
f x n

f x

f x

n

n

n

1
1

( / )) ( )

( ( / )) ( )

( )/ ( )

1

1

1n f x
x n x f x

e f x f x

Therefore

log ( )
( )

( )
e x

f x
f x

Integrating both sides we get

log ( ( ))
( )

( )

log ( ( ))

e

e

x dx
f x
f x

dx

f x c

Answer: (C)

Multiple Correct Choice Type Questions

1. ( tan cot )x x dx is equal to

(A) 2
2

1Tan
tan cotx x

c

(B) 2
2

1Tan
tan cotx x

c

(C) 2 1Sin (sin cos )x x c

(D) 2 1Tan (sin cos )x x c

Solution: Let 

I x x dx( tan cot )

Put tan x t2  so that sec .2 2xdx t dt  Then

dx
t

t
dt

2

1 4

Now

I t
t

t

t
dt

t

t
dt

t

t t
dt

1 2

1

2 1

1

2
1 1

1

4

2

4

2

2 2

( )

( / )

( / )

2
22

dz

z
where z t

t
1

2

2 2

2
2

1

1

Tan

Tan

z
c

x x
c

tan cot

Hence (A) is correct.

Also 

I
x x

x x
dx

sin cos

sin cos

2
2

2
1 2

sin cos

sin cos

sin cos

(sin cos )

x x

x x
dx

x x

x x
dx

2
1 2

dt

t
 where t x xsin cos

2

2

1

1

Sin

Sin

t c

x x c(sin cos )

Hence (C) is correct.

Answers: (A), (C)
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 2. 
dx

x x x( )1 1 2
 is equal to

 (A) 2
1 1

11
2

Tan
x x

x
c

 (B) 2
1 11

2

Tan
x x

x
c

 (C) Sin 1 3 1

5 1

x
x

c
( )

 (D) Sin 1 3 1

5 1

x

x
c

Solution: First, we use Euler’s substitution. Put

 1 1 02x x tx c( )∵

This gives

1 2 1

1 2

1 2

1

2 2 2

2

2

x x t x tx

x t x t

x
t

t

So

dx
t t

t
dt

2 1

1

2

2 2

( )

( )

Also 

1 1

1 2

1
1

1

1

2

2

2

2

x x tx

t t

t

t t

t

( )

Therefore

1

1 1

1

1
1 2

1

1

1

2 1

2

2

2

2

( )

(

x x x
dx

t

t

t t

t

t t22

2 21

)

( )t
dt

 

2
2 2

2
1 1

2 1

2
1 1

2

2

1

1
2

dt

t t
dt

t

t c

x x

( )

( )Tan

Tan
xx

c1

So (A) is correct. Now, we put 

t
x

1

1
 or x

t
1

1

Therefore 

dx
dt

t2

So

dx

x x x

t t t

dt

t( )1 1

1

1 1 1
1

2 2 2

dt

t t
dt

t

t
c

3 1

5

4

3

2

3

2

5 2

2

2

1Sin
/

Sin

Sin

Sin

1

1

1

2 3

5

2

1
3

5

3 1

t
c

x c

x

(( )

( )

x
c

x

x
c

1 5

3 1

5 1

1Sin

Hence (D) is correct.

Answers: (A), (D)

 3. By a suitable substitution, the indefinite integral 

dx
x xsin sec

can be expressed as sum of two of the following 

integrals. Identify them.

 (A) 
dt

t1 2
 (B) 

dt

t1 2

 (C) 
dt

t3 2  (D) 
dt

t3 2

Solution: Let

I
dx

x x
x

x x
dx

sin sec

cos

sin cos 1
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2

2 2

2 2

cos

sin cos

(cos sin ) (cos sin )

sin cos

x
x x

dx

x x x x
x x

dx

cos sin

sin cos

cos sin

sin cos

cos sin

x x
x x

dx
x x

x x
dx

x
2 2 2 2

xx

x x
dx

x x

x x
dx

dt

t

dz

3 1

3 1

2 2

2

(sin cos )

cos sin

(sin cos )

z2

where 

t x xsin cos

and z x xsin cos

Answers: (B), (C)

4. 
x

x x
dx

3

2

3

1 1( )( )
 equals

 (A) x x x x ce elog log ( )1 12 1Cot

 (B) x x x x ce elog log ( )1 12 1Tan

 (C) x x x x ce elog log ( )1 12 1Tan

 (D) x x x x ce elog log ( )1 12 1Tan  

Solution: Let

 

I
x

x x
dx

x

x x
dx

x x

x
dx

d

3

2

3

2

2

2

3

1 1

1 2

1 1

1

1
2

( )( )

( )( )

xx

x x( )( )1 12

 1
1

1

1

1

12 2

x

x
dx

x
x

x
dx

x x x x

x c

x x

e e e

e

1

2
1 1

1

2
1

1

2 2

1

log ( ) log log ( )

log lo

Tan

gg ( )e x x c2 11 Tan

Hence (C) is correct. Also

Tan Cot1 1

2
x x

Therefore (A) is also correct.

Answers: (A), (C)

5. 
4 6

9 4

e e

e e
dx

x x

x x  equals

 (A) 
19

36

35

36
9 4x e e cx xlog( )

 (B) 
3

2

35

36
9 42x e cxlog( )

 (C) 
4

9

70

9 9 42
x

dx

e
cx

 (D) 
4

9

70

9 9 42
x

dx

e
cx

Solution: Let 

I
e e

e e
dx

x x

x x

4 6

9 4

Write

 4 6 9 4 9 4e e e e
d
dx

e ex x x x x x( ) ( )

( ) ( )9 4 9 4e e e ex x x x

Equating the coefficients of ex and e x on both sides we 

get

9 9 4

4 4 6  

Solving these equations we get

19

36

35

36
,

Therefore

I dx
e e

e e
dx

x e e c

x x

x x

e
x x

9 4

9 4

19

36

35

36
9 4log ( )

So (A) is correct.

In the above answer, if we write e ex x1 /  then we 

get that (B) is also correct.

Also 

 I
e

e
dx

x

x

4 6

9 4

2

2
 (4.31)

That is

4 6

9 4

4

9

70

9 9 4

2

2 2

e

e e

x

x x( )

Therefore from Eq. (4.31), we have 

I x
dx

e x

4

9

70

9 9 42

Hence (C) is also correct.

Answers: (A), (B), (C)
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6. If sin (sec tan ) ( ) ( ) ,x x x dx f x g x c  then

 (A) f x x( ) tan  (B) f x x( ) sec

 (C) g x x( ) 2  (D) g x x( )

Solution: We have

sin sec tan tan

(sec )

x x xdx xdx

x dx

2

2 1

tan x x c

Answers: (A), (D) 

7. If 

cos

cot tan
( )

4 1x
x x

dx f x c

 then

 (A) 
1

8
4, ( ) cosf x x

 (B) 
1

8
4, ( ) sinf x x

 (C) Least period of f x( )
 
is 

2

 (D) f x( )  is an even function

Solution: We have

cos

cot tan

cos sin cos

cos

4 1 2 2

2

2x
x x

dx
x x x

x
dx

cos sin

sin

cos

2 2

1

2
4

1

8
4

x xdx

xdx

x c

Answers: (A), (C), (D)

8.  Let f x x ax bx c( ) 3 2 where a b c, , are real num-

bers. If f x( )  has local minimum at x 1 and a local 

maximum at x 1 3/  and f ( ) ,2 0  then

 (A) f x x x x( ) 3 2 2

 (B) f x x x x( ) 3 2 2

 (C) f x x x x( ) 3 2 2

 (D) If F x f x dx( ) ( ) , then F F( ) ( )1 1
14

3

Solution: Since f x( ) has local maximum and local 

minimum at x 1 3/  and x 1, respectively, we have 

f
1

3
0  and f ( )1 0

Now, 

f x x ax b( ) 3 22

Therefore

 f a b
1

3
0 2 3 1  (4.32)

and f a b( )1 0 2 3  (4.33)

From Eqs. (4.32) and (4.33), we obtain a b1 1, .

Further

f a b c( )2 0 8 4 2 0

 c a b2 1 1( , )∵

Therefore

f x x x x( ) 3 2 2

Hence (B) is correct. Also

F x f x dx c

x x x x c

( ) ( )

1

4

1

3

1

2
24 3 2

so that

F F( ) ( ) ( ) ( ) ( ) ( )1 1
1

4
1 1

1

3
1 1

1

2
1 1 2 1 1

2

3
4

14

3

Hence (D) is correct.

Answers: (B), (D)

9. 
1

1

cos

cos ( cos )

x
x x

dx
 

is equal to

 (A) log sec tan tane x x
x

c2
2

 (B) log tan (sec tan )e
x

x x c
2

2

 (C) 2
2 4 2

tan log tan
x x

ce

 (D) 2
2 4 2

tan log tan
x x

ce

Solution: Let

I
x

x x
dx

1

1

cos

cos ( cos )
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tan

tan

tan

2

2

22

1
2

1
2

x
x

x
dx

Put tan( / )x t2  so that sec ( / )2 2 2x dx dt . Therefore

 I
t

t
dt

2

1

2

2

2 1
1

1

2 2
1

2

1

1

2
2

2t
dt

t
t
t

c

x

e

e

log

tan log
11

2

1
2

2
2 4 2

tan

tan

tan log tan

x

x
c

x x
ce

Also

 I
x x

dx
1 2

1cos cos

sec sec

log sec tan tan

x
x

dx

x x
x

ce

2

2

2
2

Note: 

 
log

tan

tan

log
cos sin

cos sin

log
sin

co

e e

e

x

x

x x

x x

x

1
2

1
2

2 2

2 2

1

ss x

 log | (sec tan ) |e x x

Answers: (A), (C)

10. 
a x
a x

dx  equals

 (A) a
x
a

a x
cSin 1

2 2

2

 (B) a
x
a

a x cSin 1 2 2

 (C) a
x
a

a x cSin 1 2 2

 (D) a
x
a

a x cCos 1 2 2

 (IIT-JEE 2004)

Solution: We have

I
a x
a x

dx

a x

a x
dx

a
dx

a x

x

a x
dx

2 2

2 2 2 2

 a
x
a

a x cSin 1 2 2

Hence (B) is correct.

Also 

I
a x
a x

dx

Note that a < x < a. Put x acos   so that dx = ( a sin ) d . 

Therefore

I a d

a

1

1

2

2
2

2 2

cos

cos
( sin )

cos( / )

sin( / )
sin cos d

a d

a d

a a c

a
x
a

a

2
2

1

1

2

1 2

cos

( cos )

sin

cosCos c

a
x
a

a
x

a
c

a
x
a

a x c

Cos

Cos

1
2

2

1 2 2

1

So (D) is correct.

Note: In (B), if we replace Sin 1( / )x a  by (  /2) Cos 1 (x/a) 

we obtain (D). But the procedure is different.

Answers: (B), (D)

11.  
x

x
dx

3

8 1
 can be evaluated by using one (or more) 

substitutions.

 (A) x t4  (B) x t x4 2 81
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 (C) t x x2 8 81  (D) t x x4 8 81

Solution: Let

I
x

x
dx

3

8 1

Put x t4 so that x dx dt3 1 4( / ) . Therefore 

I
dt

t

t

t t

x x

1

4 1

1

4

1

4
1

1

4
1

2

1

2

4

Sinh

log( )

log( )

Hence x t4  is useful. Also

I x x dx3 8 1 21( ) /

According to integration of Binomial differential, m 3, 

n 8,  p 1/2 so that 

m
n

p
1 4

8

1

2
0  (integer)

Hence the substitution x t x8 2 81  can be used.

Answers: (A), (C)

12.  Which of the following methods are handy to evalu-

ate the indefinite integral 
x

x x
dx

9 8 2
?

 (A) The substitution x t4

 (B) Writing x x( )8 2

 (C) Substitution 9 8 2 2x x t

 (D) Both (A) and (B)

Solution: We have

 

I
x

x x
dx

x

x
dx

9 8

25 4

2

2( )

 
t

t
dt

4

25 2
 where t x 4

t

t
dt

dt

t

t
t

c

x x

25
4

25

25 4
5

9 8 4

2 2

2 1

2

Sin

Sin 1 4

5

x
c

Also, 

x x( )8 2

1

2
4 and

Therefore

I
x

x x
dx

dx

x x

x x
dx

x

1

2

8 2

9 8
4

9 8

1

2
2 9 8 4

25 4

2 2

2

2( )

9 8 4
4

5

2 1x x
x

cSin

Answers: (A), (B)

13. The indefinite integral

sin cos

cos sin

x x

a x b x
dx

2 2 2 2

can be evaluated by means of the following substitu-

tions. Identify them. Given that ab 0 and b2  a2 0.

 (A) tan t  (B) a x b x t2 2 2 2cos sin

 (C) t xcos2  (D) t xsin2

Solution: We have

I
x x

a x b x
dx

x

a b x
dx

sin cos

cos sin

tan

tan

2 2 2 2

2 2 2

(i) Put t xtan  so that dt xdxsec2  and hence

dx
t

dt
1

1 2

Thus 

I
t

a b t t
dt

( )( )2 2 2 21

Now, use partial fractions. Therefore t xtan  is 

workable.

(ii) We have

t a x b x2 2 2 2cos sin

So

dt b a x xdx2 2 2( )sin cos

Therefore

I
b a

dt
t

b a
a x b x ce

1

2

1

2

2 2

2 2
2 2 2 2

( )

( )
log ( cos sin )
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Hence t a x b x2 2 2 2cos sin  is useful.

(iii)  Let t xcos2 so that dt x x dx( sin cos ) .2  There-

fore

I
dt

a t b t

1

2 12 2( )

dt

b b a t

1

2 2 2 2( )

Therefore t xcos2  is also useful. Similarly, t xsin2 is 

also workable.

Answers: (A), (B), (C), (D)

Matrix-Match Type Questions 

1.  Match the integrals of Column I with their values in 

Column II.

Column I Column II

(A) 
dx

x1 sin
(p) log tan tane x

x
c

2

(B) 
dx

x xsin cos
(q) 2

8 4
log tan

x
c

(C) 
dx

x xsin cos3
(r) 

1

2 2 6
log tan

x
c

(D) 
1 cos

sin cos

x
x x

dx (s) 
1

2 2 8
logtan

x
c

Solution: 

(A) Let

I
dx

x
dx

x x

dx
x x

1

2 2

1

2 1

2 2

1

2 2

sin

sin cos

sin cos

1

2 2 4

1

2
2

4 8

2

cosec
x

dx

x
c( ) log tan

∵cosecxdx
x

clog tan
2

Answer: (A)  (q)

(B) Let

I
dx

x x
dx

x x

sin cos

sin cos

1

2 1

2

1

2

1

2 4

1

2 2 8

cosec x dx

x
elog tan

Answer: (B) (s)

(C) Let

I
dx

x x
dx

x x

sin cos

sin cos

3

1

2 1

2

3

2

1

2 3
cosec x dx

1

2 2 6
log tane

x
c

Answer: (C) (r)

(D) Let 

I
x

x x
dx

xdx xdx

1

2 2

2
1

2

cos

sin cos

log(tan

cosec cosec

xx
x

c

x
x

c

e

e

) log tan

log tan tan

2

2

Answer: (D) (p)

2.  Match the integrals of Column I with their corre-

sponding values in Column II.

Column I Column II

(A) x x x dxcos ( ) sin( )3 2 2

(p) tan
1

x
c

(B) 
1

2 x
x xdxtan sec (q) 2cos x c

(Continued)
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Column I Column II

(C) 
sin x

x
dx (r) 

1

8

4 2cos x c

(D) 
1

12 2x
x

dx
cos

(s) sec x c

Solution:

(A) Let

I x x x dxcos ( ) sin( )3 2 2

Put cos( )x t2 . Then

2 2x x dx dtsin( )

Therefore

I t dt

t c

x c

1

2

1

8

1

8

3

4

4 2cos ( )

Answer: (A)  (r)

(B) Let

I
x

x xdx
1

2
tan sec

Put sec x t . Then

1

2 x
x x dtsec tan

Therefore

I dt t c x csec

Answer: (B) (s)

(C) Let

I
x

x
dx

sin

Put t x  so that dt x dx( / )1 2 . Therefore

I tdt t c x c2 2 2sin cos cos

Answer: (C)  (q)

(D) Let

I
dx

x x2 2cos

Put 1/x t  so that 

1
2x

dx dt

Therefore 

I tdt

t

x

sec

tan

tan

2

1

Answer: (D)  (p)

3. Match the items of Column I with those of Column II.

Column I Column II

(A) 
1

1

log

log
e

e

x
x x

dx equals (p) 
1

6

1

5
loge

x
x

(B) 
dx

x x2 4 5
 is

(q) log loge e x c1

(C)

1 2
1 2

tan tan sec
/

x x x dx

is

(r) 

log sec (sec tan )e x x x  

(D) 
dx

x xe( log )1
 equals

(s) log loge ex x c1

Solution: 

(A) We have

1

1

1

1

1

log

log

( log )

log

log ( log )

e

e

e

e

e e

x
x x

dx

d
dx

x x

x x
dx

x x c

Answer: (A) (s)

(B) We have

dx

x x

dx
x x

x x
dx

2 4 5 5 1

1

6

1

1

1

5

( )( )

1

6

1

5
log

x
x

c

Answer: (B) (p)

(C) We have 

1 2
1 2

tan (tan sec )
/x x x dx

( tan tan tan sec ) /1 22 2 1 2x x x x dx
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(sec tan sec tan ) /2 2 1 22x x x x dx

 (sec tan )x x dx

 
log sec tan log sec

log sec (sec tan )

e e

e

x x x c

x x x c

Answer: (C) (r)

(D) We have

dx
x x

x dx
x

x c
e e

e e

( log )

( / )

( log )

log log

1

1

1

1

Answer: (D) (q)

4. Match the entries of Column I with those of Column II.

Column I Column II

(A) e
x
x

dxx ( sin )

cos

2 2

1 2
(p) e

x
cx tan

2

(B) e
x
x

dxx ( sin )

cos

2 2

1 2
(q) e

x
cx/ sec2

2

(C) e
x
x

dxx ( sin )

cos

1

1
(r) e x cx tan

(D) e
x
x

dxx/ sin

cos

2 1

1

(s) e x cx cot

Solution: 

(A) We have

I e
x x

x
dx

e x x dx e x c

x

x x

2 1

2 2

2

( sin cos )

cos

(tan sec ) tan

Answer: (A)  (r)

(B) We have

I e
x x

x
dx

e x x dx e x c

x

x x

2 1

2 2

2

( sin cos )

sin

( cot ) ( cot )cosec

Answer: (B)  (s)

(C) We have

I e
x
x

dxx ( sin )

cos

1

1

e

x x

x
dxx

1 2
2 2

2
2

2

sin cos

cos

e
x x

dx

e
x

c

x

x

1

2 2 2

2

2sec tan

tan

Answer: (C)  (p)

(D) We have

I e
x
x

dxx/ sin

cos

2 1

1

Put x t/2  so that

I e
t
t

dt

e
t t

t
dt

e t

t

t

t

2
1 2

1 2

2
2 2

sin

cos

(sin cos )

cos

(sec ssec tan )

sec

sec( / )/

t t dt

e t c

e x c

t

x 2 2

Answer: (D)  (q)

5. Match the entries of Column I with those of Column II.

Column I Column II

(A) e
x x

x
dxx ( )

( ) /

3

2 3 2

1

1
(p) e

x
x

cx 1

2

(B) 
e x x

x
dx

x( )

( )

3

2 2

2

1
(q) 

e

x
c

x

1 2

(C) e
x

x
dxx 1

1 2

2

(r) 
e x

x
c

x

1 2

(D) e
x x

x
dxx ( )

( )

2

2

3 3

2
(s) 

e x

x
c

x( )1

12

Solution:

(A) We have

e x x

x
dx

e x x

x
dx

x x( )

( )

[ ( ) ]

( )/ /

3

2 3 2

2

2 3 2

1

1

1 1

1

e
x

x x
dxx

1

1

12 2 3 2( ) /

e f x f x dxx[ ( ) ( )]

where f x
x

x
( )

2 1
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e f x c

e x

x
c

x

x

( )

2 1

Answer: (A)  (r)

(B) We have

e
x x

x
dx e

x x x x

x
dxx x( )

( )

[( )( ) ]

( )

3

2 2

2 2

2 2

2

1

1 1 1 2

1

e
x

x

x x

x
dx

e x

x
c

x

x

1

1

1 2

1

1

1

2

2

2 2

2

( )

( )

Answer: (B)  (s)

(C) We have

e
x

x
dx e

x

x

x
dx

e

x
c

x x

x

1

1

1

1

2

1

1

2

2

2 2 2

2

( )

Answer: (C)  (q)

(D) We have

e
x x

x
dx e

x x

x
dxx x( )

( )

( )( )

( )

2

2 2

3 3

2

1 2 1

2

 
e

x
x x

dx

e x
x

c

x

x

1

2

1

2

1

2

2( )

( )

Answer: (D)  (p)

6. Match the items of Column I with those of Column II.

Column I Column II

(A) 
cos cos5 4

1 2 3

x x
x

dx
cos

(p) 
1

6
2 3 23(sec sec )x x

(B) 
cos cos

cos

7 8

1 2 5

x x
x

dx (q) 
2

9
2 3 3 2( sin ) /x

(C) tan sec3 2 2x xdx (r) 
1

2
2 2( sin sin )x x

(D) 2 3 3sin cosx xdx (s) 
1

2
2

1

3
3sin sinx x c

Solution: 

(A) We have

I
x x

x
dx

x x x
x x

d

(cos cos )

cos

(cos cos )sin

sin sin

5 4

1 2 3

5 4 3

3 6
xx

x x
x

x x
dx

x x

2
9

2 2
3

2
9

2

3

2

2
2

3

2

cos cos sin

cos sin

cos sin coos

sin

3

2
3

2

x

x
dx

(cos cos )

sin sin

( sin sin )

2

1

2
2

1

2
2 2

x x dx

x x c

x x c

Answer: (A)  (r)

(B) We have

 I
x x x

x x
dx

(cos cos )sin

sin sin

7 8 5

5 10

2
15

2 2
2

5

2

5

2

2
15

2

5

2

sin sin sin cos

sin cos

x x x x

x x
dx

22
2

5

2

2 3

1

2
2

1

3
3

sin sin

(cos cos )

sin sin

x x
dx

x x dx

x x c

Answer: (B)  (s)
(C) We have

I x x dx

x x x dx

x x

tan sec

tan (sec tan )

(sec )sec tan

3

2

2

2 2

2 2 2

2 1 2 2xx dx

Put t xsec ,2 so that 

dt
x x dx

2
2 2(sec tan )

Therefore

I t dt

t t c

1

2
1

1

2

1

3

2

3

( )
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1

6
2

1

2
23sec secx x c

Answer: (C)  (p)

(D) We have

I x xdx2 3 3sin cos

Put 2 3sin x t . Therefore 3 3cos xdx dt . Now

I t dt

t c

x c

1

3

2

9

2

9
2 3

3 2

3 2

( )

( sin )

/

/

Answer: (D)  (q)

7. Match the items of Column I with those of Column II.

Column I Column II

(A)  If 
x

x
dx

x

xk

2

4

2 3 21 1

3

1( ) /

, then 

k  equals

(p) 3

(B)  If 
2

1 12

x

x x
dx

x

x x( )
, 

then  is

(q) 2

(C)  If 
x

x
dx

x

x
cm

10

16

10 3 22 1

30

2( )
,

/

then m  is

(r) 15

(D)  If 
dx

x x
n xelog ( ),1  then n  

is equal to

(s) 5

Solution:

(A) Let

I
x

x
dx

2

4

1

Put x tan . Then

 I d
sec sec

tan

2

4

cos

sin

sin

4

4

d

t dt twhere 

 

t
c t c

4 1
3

4 1

1

3

1

3

1

1

3

1

3

2 3 2

sin

(sin ) /

c

c

1

3

1

3
1

1

3
1

1

1

3

2 3 2

2 3 2

2

3 2

2

( )

( cot )

(

/

/

/

cosec

x

x 11 3 2

3

) /

x

Therefore k 3.

Answer: (A)  (p)

(B) We have 

I
x

x x

x

x
x x

dx

x x x

x x

2

1

2

1
1 1

2 1

1
1 1

2

2
2

2

( )

22
dx

Put 

1
1 1

x x
t

so that 

1

2

1
2x x x

dx dt

2 1
2

2x x x
dx dt

Therefore

I
t

dt

t
c

x x

c

1
2

2

2

1 1
1

2
( )

2

1

x

x x
c



440 Chapter 4   Indefinite Integral

Therefore 2.

Answer: (B)  (q)

(C) We have

I
x

x
dx

x

x x
dx

x
x

dx

10

16

10

11 5

10

11

2

2

1
2

Put 

1
2
10

2

x
t

so that 

20
2

11x
dx tdt

dx

x
tdt

11

1

10

Therefore 

I t t dt

t
c

1

10

30

3

1

30
1

2

1

30

2

10

3 2

10 3 2

15

x
c

x

x
c

/

/( )

So m 15.

Answer: (C)  (r)

(D) We have

I
dx

x x
dx

x x( )1

Put x t  so that 

1
2

x
dx dt

Therefore

I
t

dt

t

x c

2

1

2 1

2 1

log( )

log( )

So n 2.

Answer: (D)  (q)

Comprehension-Type Questions
1.  Passage: Using the formula udv uv vdu,

answer the following questions.

(i) sec3 xdx is equal to 

(A) 
1

2
(sec tan log sec tan )x x x x ce

(B) 
1

2
(sec log sec tan )x x x ce

(C) 
1

2
(sec tan log sec tan )x x x x ce

(D) sec tan log sec tanx x x x ce2

(ii) log ( cos ) tane x dx x
x

dx1
2

 equals

(A) x x celog ( cos )1

(B) x x celog ( cos )1

(C) x x celog ( tan )1

(D) x x celog ( sin )1

(iii) e xdxx sin  is equal to

(A) 
e

x x c
x

2
(sin cos )

(B) 
e

x x c
x

2
(sin cos )

(C) 
e

x x c
x

4
(sin cos )

(D) 
e

x x c
x

4
(cos sin )

Solution: 

(i) We have
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I xdx

x xdx

x x x x dx

x x

sec

sec sec

sec tan sec tan

sec tan sec

3

2

2

xx x dx

x x I x dx

(sec )

sec tan sec

2 1

Therefore 

2I x x xsec tan log sec tan

 Answer: (A)

 (ii) We have

I x dx

x x x
x
x

dx

x

e

e

log ( cos )

log ( cos )
sin

cos

log

1

1
1

ee x x
x

dx( cos ) tan1
2

Therefore

I x
x

dx x xetan log ( cos )
2

1

Answer: (B)

(iii) We have

I e x

e x e x dx

e x e x e x dx

x

x x

x x x

sin

sin cos

sin cos ( sin )

e x e x Ix xsin cos

Therefore 

 2I e x xx(sin cos )

I
e

x x
x

2
(sin cos )

Answer: (A)

 2.  Passage: If m, n, p are rational numbers, then the in-

definite integral x a bx dxm n
p

( )  can be evaluated 

in the following cases with the help of the substitu-

tion suggested.

Case 1: If 
m

n
1

 is an integer, put a bx tn ,  where 

 is the denominator of p.

Case 2: If 
m

n
p

1
 is an integer, put a bx t xn n ,

where is the denominator of p.

Answer the following questions:

 (i) If 

x x dx x x c1 3 2 3 1 4 2 3 2 32
2

3
2

12

5
21 2/ / / / /( ) ( ) ( )

then 1 2  is equal to

 (A) 4 (B) 3 (C) 2 (D) 1

 (ii) If 

dx

x x x x
c

3 5 1 1

5

4
1

1 5

9
1

1

( / )

then equals

 (A) 1 (B) 2 (C) 1  (D) 3

Solution: 

(i) Let

I x x dx1 3 2 3 1 42/ / /( )

Now m n p1 3 2 3 1 4/ , / , / .  Therefore 

m
n

1 1 3 1

2 3
2

( / )

/
 (integer)

So put 

2 2 3 4x t/

so that 

x t( ) /4 3 22

Therefore

dx t t dt

t t dt

3

2
4 2

6 2

3 4 1 2

3 4 1 2

( )( )

( )

/

/

So

I t t t t dt( ) ( )( )( )/ /4 1 2 3 1 22 6 24

6 2

6
9

2

5

2

3
2

12

5
2

4 4

9
5

2 3 9 4 2 3 5

t t dt

t
t c

x x

( )

( ) ( )/ / / //4 c

Hence

1 2

9

4

5

4
1

Answer: (D)

(ii) Let
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I x x dx14 5 1 51/ /( )

Now m n p14 5 1 1 5/ , , / .  Therefore 

m
n

p
1 14

5
1

1

5
2  (integer)

Put ( )1 5x xt  so that 

x
t

t
1

1
1

5
5 1( )

So

dx t t dt( ) ( ) ( )1 5 14 5 2

Hence

I t t t t t dt( ) [ ( ) ] ( )( )/ /5 1 1 5 114 5 5 5 1 1 5 4 5 2

5 1

5 1

5
9 4

5
14 5 1 5 2

3

3 5

9 4

( ) ( )

( )

( / ) ( / )

t t dt

t t dt

t t
c

x
x

x
x

c
5

4

1 5

9

1
4 5 9 5/ /

Therefore

9

5

4

5
1

Answer: (A)

 3. Passage: To evaluate 

a x b x
c x d x

dx
sin cos

sin cos

where c d2 2 0,  express the numerator as 

a x b xsin cos (Denominator)   (Derivative

of the denominator)

Answer the following questions

 (i) 
2 3

3 4

sin cos

sin cos

x x
x x

dx  equals

 (A) 
18

25

1

25
3 4x x x celog sin cos

 (B) 
18

25

1

25
3 4x x x celog sin cos

 (C) 
x

x x ce
25

18

25
2 3log sin cos

 (D) 
x

x x ce
25

18

25
3 4log sin cos

 (ii)  If 
sin cos

sin cos

x x
x x

dx
2

2
 is equal to px + 

qloge 2sin cos ,x x c  then p q  equals

 (A) 
8

5
 (B) 

6

5
 (C) 

7

5
 (D) 1

Solution:

(i) Let

I
x x
x x

dx
2 3

3 4

sin cos

sin cos

Let 

2 3 3 4 3 4sin cos ( sin cos ) ( cos sin )x x x x x x

Now equating the coefficients sin x  and cos x  on 

both sides we get

3 4 2

4 3 3

Solving these equations, we get that  = 18/25 and  

= 1/25.  Therefore 

I dx
x x
x x

dx
18

25

1

25

3 4

3 4

cos sin

sin cos

18

25

1

25
3 4x x x celog sin cos

Answer: (A)

(ii) Let

I
x x

x x
dx

sin cos

sin cos

2

2

Let 

sin cos ( sin cos ) ( cos sin )x x x x x x2 2 2

Therefore 

2 1

2 2

so that 4 5 3 5/ / . and  Hence

p q
4

5

3

5
 and

and so

 p q
7

5

Answer: (C)

 4. Passage: To evaluate 

1

(Linear) Linear
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and  
1

(Quadratic) Linear
 

put Linear t. Answer the following questions.

 (i)  If 
dx

x x
f x c

( )
( ) ,

2 3 4
2  then f x( )  

equals

 (A) Tan 1 3 4

2

x
 (B) Tan 1

1 2
3 4

2

x /

 (C) Tan 1 2

2

x
 (D) Tan 1 2

2

x
c

 (ii) If 

dx

x x
p

x

x
q x ce

( )
log

2
1

4 1

1 3

1 3
1Tan

then pq is equal to 

 (A) 
1

4 3
 (B) 

1

8

 (C) 
1

3 3
 (D) 

1

8 3

 (iii) If 
dx

x x( )3 2
 is equal to

 (A) 
1

5

2 5

2 5
loge

x

x
c

 (B) 
1

5

2 5

2 5
loge

x

x
c

 (C) 
1

5

2 5

2 5
loge

x

x
c

 (D) 
1

5

2 5

2 5
loge

x

x
c

Solution:

(i) We have

I
dx

x x( )2 3 4

Put 3 4 2x t  so that 

x
t2 4

3

and dx
t
dt

2

3

Therefore

I
t

t

t
dt

1

4

3
2

2

32

 2
22

dt

t

 

2

2 2

2
3 4

2

1

1

Tan

Tan

t

x
c

So

f x
x

( ) Tan 1 3 4

2

Answer: (B)

 (ii) We have

I
dx

x x( )2 4 1

Put x t1 2 . So dx = 2tdt. Therefore 

I
t t

t dt

dt

t t

dt

t t

1

1 4
2

2
1 2 1 2

2
1 3

2 2

2 2

2 2

[( ) ]
( )

( ) ( )

( ) ( ))

log

2

4

1

3

1

1

1

2

1

2 3

3

3

2 2

1

t t
dt

t

t
te Tan cc

x

x
x ce

1

4 3

1 3

1 3

1

2
11log Tan

Therefore

pq
1

4 3

1

2

1

8 3

Answer: (D)

(iii) Let

I
dx

x x( )3 2

Put x t2 2 . Then

I
t t

t dt

dt

t

1

5
2

2
5

2

2

( )
( )
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2

2 5

5

5
loge

t

t
c  where t x 2

 
1

5

2 5

2 5
log

x

x
c

Answer: (C)

 5. Passage: f g x g x dx f t dt( ( )) ( ) ( ) where t = g(x). 

This rule is called substitution rule. Answer the fol-

lowing questions:

 (i) If 

sec tan sec (sec ) ( )x x x dx x f x c2 11
1

2

1

2
Sinh

then f x( )  is

 (A) tan secx x2 1 (B) sec secx x2 1

 (C) sec tanx x  (D) sec tan2 x x

 (ii) 
x

x

dx

x

2

2 4

1

1 1
 

 (A) 
1

2

2

1

1
2

Cosh
x

x
c

 (B) 
1

2

2

1

1
2

Sinh
x

x
c

 (C) 
1

2

2

1

1
2

Tan
x

x
c

 (D) 
1

2

2

1

1
2

Cos
x

x

 (iii) If 

dx

x x x

x x

x
f x c

( ) ( )
( )

1 2 3

2 3

8 1

1

163 2

2

2

then f x( )
 
is equal to

 (A) Sin 1 2

1x
 (B) Cos 1 1

2

x

 (C) Sin 1 1

2

x
 (D) Sec 1 1

2

x

Solution: 

(i) Let

I x x x dxsec tan sec2 1

Put sec x t  so that sec tanx xdx dt . Therefore

I t dt

t t
t c

x x
x c

2

2
1

2
1

1

1

2

1

2

1

2

1

2

Sinh

Sinh
sec sec

(sec )

So

f x x x( ) sec sec2 1

Answer: (B)

 (ii) Let

I
x

x

dx

x

2

2 4

1

1 1

Dividing numerator and denominator with x2  we 

get

 I
x

x
x

x
x

dx
1 1

1 1

2

2

2

( / )

dt

t t2 2
 where t x

x
1

 
t

t t
dt

2 2 2

Put t z2 22  so that tdt zdz . Therefore

I
z z

z dz

z
c

t
c

1

2

1

2 2

1

2

2

2

1

2

2

1

1
2

( )
( )

Tan

Tan

TTan 1
2 21

2

x x
c

( / )

If

Tan 1
2 21

2

x x( / )

then 

tan
( / )2

2 21

2

x x
 

or sec
[ ( / )]2

21

2

x x
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so that 

cos
( / )

2

1

2

12x x
x

x

Hence

Cos 1

2

2

1

x

x

Therefore

I
x

x
c

1

2

2

1

1
2

Cos

Answer: (D)

(iii) Let

I
dx

x x x( )1 2 33 2

Put x t1 1/  so that 

dx
t

dt
1
2

Therefore

I
t

t

t
dt

3

2

21
4

1

t

t

t

t
dt

2

2

2

2

1 4

1

4

1 4 1

1 4

1

4
1 4

1

4 1 4

1

4
2

1

4

1

8 1 4

2

2

2

2

t dt
dt

t

t dt
dt

t( / )

1

2

1 4

2

1

8
2

1

8
2

1

8

1

1

2
1 1t t

t t c

x

( / )
( )Sin Sin

11
4

1

1

16
2

1

8
2

2 3

8 1

2

1 1

2

( )
( ) ( )

(

x
t t c

x x

x

Sin Sin

))
( )

2

11

16
2Sin t c

Therefore

f x
x

( ) Sin 1 2

1

Answer: (A)

Integer Answer Type Questions

1. If 
x

x
dx

p
q

x c
4

5

5

4
4 , then p q _____.

Solution: Let

I
x

x
dx

4

54

Put 4 5 2x t so that 

x dx tdt4 2

5

Therefore

I dt

t c

x c

2

5

2

5

2

5
4 5

So

p
q

p q
2

5
7

Answer: 7

2.  
( )

( )
Tan

Tan
1 2

2

1

1

1x

x
dx

m
x cn

where m n  is _____.

Solution: We have

( )Tan 1 2

2
2

1

x

x
dx t dt  where t xTan 1

1

3

1

3

3

1 3

t c

x c( )Tan

So m n 3 3 6.

 Answer: 6

3.  If 

x

x x x
dx

x x x

x
ce k

2

4 2

2 4 21

3 1

1 3 1
log ,  

then the value of k is _____.
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Solution: Let

I
x

x x x

x

x
x

dx
2

4 2

2

2

2

1

3 1

1
1

1
3

Put x x t( / ) .1  Therefore

 
I

dt

t

t c

2

1

1

Sinh

log ( )

log

log
(

e

e

e

t t c

x
x

x
x

c

x x

2

2

2

1

1 1
1

1 44 23 1x
x

c
)

Therefore k = 1. 

Answer: 1

4. If 
sin

sin sin
log sin log sin

2

3 5

1
3

1
5

x
x x

dx
p

x
q

x ce e

then |p q| is _____.

Solution: We have

sin

sin sin

sin( )

sin sin

2

3 5

5 3

3 5

x
x x

dx
x x
x x

dx

sin cos cos sin

sin sin

(cot cot )

log

5 3 5 3

3 5

3 5

1

3

x x x x
x x

dx

x x dx

ee ex x csin log sin3
1

5
5

Therefore

p q 3 5 2

Answer: 2

5. If

cosec2

7

7x

x
dx x x c

cos
(cot ) (sec )

then the value of  is
 
_____.

Solution: We have

cosec
cosec

2

7
7 2 77

7
x

x
dx x xdx xdx

cos
sec sec

( cot )sec ( cot ) sec (sec tan )

sec

cot se

x x x x x x dx

xdx

x

7 6

7

7

7

cc sec sec

cot sec

7 7 7

7

7 7x xdx xdx

x x c

Therefore

7 1 6

Answer: 6

6. If

2

1 1

1

12 4

2

2

x

x x
dx

x

x
c

k

( )

then 1/k is equal to_____.

Solution: We have

I
x

x x
dx

2

1 12 3 2 2( ) /

2

1
1

1

2 2
2

2

x

x
x

x

dx

( )

Put 

x

x
t

2

2
21

1

Therefore

2 1 2 1

1
2

2 2

2 2

x x x x

x
dx t dt

( ) ( )

( )

2

12 2

x

x
dx t dt

( )

So

I
t

t dt
1

( )

t c

x

x
c

2

2

1

1

Hence

k
1

2
 or 

1
2

k

Answer: 2

7. If 

cot cos

(sin cos )

( tan )

tan/

/3

5 5 3 2

2 51

2

1 5x x

x x
dx

x

x
c

then is equal to _____.
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Solution: Let

 I
x x

x x
dx

cot cos

(sin cos ) /

3

5 5 3 5

cos

sin (sin cos )

cos

sin ( cot )

s

/

/

4

3 5 5 3 5

4

6 5 3 51

x

x x x
dx

x

x x
dx

eec

tan ( cot ) /

2

6 5 3 51

x

x x
dx

Put tan t . Then

I
t t

dt

t t
dt

t t dt

1

1 1

1

1

1

6 5 3 5

3 5 3 5

3 5 3 5

[ ( / )]

( )

( )

/

/

/

Here 

m
n

p
1 3 1

5

3

5
1  (integer)

Put 1 5 5 5t z t  (Binomial differential). Then

t
z

t z t
z

z

5
5

5 5 5
5

5

1

1

1
1

and

dt z z dz

z z dz

1

5
1 5

1

5 1 5 1 4

4 5 6 5

( ) ( )

( )

( / )

/

So

I z
z

z
z z dz( ) ( )( )/

/

/5 3 5
5

5

3 5

4 5 6 51
1

1

 

zdz

z
c

t

t
c

x

x
c

2

5

5

2 5

5 2 5

2

2

1

2

1

1

2

1

/

/( tan )

tan

Therefore 2.

Answer: 2

 8. If

x

x
x dx

k
x cm n

2

6
1 3 1

1

1
Tan [Tan( ) ( )]

then mn k  is equal to _____.

Solution: Let

I
x

x
x dx

2

6
1 3

1
Tan ( )

Put Tan 1 3( )x t  so that

3

1

2

6

x

x
dx dt

Therefore

I
t

dt

t c

x c

3

1

6

1

6

2

1 3 2( )Tan

So

mn k 6 6 0

Answer: 0

 9. If

e

e e
dx

e a

e b
c

x

x x e

x

x2 6 5

1

4
log

then a b  is _____.

Solution: We have

I
e

e e
dx

dt
t t

t e

t t

x

x x

x

2 6 5

1 5

1

4

1

1

1

5

( )( )
 where 

dt

e

e
ce

x

x

1

4

1

5
log

Therefore

a b 4

Answer: 4

10. If

2

1 22 2

2

2

x

x x
dx

x a

x b
ce

( )( )
log

then b a is _____.
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Solution: Let

2

1 2 1 22 2

x

x x
dx

dt
t t( )( ) ( )( )

 where t x2

1

1

1

2

1

2

2

2

t t
dt

x

x
elog

Therefore 

b a 2 1 1

Answer: 1

To have a grip over integration, the student has to practice 

problems on various methods. That is why we are supply-

ing the student with a number of problems for evaluation. 

Hence, the exercise contains only subjective problems.

1. Evaluate 
xe

x
dx

x

1
2

.

2. Evaluate 
xe

e
dx

x

x1

Hint: Take u x dv
e

e

x

x
,

1
 so that v ex2 1

and use integration by parts.

3. Show that 

dx

e e

e e e

e e e
c

x x e

x x x

x x x1

1 1

1 12

2

2
log  

4. Show that

2
2

2

2 1

2

2

tan
tan

tan

log (tan tan )

xdx
x

x

x x ce

Tan

Hint: Put t xtan .

5. Evaluate ( )x x e dxx3 2 32 5 .

6. Evaluate 
log

(log )

e

e

x

x
dx

1
2 .

7. Show that 

x x

x
dx x

x

x
celog

( )

log
/2 3 2

1 2

21
1

1
Tan

8. Prove that

1

2

1

2 2

2 2

2 2

1

2

2

2

2

2

x

x
dx

x x

x x

x x c

e

e

log

log ( )

9. Show that

x xdx
x

x
x x

c3 1
4

1
31

4 12 4
Tan Tan

Hint: Use integration by parts.

10. Evaluate 
Sin 1

1

x

x
dx.

11. Show that

x

x
x x dx

x

x x

e e

e

2

4
2

2 3 2

3 2

1
1 2

1

9
2 3 1

1

[log ( ) log ]

( )
log

/

c

Hint: Put 1
1
2x

t .

12. Compute sin log tanx xdxe  

13. Evaluate 
x x x

x
dx

3 2

2

3 5

1
. 

14. Evaluate 
x

x x
dx

2

33

1

3 1
. 

15. Evaluate 
log

log

e

e

x

x x
dx

1
. 

16. Show that 

dx

a x b x ab
a
b

x c
2 2 2 2

11

sin cos
tanTan

Hint: Divide numerator and denominator with cos2 x
and put t xtan .

17. Compute 
x

x x x
x

dx
2

4 2 1

1

3 1
1

( )Tan

.

Hint: Divide numerator and denominator with x2

and put t x
x

Tan 1 1
.
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18. Evaluate 
dx

x x2 6 13
.

19. Show that 

( ) ( )/ /x x dx x x c1
3

4
42 3 1 3

20. Show that

dx

x x

x
x

c
1 1

1

12

21. Prove that

dx

x x

u

u
ue

( )
log

2
1

4 1

1

4 3

3

3

1

2
Tan

where u x 1.

22. Show that 

( )
( )

1 1

1

2
1 1

2 2

2 2

2x x

x x x
dx

x
x x  

loge x x x c2 1 2 1 2

Hint: Use Euler’s substitution 1 12x x tx  

and carefully simplify.

23. Evaluate 
dx

x x2 3 4
.

Note: To evaluate this integral, you can use Euler’s 

substitution 

( )( ) ( )x x x t4 1 4

But it is easy to see that the given integral is

dx

x
3

2

25

16

2
 

which is a standard integral.

24. Compute 
sin

cos

3

2

x
x

dx .

25. Evaluate 
cos

sin

3

4

x

x
dx.

26. Evaluate 
dx

x x5 7 3 2
.

27. Show that

dx

x x

x
c

2 3

2 3

172

1Sin

28. Show that
7 1

6 1

2

3
3 1

1

2
2 1

2

x

x x
dx x x ce elog ( ) log ( )

29. Compute I
dx

x1 4sin
.

Hint: Divide numerator and denominator with 

cos4 x  and put t xtan . Then

I
t

t t
dt

t

t
t

dt

2

4 2

2

2

2

1

2 2 1

1
1

2
1

2

Now write

1
1

2
1

2
1

2 2 2t
a

t
b

t

Find a, b and then use the substitutions 

2
1

2
1

t
t

u t
t

zand

Note: This is a very interesting case and the one who 

attempts the problem is generally considered to be a 

good student. Do not mind the answer. The proce-

dure is required.

30. Show that

dx

x x
x x x ce

3 5

1

3
6 5 12 3 5

2
log ( )

31. Show that

dx

x x x

x

x
c

2

1

4 4

1

2

2

2
Sin

Hint: Put x t1/ .

32. Compute ( ) /2 2 3 2x x dx.

Hint: Put 2 2x t x .

33. Evaluate 
x x

x
dx

2 2
.

34. Show that

2
1

2
2

1

2
12 2 1x x dx

x
x x x c

( )
( )Sin

35. Show that

dx
x

x

x
ce

4 5

1

3
2

2

2
2

1sin
log

tan

tan
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Hint: Put t xtan( / )2 .

36. Evaluate 
x x

x
dx

2 1

21

Tan  
.

37. Compute x x dxe
3 2(log ) .

38. Show that

x

x

x

x
dxe

6

10

6

6

1 1
log  

1

6

2

3

4

9

3 2 3 2t t t ce
/ /log

where t
x

x

6

6

1
.

39. Evaluate 
log

( log )

e

e

x

x
dx

1 2 .

Hint: Put loge x t

40. Evaluate 
cos

sin
.

2x
x

dx

Hint: Write cos
tan

tan
2

1

1

2

2
x

x

x
 and put t 2=1 tan2x 

41. Evaluate 
dx

x( )2 21
.

Hint: Use integration by parts or put the substitu-

tion x tan .

42. Evaluate 
x

x
dx

4

2 21( )
.

Hint: We have

 

x

x

x

x

x

x x

x x

4

2 2

4

2 2

2

2 2 2

2 2 2

1

1 1

1

1

1

1

1

1
2

1

1

1

( ) ( )

( )

( )

43. Compute 
x x

x
dx

2

2 2

1

1( )
.

44. Evaluate 
1

1

x x x
x x

dx
sin cos

( cos )
.

45. Compute 
cos sin

( cos )

x x x
x x x

dx .

46. Evaluate 
x

x
dx

2

3

1

1
. 

Hint: 
x

x

A
x

Bx c

x x

2

3 2

1

1 1 1

47. Show that

(a) 
x

x x
dx

x
x

c
2

4 2
1

21

1

1
 Tan

(b) 
x

x x
dx

x x

x x
ce

2

4 2

2

2

1

1

1

2 3

3 1

3 1
 log

Hint: For (a), divide numerator and denominator by 

x2  and put x x t( / ) .1

For (b), put x x t( / ) .1

48. Show that

x

x x x
dx

x x
x

c
4

2 4 2

4 21

1

1

Hint: Divide numerator and denominator by x3 and 

put substitution x
x

t2
2

21
1 .

49. Evaluate 
1

1 1

2

2 4

x

x

dx

x
.

50. Compute 
1

1 1

2

2 2 4

x

x

dx

x x
.

1. 
e

x
c

x

1

2. 2 1 4 1 2
1 1

1 1
x e e

e

e
cx x

e

x

x
log

5. e x x x cx3 3 21

3

2

3

13

9

6. 
x

x
c

elog
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10. 2 1 4 11x x x cSin

12. cos log (tan ) log tanx x
x

ce e
2

13. 
x

x x x ce

2
2 1

2
3 2 1 3log ( ) Tan

14. 
1

2
3 13 2 3( ) /x x c

15. 
2

3
2 1(log ) loge ex x c

17. loge x
x

cTan 1 1

18. 
1

2

3

2

1Tan
x

c

23. loge
x x

x x
c

4 1

4 1

24. 
cos

cos log ( cos )
2

2
2 3 2

x
x x ce

25. 
1

3

1
3sin sinx x

c

26. 
1

3

6 7

109

1Sin
x

c

32. 
x

x x
c

1

2 2

33. x x x x x ce
2 22 1 2log

36. x x x x ce Tan  Tan1 2 1 21

2
1

1

2
log ( ) ( )

37. 
x

x
x

x
x

ce e

4
2

4 4

4 8 32
(log ) log

39. 
x

x
c

e1 log

40. 
1

2

1

1

1

2

2

2
log loge e

t
t

t

t
where  t = 1 2tan x

41. 
x

x
x c

2 1

1

22
1

( )
Tan

42. x x
x

x
c

3

2 2 1

1
2

Tan
( )

43. Tan 1
2

1

2 1
x

x( )

44. log log sece ex
x

c2
2

45. log
cos

e
x

x x
c

46.

 
2

3
1

1

6
1

1

3

2 1

3

2 1log log ( )e ex x x
x

cTan

49. 
1

2

1

2

1
4

Tan
x

x
c

50. Sin 1
21

x

x
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5.1 Definite Integral

To find the area of a region bounded by an irregular curve, we subdivide the region into rectangles of small width; the

sum of the areas of these rectangles gives an approximate value to the area of the given region. As we reduce the width

of the rectangle, the sum of the areas gives a good approximation to the area of the region. This idea led to the defini-

tion of definite integral by Bernard Riemann (1826–1866), a nineteenth century mathematician. In this chapter, we 

state the theorems (without proofs) and provide many problems to improve the working skills of the student.

DEFINITION 5.1 Let a b, ,b � a b and f a: [ , ]b �  be a function. Suppose

P n{ }a x x x bna x xn0 1xx 2

is a partition of [a, b]. Suppose t xi i i[ ,xix ],1 i  1, 2, 3, , n. Then

S P t x xi ix i
i

n

( ,f ) (f ) ( )xixt(f 1

1

(it is customary to write x x xi ix ifor 1 ) is called a Riemann intermediate sum of f associ-

ated with the partition P. If S( f, ff P) converges to a limit as max{ , , , , }x i, ni 1 2,  tends to

zero then we say that f is Riemann integrable, or simply integrable, over [f a, b] and is the 

(Riemann) integral of f over [a, b]. We denote by

f dxdd
a

b

a

b

f ( )x

Here x is only a dummy variable and can be replaced by any other variable. For example

f dy
a

b

a

b

( )yf dt( )t or

In this case, f is called the f integrand and d f dx
a

b

( )x  is called the (definite) integral of f over [f a, b].

THEOREM 5.1 If f a: [ , ]b � is an integrable function, then f is bounded.f

DEFINITION 5.2 Suppose f a: [ , ]b �  is integrable so that f is bounded (by Theorem 5.1). Letf

P n{ }a x x x bna x xn0 1xx 2

be a partition of [a, b]. Write

M f xi if x iffb { ( )xxx | [xxx , ]xi }1

and m f xi if x iff{ffffff ( )xxx | [xxx , ]xi }1

Then

L P x xi ix i
i

n

( ,f mi) (m )xx(mi 1

1

is called the (Riemann) lower sum of f over [r a, b] and
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U P x xi ix i
i

n

( ,f Mi) (M )xx(Mi 1

1

is called the (Riemann) upper sum of f over [r a, b].

It may be noted that L (f(( , ff P) S (f(( , ff P) U (f(( , ff P).

From the definition of integrability, the following can be easily proved.

THEOREM 5.2 Suppose f andf g are defined and Riemann integrable over [g a, b]. Then

 (i) f  is integrable over [a, b] and f f
a

b

a

b

.

(ii) f g is integrable andg f g
a

b

a

b

a

b

( )) .

(iii) f g x b
a

b

a

b

( )x ( )x( ) [ , ] .gg( )x b[ ,a f

Note: If f1ff , f2ff , , fnff  are integrable over [a, b], then from (ii) of Theorem 5.2, it follows that f f fnff1 2f ff ff2ff is integrable

over [a, b] and

f
a

b

iff
a

b

i

n

1

( ))n1 2 )

 5.1 Definite Integral

1. The constant function 1 is integrable over [a, b] and

1

a

b

b a S f P b a( ) ( ( , ))

for every partition P of [a, b] and hence S (f, p)  b
 a as Max{ , , , } .x x xn1 2 0…

2. Suppose a  b and f a b: [ , ] �  is defined by

f x
x

x
( )

1

0

if isrational

if is irrational

Then f is not integrable over [a, b]. This is because

S f P
t x x

b a t x
i i i

i i
( , )

[ , ]

[

0 1if wetake as irrational

if wetake 11, ]xi as rational

so that S (f, P) does not converge as Max { x1, 

x xn2 , , }  tends to zero.

3.  The identify function f a b: [ , ] �  given by f (x)  x
for all x  [a, b] is integrable over [a, b] and

f
b a

a

b 2 2

2

Proof: Let P a x x x xn{ }0 1 2  be a partition 

of [a, b] and t x xi i i[ , ]1  so that

S f P f t x x t x xi i i
i

n

i i i
i

n

( , ) ( )( ) ( )1

1

1

1

Now

b a b a
b a

x x
x x

x x

n
n

n

2 2

0
0

2
0
2

2 2

2

2

( )

( )

Examples 
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( )

( )
x x

i i

i

n

i ix
i i

i

n

2
1

2

1

1
1

1

2

2

Hence

S P
b a x x

x xix
i ix

i

n

( ,f ) (
b a

t
x

i
i ix

)ti
2 2a 1

1

1
2

ii
2

i 1

i i
i

( )x xi ix 1
2

1
2

2

n

ixif xx

( )b a

Hence

S P
b a

( ,f )
2 2a

2

5.1.1 Geometrical Interpretation of the Definite Integral

y  f (x )

(a) (b)

f (t1)

x1a  x0 xn btnxn 1x2t2

y

xO

f (t2) f (tn)

t1 xixi 1

xi

ti

y

xO

FIGURE 5.1

Let f : [a, b]  [0, ) be a function, P  {x0, x1, x2, , xn} be a partition of [a, b] and t x x i n.i i i[ , ] ,1 for 1, 2,…  Then 

(see Fig. 5.1)

f t x f t x xi i i i i( ) ( )( )1

 Area of the rectangle with width xi and height f (ti)

Hence

S f P f t xi i
i

n

( , ) ( )

1

Sum of the areas of the rectangles with width xi  xi  xi 1 and height f (ti)

Thus, the area A enclosed by the x-axis, the lines x  a, x  b and the curve y  f (x) is approximately equal to S (f, P). 

When the width of the rectangles becomes smaller, that is when Max { x1, x2, , xn} is small, the sum of the areas 

or S (f, P) is very nearly equal to A. If f is integrable, then S (f, P) converges to f x dx
a

b

( )  and hence

A f x dx
a

b

( )

Thus, definite integral of a non-negative function f, when integrable, maybe interpreted over [a, b] as the area enclosed 

by the curve y  f (x), the lines x  a, x  b and the x-axis.
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As already mentioned in the beginning of this section, we are going to state some theorems (without proofs) whose

validity, we assume.

THEOREM 5.3 Suppose a c d b f bc b f bd ff [ ,aa ] � is defined by

f
x d

( )x
[ ,c ]1

0

if

 otherwise

Then f is integrable over [f a, b] and

f d c
c

d

a

b

From Theorem 5.3 it follows that every step function f on [f a, b] is integrable over [a, b]. In fact we have the following

theorem.

THEOREM 5.4 Suppose f a: [ , ]b � is a step function. Hence, f can be written asf

f xi Jx
i

m

i

1

where JiJ is a sub-interval of [a, b] and J1JJ , J2JJ , , Jm J are disjoint. Then f is integrable andf

f

J d

a

b

i i
i

m

i i i
i

m

i i ii

( )JiJ

( )d cid idd [ ,cic ]

1

1

if

where �( )i is the length of the interval JiJ .

Note: In part (2) of the example given after Theorem 5.2, the function is not a step function, even though it has two 

values. That is,

f
x

x
( )x

1

0

if is rational

if is irrational

is not a step function.

THEOREM 5.5 Suppose a c b and f is integrable over [f a, c] and [c, b]. Then f is integrable over [f a, b] and

f f
a

b

a

c

c

b

f f

In fact, if a a an0 1a 2a1a and f is integrable over each of f [ , ] ( , , , , ),a, i n, , , ,i i, a, 1 2, 3 then f isf
integrable over [a0, an] and

f f
a

a

a

a

a

a

a

an

n

n

0 0a

1

1

2

1

f ff

 5.1 Definite Integral
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THEOREM 5.6 Suppose f a: [ , ]b � is integrable and 1, 2, , n  (a, b). Suppose g(x) f (x) for x 1, 

2, , n. Then g is integrable over [g a, b] and

f
a

b

a

b

g

In other words, if two functions f andf g differ only at a finite number of points in [g a, b] and if one

of them is integrable, then the other function is also integrable and will have the same integral.

The following theorem is useful to decide the integrability of a function.

THEOREM 5.7
(RIEMANN

INTEGRABIL ITY

CRITERION)

f a: [ , ]b �  is integrable over [a, b] if and only if to each 0, there exists a partition P of [P a, b] 

such that

U P f( ,f ) (L , )P)Pf(L )P

A good application of Riemann integrable criterion is the following.

THEOREM 5.8 Every continuous function on [a, b] is integrable over [a, b].

Theorem 5.8 is very important, application wise, since many of the functions we come across are continuous.

1.  Every polynomial function being continuous for all 

real x, is integrable over any interval [a, b].

2.  The functions sin x and cos x being continuous on 

any interval [a, b], are integrable over [a, b].

3. The function log x is continuous on any closed in-
terval [a, b], 0  a  b. Hence, log x is integrable 
over [a, b].

4.  Since ex is continuous for all real x, ex
  is integrable 

over any closed interval [a, b].

QUICK LOOK 1

Note:

1. Even though Theorem 5.8 is useful application wise, it suffers from one drawback, namely it does not give the value 

of the integral f
a

b

.

2. Theorem 5.8 remains true even if f is discontinuous at a finite number of points in (a, b).

THEOREM 5.9  (i) Every increasing function on [a, b] is integrable.

(ii) Every decreasing function on [a, b] is integrable over [a, b].

Note: Here again, the integrability of a monotonic function f is guaranteed, but does not specify the value of f
a

b

.

THEOREM 5.10 
(ADDIT ION

THEOREM)

Suppose f a b: [ , ] �  is a function and a  c  b. Then f is integrable over [a, b] if and only if f is 

integrable over [a, c] and [c, b]. In this case,

f f f
a

b

a

c

c

b
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COROLLARY 5.1 If a c d b and f is integrable over [f a, b], then f is integrable over [f c, d].

DEFINITION 5.3 Suppose a b and f is integrable over [f a, b]. Then, we define

f f
b

a

a

b

a

a

f an 0fd

As a consequence of this definition and earlier results, we have the following theorem.

THEOREM 5.11 Suppose f is integrable over [f a, b] and , ,  [a, b]. Then

f fff ff 0

Note:

1. Suppose f : [ , ]0, �  is defined as

f ( )x
/1 0x x//x

0 0x

i

if

Then f is continuous on [f c, 1] for every c  (0, 1] and hence it is integrable over (c, 1] if 0 c  1. But f is f not intet -

grable over [0, 1], since it is not bounded on [0, 1].

2. Define f : [ , ]0, � by

f x
x

( )x
sin ,

,

1
0

0 0x,

This function f is bounded on [0, 1] and is continuous on [0, 1] except at f x  0 and hence it is integrable over [0, 1].

The following theorem is called mean value theorem for integrals.

THEOREM 5.12
(MEAN VALUE

THEOREM FOR

INTEGRALS)

Suppose a b and f be continuous on [f a, b]. Then there exists c [a, b] such that

f f
a

b

f ( )cc ( )b ab

The following theorem is very important in view of its applicability. This theorem is useful in evaluating definite inte-

grals. It is also known as Newton–Leibnitz theorem.

THEOREM 5.13 
(FUNDAMENTAL

THEOREM OF

INTEGRAL

CALCULUS)

Suppose

 (i) f a: [ , ]b � is integrable.

(ii) F a: [ , ]b �  is continuous.

(iii) F f( )x ( )x  in (a, b).

Then

f F F
a

b

F( )bb ( )a

 5.1 Definite Integral
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Note:

1. It is customary to denote F (F b) F (F a) by [ ( )]x( a
b .

2. Theorem 5.13 can also be stated as follows: If F (x) is an antiderivative of f (f x) on [a, b], then

f F F
a

b

F( )bb ( )a

3. F F F
a

b

( )b ( )a  if F is integrable.

4. Theorem 5.13 remains true if F (x) f(ff x) on [a, b] except at a finite number of points in [a, b].

Using Theorems 5.8 and 5.13 we can prove the following examples.

1.
x2

2
 is an antiderivative of x on [a, b] so that

xdx
x b a

a

b

a

b 2 2 2

2 2

2.
x
n

n
n 1

1
1( )  is an antiderivation of xn so that

x dx
x
n n

b an
n

a

b
n n

a

b 1
1 1

1

1

1
( )

where a  0, b  0.

3. Antiderivative of ex is ex. This implies

e dx e ex

a

b
b a

4. sin x is an antiderivative of cos x. This implies

cos sin sinxdx b a
a

b

5. Let sign

if

if

if

x

x

x

x

1

0

1

0

0

0

Now | |x  is an antiderivative of sign x except at x  0 

and sign x is a step function and hence is integrable. 

Therefore, from Theorem 5.13 and Note (4) under it, 

we have

sign xdx x| |
2

2

2

2

2 2 0

6. Suppose F x x( )  on [0, 1] so that

F x
x

( ) ( ,
1

2
0on  1]

Let

f x x
x

x
( )

1

2
0 1

0 0

if

if

Then F (x)  f (x) on (0, 1) and f is not integrable over 

[0, 1] since it is not bounded. Hence, Fundamental 

Theorem of Integral Calculus (Theorem 5.13) is not 

applicable in this situation.

Examples 

DEFINITION 5.4 Suppose f a b: [ , ] �  is integrable and x  [a, b]. Then f is integrable over [a, x]. We define

F x f x a b
a

x

( ) [ , ]

F (x) is called the indefinite integral of f over [a, b].

Note: We may choose any c  [a, b] and define G x f
c

x

( )  which is also an indefinite integral. Also F and G differ by 

a constant.
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We have the following theorem about the indefinite integral.

THEOREM 5.14 Suppose f a: [ , ]b �  is integrable. Then the indefinite integral F f
a

x

( )x is continuous over

[a, b].

THEOREM 5.15
(FUNDAMENTAL

THEOREM OF

INTEGRAL

CALCULUS –
SECOND FORM)

If f is continuous on [f a, b], then

(i) F f dt
a

x

( )x ( )t is differentiable.

(ii) F f x b( )x ( )x [ ,a ].

Note: This theorem gives the impression that the indefinite integral F (x) is an antiderivative of f (x). But this is not

true in view of the following example.

Example

F x t dt x
x

( ) sign

1

1  is the indefinite integral of the 
signum function “sign x” on [ 1, 1]. But F (x) is not 

differentiable at “0” and hence is not an antiderivative of 

sign x on [ 1, 1].

As an application of the Fundamental Theorem of Integral Calculus – Second Form, we have the following theorem 

known as substitution theorem which is useful in the evaluation process of definite integrals.

THEOREM 5.16 
(SUBSTITUTION

THEOREM)

Suppose

  (i) g a b: [ , ] �  is continuously differentiable.

 (ii) g ([a, b])  [c, d].

(iii) f c d: [ , ] �  is continuous.

Then ( )f g g�  is integrable over [a, b] and

( )

( )

( )

f g g f
g a

g b

a

b

�

That is,

f g t g t dt f x dx
a

b

g a

g b

( ) ( ) ( )

( )

( )

As a consequence of Theorem 5.16, we have the following properties of definite integral listed below as P1, P2, , P6.

5.1.2 Some Properties of the Definite Integral

P1: If f is integrable over [0, a], then

f x dx f a x dx
aa

( ) ( )

00



462 Chapter 5   Definite Integral, Areas and Differential Equations

Proof: Write g (g x) a x. Then

f dx

f x g x

f dx

a

a

a

( )a x

( (g )) ( )x( ) ( (g ) )

( )x

f (a

( )x ( g

f dxdd( )a x dxdx
0

0

0

ggg

g

a

f dx

( )a

( )

( )x
0

Example 5.1

Evaluate x x dx( ) .1 9

0

1

Solution: Let

I x x dx( )1 9

0

1

( )[ ( )]

( )

1 1 1

1

9

0

1

9

0

1

x x

x x

( )

[ ] [ ]

x x dx

x x

9 10

0

1

10
0
1 11

0
11

10

1

11

1

10

1

11

1

110

Example   5.2  

Evaluate 
sin

sin cos

/ n

n n

x

x x
dx

0

2

 where n is rational.

Solution: Let

I
x

x x
dx

x

x x

n

n n

n

n n

sin

sin cos

sin ( )

sin ( ) cos ( )

/

0

2

2

2 20

/

/
cos

cos sin

2

0

2

dx

x

x x
dx

n

n n

Therefore

2

1
2

0

2

0

I
x

x x

x

x x
dx

dx

n

n n

n

n n

sin

sin cos

cos

cos sin

/

//2

This implies

I
4
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 Example    5.3  

Show that

x f x dx f x dx(sin ) (sin )

/

0 0

2

2

Solution: Let

I x f x dx

x f x dx

(sin )

( ) [sin( )]

0

0

f x dx I(sin )

0

Therefore

2

2

0

0

2

I f x dx

I f x dx

(sin )

(sin )

/

 5.1 Definite Integral

P2: If f is integrable over [0, 2a] then

f x dx f x dx f a x dx
aa a

( ) ( ) ( )

00

2

0

2

and further

f x dx
f x dx f a x f x

f a x f x

a
a

( )
( ) ( ) ( )

( ) ( )

2 2

0 2

0
0

2
if  

if

Proof: Let

I f x dx
a

( )

0

2

f x dx f x dx

f x dx f a t

a

a

a

a

( ) ( ) (

( ) ( )(

0

2

0

2

By Theorem 5.10)

11 2

2

2

0

0 0

0

)

( ) ( )

( ) (

a

a a

a

dt t a x

f x dx f a t dt

f x dx f a

where 

x dx

f x dx f a x f x

f a x f x

a

a

)

( ) ( ) ( )

( ) ( )

0

0

2 2

0 2

if  

if
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 Example    5.4  

Evaluate 
x x

x
dx

sin

cos
.

1 2

0

Solution: Let

 I
x x

x
dx

sin

cos1 2

0

( )sin( )

cos ( )

sin

cos

x x

x
dx

x

x
dx I

1

1

2

2

0

0

Therefore

2
1

1

2

0

2

0

2 2

I
x

x

x

x
dx

sin

cos

sin

cos

/

2
1

2

1 2 12
2

2
2

2

sin

cos

sin( )

cos ( )

sin

cos

x

x
dx

x

x

x

x
∵

00

2

2

1

0

2
1

1
1

/

( ) cos
t

dt t xwhere 

2
1

2

2 1 0

2

2

0

1

1

0

1

1 1

2

dt

t

tTan

Tan Tan( )

Hence

2
2

4

2

2

I

I

P3: Suppose f is integrable over [ a, a]. Then

f x dx
f x dx f

fa

a
a

( )
( )2

0

if  is an even function

0 if  is an oddd function

Proof: We have

I f x dx

f x dx f x dx

a

a

a

a

( )

( ) ( ) ( )

0

0

By Theorem 5.10

Therefore

I f t dt f x dx x t

f t dt f x dx

a

a

a a

( )( ) ( )

( ) ( )

0

0

0 0

where

If f is even 

I f t dt f x dx f x dx
aa a

( ) ( ) ( )

00 0

2
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If f is odd, then

I f t dt f x dx
a a

( ) ( )

0 0

0

 Example    5.5  

Evaluate 
dx

x1 2

1

1

.

Solution: Let

I
dx

x1 2

1

1

We know that 1 1 2/( )x  is an even function. Therefore

I
dx

x

x

2
1

2

2

0

1

1

0

1
Tan

2 1 0

2
4

0

2

1 1( )Tan Tan

 5.1 Definite Integral

 Example    5.6  

Show that

cos log

/

/

x
x
x

dxe
1

1
0

1 2

1 2

Solution: Let

f x x
x
x

xe( ) cos log
1

1

1

2
for

1

2

Now

f x x
x
xe( ) cos( )log

1

1

cos log ( ) log ( )

cos log

( )

x x x

x
x
x

f x

e e

e

1 1

1

1

Therefore, f is an odd function and hence

f x dx( )

/

/

1 2

1 2

0

If f :� �  and g :� �  are continuous functions 

then show that

f x f x g x g x dx( ) ( ) ( ) ( )

/

/

0

2

2

Solution: Let

Q x f x f x g x g x( ) ( ) ( ) ( ) ( )

so that

Q x f x f x g x g x

Q x

( ) ( ) ( ) ( ) ( )

( )

Therefore Q is an odd function. Hence

Q x dx( )

/

/

2

2

0

 Example    5.7  
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P4: Suppose f is a periodic function on �  with period T. That is

f x T f x x( ) ( ) �

Then for any positive integer n,

f x dx n f x dx
nT T

( ) ( )

0 0

Proof: We have

f x dx f x dx f x dx f x dx f x dx
nT T

T

T

m T

mT

( ) ( ) ( ) ( ) ( )

( )0 0

2

1

� �
(( )n T

nT

1

Let

I f x dx m nm

m T

mT

( ) , , , , ,

( )1

1 2 3 …

Put t x m T( )1 . Then

x m T t

x mT t T

( )1 0

Hence

I f t m T dt

f t dt m T f

m

T

T

[ ( ) ]

( ) [ ( )

1

1

0

0

∵  is also period of  wwhen  = 2, 3, , ]m n…

Therefore

 

f x dx I

f x dx

f x dx

n f

nT

m
m

n

m T

mT

m

n

T

m

n

( )

( )

( )

(

( )

0 1

11

01

xx dx
T

)

0
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P5: If f is integrable over [a, b], then

f x dx f a b x dx
a

b

a

b

( ) ( )

Proof: Let t  a  b x so that dx  dt. Now

x  a  t  b

and x  b  t  a

Therefore

f a b x dx f t dt f t dt
a

b

a

b

b

a

( ) ( )( ) ( )1

P6: This property implies

f x
f x f a b x

dx
b a

a

b
( )

( ) ( ) 2

Proof: Using P5 we have

I
f x

f x f a b x
dx

f x b x
f a b x f x

dx
a

b

a

b
( )

( ) ( )

( )

( ) ( )

Therefore

2 1I dx b a
a

b

I
b a

2

Example 5.8

Evaluate x x dx[ ] .

0

100

Solution: Since x [x] is of period 1, we have

x x dx x x dx[ ] [ ]

0

100

0

1

100

100 50

0

1

xdx

Example    5.9  

Evaluate 
log

log log ( )
.e

e e

x

x x
dx

110
10

100 Solution: We have

log

log log ( )

e

e e

x

x x
dx

110

100 10

2
45

10

100
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THEOREM 5.17 
(COMPOSITE 

THEOREM)

Suppose f a b: [ , ] �  is integrable, f ([a, b])  [c, d] and g c d: [ , ] �  is continuous. Then  g f�  

is integrable over [a, b].

As an application of Theorem 5.17,  we have the following theorem.

THEOREM 5.18 If f a b: [ , ] �  is integrable, then | |f  is integrable over [a, b]. Further, if | ( ) | [ , ],f x M x a b  

then

f f M b a
a

b

a

b

| | ( )

PROOF Let g x x( ) | |  so that

f x f x g f x( ) ( ) ( ( ))

Hence by Theorem 5.17, the result follows.

Note: The converse of Theorem 5.18 is not true. That is, if | |f is integrable, then f need not be integrable. For this, 

consider

f x
x

x
( )

1

1

if  is rational

if  is irrational

on [0, 1]. Then f is not integrable over [0, 1] whereas f x x( ) [ , ]1 0 1  is integrable.

The following is another important application of the Composite Theorem.

THEOREM 5.19 
(PRODUCT 
THEOREM)

Suppose f and g are defined and integrable over [a, b]. Then f 2, g2 and fg are integrable over 

[a, b].

PROOF Define h (t)  t2. Then

f x h f x2( ) ( )( )�

Hence, by Composite Theorem,  f 2 is integrable. Similarly, g2 is integrable and

f g
1

2

2 2 2[( ) ]f g f g

is integrable.

As a nice application of the product theorem, we have the following important theorem known as Integration by parts 

which is very useful in evaluating definite integrals.

THEOREM 5.20 
(INTEGRATION 

BY PARTS)

Suppose F and G are differentiable on [a, b], f F g G,  and f, g are integrable over [a, b]. 

Then

 ( )( ) ( )( ) ( )( )f G x dx FG x Fg x dx
a

b

a
b

a

b

 

[ ( ) ( ) ( ) ( )] ( )( )F b G b F a G a Fg x dx
a

b

Note: In the integration by parts formula, if we take u  G and dv  f, we have
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vdu
a

b

a

b

udv a
bu vx x

Hence, the student can follow the usual formula for integration by parts in the indefinite integration with a and b as 

limits of integration.

 3.4 Maxima–Minima 5.1 Definite Integral

1. xe dx xe e dx

e e

e e

x x x

x

0

1

0

1

0

1

0

1

1

0

1 1

( )

( )

2. x xdx
x

x
x

x
dx

e
x

e

e e e

e

log log

1

2

1

2

1

2
2

1

2

2 2

1

2

1

4

2

ee

e

2

2

1

4

4

1

4

The following theorem, called Leibnitz Rule, is useful in many problems.

THEOREM 5.21 
(LEIBNITZ

RULE)

Suppose f a b: [ , ] is continuous and g, h : [a, b]  [a, b] are differentiable. Then

d
dx

f t dt f h x h x f g x g x
g x

h x

( ) ( ( )) ( ) ( ( )) ( )

( )

( )

That is, if

Q x f t dt
g x

h x

( ) ( )

( )

( )

then

Q x f h x h x f g x g x( ) ( ( )) ( ) ( ( )) ( )

PROOF Write F t f x dx
a

t

( ) ( )  so that F is the indefinite integral of f (see Definition 5.4). Now 

F  (t)  f (t). Hence

f f f F h x F g x
g x

h x

a

h x

a

g x

( )

( ) ( ) ( )

( ( )) ( ( ))

Therefore

d
dx

f F h x h x F g x g x

f h x

g x

h x

( )

( )

( ( )) ( ) ( ( )) ( )

( ( ))hh x f g x g x F f( ) ( ( )) ( ) ( )∵

Examples 
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Let x  [0, 1].  Take g x( ) ,0  h x x( ) 2  and 

f x x( ) /( ).1 13   Then
d
dx

dt

t x
x

x

1

1

1
2 0

3

0

6

2

( )

2

1 6

x

x

Some of the important consequences of Leibnitz Rule are listed in the following theorem.

THEOREM 5.22   (i)  If f : [ , ]0 1  is continuous and f f x
x

x0

1

0 1[ , ],  then f x x( ) ( , ).0 0 1

 (ii)  If f a b: [ , ]  is non-negative and continuous such that f x dx
a

b

( ) ,0  then 

f x x a b( ) [ , ].0

(iii) If f and g are integrable over [a, b] and f x dx
a

b
2 0( ) , then ( )( ) .fg x dx

a

b

0

PROOF   (i) Write h x f t dt
x

( ) ( )

0

 so that h x f x( ) ( ). Now

f x dx f t dt f t dt

h x h x

h

x

x

( ) ( ) ( )

( ) ( ) ( )

(

1

00

1

2

By hypothesis

xx)

Therefore, 2h(x) is constant. Hence

0 2 2

0 0 1

h x f x

f x x

( ) ( )

( ) ( , )

 (ii)  Let F x f t dt
a

x

( ) ( )  be the indefinite integral of f.  Then F is continuous (Theorems 5.14

and 5.15) and F  (x)  f (x)  0. Hence F (x) is increasing on [a, b]. Further

F (a)  0  F (b) (By hypothesis) 

Hence F x x a b( ) [ , ].0  Consequently, f x F x( ) ( ) 0  for all x  [a, b] [since F (x) is 

the constant function 0].

(iii) Suppose f and g are integrable over [a, b] and

f x dx
a

b
2 0( )

 Example 
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Now, 0 implies

( )

g fg

a

b

a

b

a

b

a

b

ff g

2

2

0

0fg

Therefore

2 2 2

2

2 0g f

g f2 2 gff

a

b

a

b

a

b

a

b

a

b

0fg2

Since this is true for every 0, it follows that

fg
a

b

0

Even though 
1

1 2x
is not defined at x  1, we write

dx
x1

0
22

0

1

1 11Sin S111111

To overcome this, the following concept is being introduced.

DEFINITION 5.5 (i) Suppose f a: ( , ]b is defined and is integrable over [c, b] for every c (a, b] and let

F f dx
c

b

( )c ( )x

for c  (a, b]. If lim ( )
c a

F(  exists finitely (that is the limit is finite), then we say that f is intef -

grable over [a, b] and write

f dx F
a

b

c a
( )x lim ( )c

(ii) Suppose f a: [ , )b  is defined and is integrable over [a, c] for every c [a, b) and let

F f dx
a

c

( )c ( )x

If lim ( )
c b

F(  exists finitely, then we say that f is integrable over [f a, b] and write

f dx F
a

b

c b
( )x lim ( )c

 3.4 Maxima–Minima 5.1 Definite Integral
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 Example 

Suppose

f x
x

x( ) , [ , )1

1
0 1

2

Then f is integrable over [0, c) for all c  [0, 1) and

F c
dx

x

x

c

c

( )
1 2

0

1

0
Sin

c

c

01 1

1

Sin Sin

Sin

Also F c c( ) /Sin Sin1 11 2  as c  1  0. There-

fore

dx

x1 22
0

1

 Example 

Suppose f x x x( ) / , ( , ].1 0 12  Then f is integrable over 

( , ] ( , ]c c1 0 1  and

F c
x

dx

x

c

c c

c

c

( )

( / )

( / )

1

1

1 1

1 1 0 0

2

1

1

as 

Thus lim ( )
c

F c
0

 is not finite and hence f x x( ) /1 2  is not 

integrable over [0, 1]. Since lim ( ) ,
c

F c
0

 in this case 

we write

1
2

0

1

x
dx

The value of sin cos

/ /

n nxdx xdx
0

2

0

2

can be evaluated by repeating the integration by parts which is given in the  

following theorem. This formula is also known as Wallis Formula and is useful in some of the area problems.

THEOREM 5.23
(WALLIS  

FORMULA)

 (i) If n  2 is an integer, then

sin
[( )( )( ) ]

[ ( )( ) ]

/

n xdx
n n n

n n n
0

2
1 3 5 2

2 4 2

�
�

 or 1

 or 1
qq

where q   / 2 if n is even, otherwise q  1.

(ii) If m, n are positive integers, then

sin cos
[( )( ) ][( )( ) ]

[(

/

m nx x
m m n n

m
0

2
1 3 1 2� �2 or 1 2 or 1

nn m n m n
p

)( )( ) ]2 4 �2 or 1

where p   / 2 if both m and n are even, otherwise p  1.

Note: Actually (i) is a consequence of (ii) if we take n  0 in (ii).

!   Caution: In writing the factors in the Numerator and Denominator of the Wallis Formula, one should stop 

before entering into zero factor or negative factor.
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Examples

 3.4 Maxima–Minima 5.1 Definite Integral

1. sin
( )( )( )

( )( )( )

/

7

0

2
7 1 7 3 7 5

7 7 2 7 4 7 6

6 4 2

7 5 3

16
x dx

335

2. sin
( )( )( )( )

( )( )( )

/

8

0

2
8 1 8 3 8 5 8 7

8 8 2 8 4 8 6 2

7 5 3

x dx

1

8 6 4 2 2

35

256

3.

sin cos
( )( )( ) ( )( )

( )(

/

6 4

0

2
6 1 6 3 6 5 4 1 4 3

10 10 2 10
x xdx

4 10 6 10 8 2

5 3 1 3 1

10 8 6 4 2 2

3

512

)( )( )

( )( )

5.1.2 Definite Integral as a Limit of a Sum

Sometimes definite integral can be used to find the limit of a sum. This is because, for a given function f on [a, b] and 

a partition P of [a, b], S(f, P) (see Definition 5.1) is a finite sum and as the maximum of xi  of P tends to zero, the sum 

tends to f
b

b

.  For example, suppose f : [ , ]0 1  is integrable. Let n be a positive integer. Consider the partition

P
n n n

n
n

n
n

0
1 2 3 1

, , , , , ,

of [0, 1]. That is the interval [0, 1] is divided into n equal parts. Here x i ni /  for i  1, 2, , n and x x nr r1 1/  for r  

1, 2, , n so that

P x x x x x xi n i i imax , , ..., ( )2 1where 

 
1

n

The division points xr are equally spaced in [0, 1]. We select t rr 1/  in [ , ] ( /( )), / .x x r rr r1 1 1 1
 
Hence,

S f P f t x x f t x x f t x x

f
n

n n n( , ) ( )( ) ( )( ) ( )( )1 1 0 2 2 1 1

1

�
1 2 1 1

1 1 2

n
f

n n
f

n
n n

n
f

n
f

n

�

� n
n

Since f is integrable over [0, 1,],

S f P f
a

b

( , )

Thus

lim
n

a

b

n
f

n
f

n
f

n
n

f
1 1 2 �
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5.1.3 Method of Finding the Limit of a Sum as a Definite Integral

Here, we give a procedure which can be done mechanically to obtain limit of a sum.

Step 1: Write the general term rth or (r  1)th
 
term of the sum whichever contains r.

Step 2: Replace n with 1/h in the general term and simplify it.

Step 3: Alot one h in the numerator to dx and in the remaining replace rh with x.

Step 4:   (i) If the number of terms in the sum is n  1 or n or n  1, then the limits of integration are from 0 to 1.

(ii)  If the number of terms in the sum is 2n  1 or 2n or 2n  1, the limits of integration are from 0 to n.

In this way we find the function and its limits of integration so that the definite integral obtained is the limit 

of the sum.

 Example    5.10  

Evaluate lim
n n n

1
1

1

2

1

3

1

4
.

Solution:

Step 1: T r
nr

r
th term

1 1

Step 2: Put n
h
1

 so that

T
h
r

h

rhr

Step 3: Replace rh with x.
Step 4:  Since there are 4n terms in the sum, the required 

limit is

dx

x

dx

xt
t0

4

0

4

lim  ∵ 1
0

x
x is not defined at 

lim
t t

x
0

4
2

2 4 0

4

 Example    5.11  

Evaluate lim .
n n n n n n

1 1

1

1

2

1

2

Solution:

Step 1: (r + 1)th term T
n rr 1

1
.

Step 2: Put n
h
1

 so that T
h
rhr 1

1
.

Step 3: Put rh  x.

Step 4:  Since there are 2n + 1 terms in the given sum, the 

required limit is

dx
x

xe
1

1

3 1

3

0

2

0

2
log ( )

log log

log

Note: If the sum contains kn terms, then the limit is log ( ).e k 1

 Example    5.12  

Show that lim ( )( ) ( ) .
/

n

n

n
n n n n

e
1

1 2
41�

Solution:

Let

A
n

n n n n

n n

n

n

n

lim ( )( ) ( )

lim

/1
1 2

1
1

1
2

1�

�� 1

1
n
n

n/

Therefore

log lim log logA
n n n

n
nn

1
1

1
1

2
1

Now

r
n

r
n

th term
1

1log

Put n h1/  so that
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r h xth term log ( )1

where x rh.  Therefore

log log ( )

log ( )

e e

e

A x dx

x x
x

x
dx

0

1

0

1

0

1

1

1
1

log

log ( log )

log

e

e

e

x
dx2 1

1

1

2 1 2

2 2 1

0

1

So

A e
e

e2 2 1 4log

Example   5.13

If S
n n n n n

n
1

1

1

2 2

1

3 3

1

2
,  then 

find lim .
n

nS

Solution:

T r
r rnr th term

1

Put n  1 / h, so that

h

r h r

h

rh rh

h

x x

Now

Required limit 
dx

x x
0

1

dx

x x

dx

x xt
t

( )

lim
( )

1

1

0

1

0

1

2 1 1 2 1
0

log ( ) lim log ( )e
t

e t

∵ 1
0

x x
x is not defined at 

2 2 2 1 2 2log log loge e e

Therefore

lim log
n

n eS 4

5.2 Areas

Example    5.14  

Show that lim
( ) ( )n n

n

n

n

n n
1

1 2

1

8

3

8

2

3

2

3
�

Solution:

T r
n

n r
r 1

2

3
1( )

( )
th term

Put n  1 / h so that

T
h

rh

h

x
r 1 3 31 1( ) ( )

Therefore, the required limit is

dx

x

x

( )

( )

1

1

3 13

3 1

0

1

0

1

1

2

1

1 1
1

1

2

1 4

4

3

8

2( )

( )

5.2 Areas

We have already observed that the area enclosed by the x-axis, the lines x  a, x  b and a curve y  f (x) represented 

by a non-negative function f (x) can be regarded as the definite integral f x dx
a

b

( ) .

 

This is definitely the case when f is 

continuous.
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1.  In other words, if f a b: [ , ]  is continuous and non-negative, then the area A of the region enclosed by the lines 

x  a, x  b, the x-axis and the curve y  f (x) is given by (see Fig. 5.2)

A f x dx
a

b

( )

a b x

y

O

y = f (x )

FIGURE 5.2

2.  If f a b: [ , ]  is continuous and non-positive, that is f (x)  0 for all x  [a, b], then the area B of the region en-

closed by the x-axis, the lines x  a, x  b
 
and the curve y  f (x) is same as the area of the region enclosed by the 

curve y  f (x) and the lines x  a, x  b and x-axis, since both the regions are mirror reflections of each other about 

the x-axis. Hence

B f x dx f x dx f x dx
a

b

a

b

a

b

( ) ( ) ( )

See Fig. 5.3.

O a b

A

y

xB

y = −f (x )

y = f (x )

FIGURE 5.3

3.  Suppose a  c  b, f a b: [ , ]  is continuous, f x x a c( ) [ , ]0  and f x x c b( ) [ , ].0  Then, the area of the 

region enclosed by the x-axis, the lines x  a, x  c and x  b and the curve y  f (x) can be split into two parts (see 

Fig. 5.4).

(a)  Area A enclosed by the x-axis, the lines x = a,  x = c and the curve y f x a x c( ),  [so that f x( ) 0 ] 

a x

y

O

y = f (x)

y = f (x)

bc

B

A

FIGURE 5.4
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(b) Area B enclosed by the x-axis, the lines x = c, x = b and the curve y f c x bcf ( )x( )x , [so that f ( )x 0 ].

Hence the area of the total region is

A B f dx

f dx

a

c

c

b

a

c

c

b

B f dx

f dxdxf

x ( )x

xx ( )x

f dx

f dx

a

c

c

b

a

b

( )x

( )x

4. The area A enclosed between the y-axis, the lines y a, y b and the curve x f (f y) is given by (Fig. 5.5)

A x dy
a

b

a

b

f dyddydf yyy

a

b

y

A

x

x = f (y )

O

FIGURE 5.5

5. Suppose f a g b: [ , ]b g [ , ]b:g [ ,a ]b[ ]g b:g [a ]  are continuous functions and 0 f g( )x ( )x  for x  [a, b]. Then the area A
of the region bounded by the curves y g (g x), y f (f x) and the lines x a, x b is given by (see Fig. 5.6)

A f dxdd

dxdd

a

b

a

b

a

b

g dxdddxdg xxx ( )x

( )g fg ( )x

y = g (x )

y = f (x )

A

O a

y

b x

FIGURE 5.6

 5.2 Areas
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Note: If the two curves intersect in the points (x1, y1) and (x2, y2), then

A g f x dx
x

x

( )( )

1

2

While computing areas, it is always useful if a rough diagram (figure) is drawn. For this the following tips will be helpful.

1. Symmetry:

 (a)  If the powers of x in the curve equation are all even, then the curve is symmetric about y-axis. That is, the equa-

tion of the curve does not change if x is replaced by x.

 (b)  If the equation of the curve does not change by replacing y with y, then the curve is symmetric about x-axis 

(i.e., the powers of y are all even).

2. Find the points of intersection of the curve(s) with the coordinate axes.

3. Observe whether there are any limitations for the abscissa (ordinate) of points on the curve.

4.  If for any point (x, y) on the curve, lim
x

y 0  and y  0 for all points on the curve, then the curve approaches nearer 

and nearer to x-axis but will never meet it. Similarly, if lim
y

x 0  and x  0 for all points, the curve approaches  

y-axis without meeting it.

 Example    5.15  

Show that the area bounded by the curve

x

a

y

b

2

2

2

2
1  (called ellipse)

is  ab square units.

Solution: See Fig. 5.7.

O x(a, 0)

(0, b)
y

FIGURE 5.7

(i)  Since powers of both x and y are even, the curve is 

symmetric about both coordinate axes.

(ii) −a  x  a and −b  y  b.

(iii) Curve meets the axes in (  a, 0) and (0, b).

Therefore

Area bounded by the curve 

 4(Area in the first quadrant)

 4

0

2 2b
a

a x dx
a

4

2 2

4
0 0

2 2

0

2
1

0

b
a

x a x a x
a

b
a

a
a

Sin

( )) ( )
a

b
a

a
ab

2
1 1

2

2
1 0

4

2 2

Sin Sin

 Example    5.16  

Find the area included between the parabola y  2x x2 

and the x-axis.

Solution: We have

y x x x2 1 12 2( ) ( ) ( )x y1 12

This is a downward parabola with vertex at (1, 1) and 

meeting the x-axis in (0, 0) and (2, 0). The required area 

(shaded region in Fig. 5.8) is

x

y

O 2

(1, 1)

FIGURE 5.8
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ydx x x dx

x x

0

2

2

0

2

2

0

2 3

0

2

2

1

3

( )
4

8

3

4

3

Example 5.17

Compute the area bounded by y  ex,  x-axis and the lines 

x  1 and x  2.

Solution: The required area is (see shaded region in 

Fig. 5.9)

e dx e e ex x

1

2

1

2 2

x

y

O 21

y = e x

FIGURE 5.9

Example    5.18  

Show that area enclosed between the parabolas y2  4ax
and x2  4by is 16ab / 3 square units.

Solution: The two curves intersect in the points (0, 0) 

and (h, k) where h a b4 1 3 2 3/ /  and k a b4 2 3 1 3/ / (see Fig. 

5.10). Now

0 4
4

2

x h y ax
x
b

y

O xM (h, 0)

P (h, k)
x 2 = 4by

y 2 = 4ax

y

FIGURE 5.10

Therefore the required area (shaded one in Fig. 5.10) is

( ) /4
4

2 1
12

2

0

2
3

3 2

0

3

0
ax x

b dx a x b x
h

h h

4

3 12

4

3
4

4

12

3 2
3

1 3 2 3 3 2
1 3 2 3 3

a
h

h
b

a
a b

a b
b

/

/ / /
/ /

( )
( )

4

3
8

64

12

32

3

16

3

16

3

2a
a b

ab
b

ab ab

ab

( ) ( )

( )

Example    5.19  

Compute the area enclosed between the curves y  sin x

and y  cos x for 
4

5
4

x .

Solution: See Fig. 5.11. Here

cos sin ,x x xfor 
4

5
4

x

y

y = sin x 
(0, 1)

y = cos x 

O p
2

p

p
2

, 1))

p
4

1
2

, ))

5p
4

, )) −1
2

FIGURE 5.11
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Therefore, the required area is

(sin cos ) cos sin

cos sin

/

/

/

/x x dx x x
4

5 4

4

5 4

5

4

5

4
cos sin

4 4

1

2

1

2

1

2

1

2

2 2

2 2

 Example    5.20  

Compute the area of the whole region enclosed by the 

curve a y x a x2 2 2 2 2( ).

Solution:

1.  Since the powers of x and y are even, the curve is 

symmetric about both the axes.

2. The curve meets x-axis in ( a, 0), (0, 0) and (a, 0).

−a a x0

y

FIGURE 5.12

3. The curve meets y-axis at (0, 0) only.

4. y
x

a
a x a x a2

2

2

2 2( ) .

A rough diagram is shown in Fig. 5.12. Therefore, the 

required area is

4
2 2

3

4

3
0

4

3

2 2

0

2 2 3 2

0

3
2

x
a

a x dx
a

a x

a
a

a

a
a

( ) /

5.3 Differential Equations

Differential equations have applications in many branches like Physics, Chemistry, Chemical Engineering, Biology, 

Economics, Geology, etc. Therefore in-depth study of differential equations assumed great importance in all modern 

scientific research. James Bernoulli (1654–1705), Joseph Louis Lagrange (1736–1813), and Leibnitz (1646–1716) are 

some of the early mathematicians responsible for the development of differential equations.

In this section, we will study some basic concepts regarding differential equations, learn how to form differential 

equations and find the solutions of ordinary differential equations. We strictly confine to the types of differential equa-

tions which are included in IIT-JEE syllabus.

DEFINITION 5.6  Equation involving derivative (derivatives) of a dependent variable with respect to one or 

more independent variable(s) is called a differential equation.

If there is only one independent variable, then the equation is called an ordinary differential 
equation.

 Examples 

The following are ordinary differential equations:

1. 
dy
dx

xcos 0

2. x
dy
dx

y 0

3. 
d y

dx
y

2

2
0
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DEFINITION 5.7  Order and Degree The highest order of the derivatives that are present (or occur) in the dif-

ferential equation is called the order of the differential equation and the degree of the highest 

order derivative present in the equation (when the equation is a polynomial equation in de-

rivatives) is called the degree of the differential equation.

 Examples 

 1. 
dy
dx

dy
dx

2

1 0  is of order 1 and degree 2.

 2. 
d y

dx
y

2

2
0  is of order 2 and degree 1.

 3.  
d y

dx

dy
dx

dy
dx

y
2

2

3 2

2 0  is of order 2 and  

degree 3.

 4.  
d y

dx

dy
dx

2

2
0sin  is of order 2 but the degree is not 

defined because the given equation is not a polyno-

mial equation in derivatives.

 5.  1 1
2

2

3 2 4

d y

dx

dy
dx

 is of order 2 and degree 3.

DEFINITION 5.8 Solution, General Solution, Particular Solution

1.  Any relation between the independent and dependent variables satisfying a differential 

equation is called a solution of the differential equation.
2.  A solution which contains as many arbitrary constants as the order of the equation is called 

general solution of the given equation.

3.  Any solution obtained from the general solution by giving values to arbitrary constants (i.e., 

solution free from arbitrary constants) is called a particular solution.

5.3.1 Procedure to Form Differential Equation When General Solution is Given

Step 1: Write the general solution or the equation representing the family of curves.

Step 2:  Differentiate the given equation as many times as the number of arbitrary constants that are present in the 

given equation.

Step 3:  Eliminate the arbitrary constants from the equations written in Step 1 and Step 2. Then the differential equa-

tion obtained is the equation representing the curves mentioned in Step 1.

 Example    5.21  

Form the differential equation of all lines of the form 

y  mx.

Solution: Given that y  mx (m is arbitrary constant). 

Therefore

dy
dx

m

Substituting the value of m  dy/dx in y  mx, we have

x
dy
dx y

which is the differential equation representing the set of 

all lines y  mx. 

 Example    5.22  

Find the differential equation of all circles in xy-plane 

touching y-axis at the origin.
Solution: Since y-axis is a tangent to a circle at (0, 0), 

the centre of the circle lies on the x-axis. Hence any circle 

touching y-axis at (0, 0) is of the form
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Example    5.23  

Form the differential equation whose general solution is 

y = Aex + Be x (A, B are arbitrary constants). 

Solution: We have

y Ae Bex x (5.3)

Differentiating w.r.t. x we get

dy
dx

Ae Bex x

and
 

d y

dx
Ae Be yx x

2

2
(5.4)

From Eqs. (5.3) and (5.4) we have 

d y

dx
y

2

2
0

which is the differential equation whose general solution 

is y = Aex + Be x.

Example    5.24  

Form the differential equation whose general solution is 

y = A cos x + B sin x, where A and B are arbitrary con-

stants.

Solution: We have

y = A cos x + B sin x  (5.5)

Differentiating w.r.t. x, we get

dy
dx

A x B xsin cos

and
 

d y

dx
A x B x y

2

2
cos sin (5.6)

From Eqs. (5.5) and (5.6), we get that

d y

dx
y

2

2
0

is the differential equation whose general solution is 

y = A cos x + B sin x. 

Example    5.25  

Form the differential equation from the equation y2 = 4ax
(a is an arbitrary non-zero constant).

Solution: We have

y2 = 4ax  (5.7)

The equation

dy
dx

xy

x y

2
2 2y

is the differential equation of all circles touching the 

x-axis at the origin because equation of such a circle is

of the form

x a2 2 2( )y aayy

QUICK LOOK 2

( )x a y a2 2 2

or x y ax2 2 2 0 (5.1)

where “a” is the arbitrary constant. Differentiating Eq. 

(5.1) w.r.t. x, we get

x y
dy
dx

a (5.2)

Eliminating a from Eqs. (5.1) and (5.2) we have

x y x x y
dy
dx

2 2 2 0

Therefore

dy
dx

y x
xy

2 2

2

is the differential equation of all circles touching y-axis at 

the origin.
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Differentiating both sides w.r.t. x, we have

 y
dy
dx

a2   (5.8)

Eliminating a from Eqs. (5.7) and (5.8), we have

y x y
dy
dx

xy
dy
dx

2 2 2

5.3.2 Variables Separable or Separation of Variables

In this section we solve equations of the form f (x)dx + g (y)dy = 0. The solution is  f x dx g y dy c( ) ( )
 
where c is 

an arbitrary constant.

 Example    5.26  

Solve sec2 x tan y dx + sec2 y tan xdy = 0.

Solution: The given equation can be written as

sec

tan

sec

tan

2 2

0
x
x

dx
y
y

dy  (Variables Separable)

Therefore

sec

tan

sec

tan

log tan log tan

tan tan

2 2x
x

dx
y
y

dy c

x y c

x y ec orr tan tanx y c

 Example    5.27  

Solve 
dy
dx

ex y .

Solution:  We have

dy
dx

e e ex y x y

Therefore

e y dy = exdx (Variables Separable)

Integrating we get

e dy e dx c

e e c

e e c

y x

y x

x y

 Example    5.28  

Solve (y log y) dx – xdy = 0.

Solution: We have

dy
y y

dx
xlog

0

Integrating both sides, we get

dy
y y

dx
x

c

y x c

y
x

c

y cx

y

log

log log log

log
log

log

eecx

 Example    5.29  

Solve 
dy
dx

y

x

1

1

2

2

Solution: We have
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dy

y

dx

x1 12 2  (Variables Separable)
Integrating we get

dy

y

dx

x
c

y x c

1 12 2

1 1Tan Tan

 Example    5.30  

Solve 
dy
dx

xy y
xy x

.

Solution: We have

 
dy
dx

y x
x y
( )

( )

1

1

y
y

dy
x

x
dx

1 1
 (Variables Separable)

Integrating both sides we get

y
y

dy
x

x
dx c

y y x x c

y x
x
y

c

1 1

log log

log

 Example    5.31  

Solve 
dy
dx

x y xtan( ) 1 .

Solution: Put y – x = z. Differentiating w.r.t. x we have

dy
dx

dz
dx

dz
dx

x z

z dz x dx

1

tan

(cot ) (Variables Separable)

Integrating we get

cot

log(sin )

sin

sin( )

/

/

zdz x dx c

z x c

z ke

y x ke

x

x

1

2

2

22

2 22

5.3.3 Homogeneous Differential Equation

DEFINITION 5.9  (Homogeneous Function) A function f (x, y) is called a homogeneous function of degree n 
(n need not be an integer) if 

f (tx, ty) = tn f (x, y) 

for any non-zero t.

 Examples 

1.  f (x, y) = ax2 + 2hxy + by2,
 
where at least one of a, h, b 

is non-zero, is a homogeneous function of degree 2.

2.  f x y
x y

x y
( , )

/ /3 2 3 2

is a homogeneous function of 

degree 1/2.

3.  f x y
x xy y

x y
( , )

2 2

2 2
is a homogeneous function of 

degree zero.

4.  f x y
x y

x y x y
( , )

3 3 2
is a homogeneous function 

of degree 2.
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DEFINITION 5.10 Homogeneous Differential Equation Equation of the form

dy
dx

f x y
g x y

( , )

( , )

where both f and g are homogeneous functions of the same degree is called a homogeneous 
differential equation.

To solve a homogeneous differential equation, use the substitution y = vx so that the equation will reduce to Variables 

Separable form which can be solved. Finally in the solution replace v with y/x.

 Example    5.32  

Solve 
dy
dx

y x
xy

2 2

2
.

Solution: Put y = vx. Therefore

v x
dv
dx

dy
dx

v
v

x
dv
dx

v
v

v

v
v

2

2

2

1

2

1

2

1

2

( )

Now

2

1
0

2

v

v
dv

dx
x

  (Variables Separable)

Integrating both sides we get

2

1

1

1

2

2

2

2 2

v

v
dv

dx
x

c

v x c

v x k

x y kx

log( ) log

( )

 Example    5.33  

Solve
dy
dx

x y

x y

2

3 3
.

Solution: Put y = vx so that 

v x
dv
dx

v

v

x
dv
dx

v

v
v

v

v

v

v
dv

dx
x

1

1 1

1
0

3

3

4

3

3

4

Integrating we get

1 3

4

v

v
dv

dx
x

c

1

3 3

1 3

3

3

3 3

v
v x c

vx k e

y k e

v

x y

log log

/

/

 Example    5.34  

Given that y =  / 2 when x = 1, solve

y
y
x

x dy ydx x
y
x

x dy ydxcos ( ) sin ( ) 0

Solution: We have

y
y
x

x
dy
dx

y x
y
x

x
dy
dx

ycos sin 0

Re-arranging the terms we get

dy
dx

xy
y
x

x
y
x

y
y
x

xy
y
x

cos sin cos sin2 2



486 Chapter 5   Definite Integral, Areas and Differential Equations

Put y = vx. Then

v x
dv
dx

v v v v v v v

v x
dv
dx

v v v

( cos sin ) cos sin

cos sin

2

2 vv
v v v

x
dv
dx

v v
v v v

v v v
v v

cos sin

sin

cos sin

cos sin

sin

2

ddv
x

dx
2

0

Integrating we get

v v v
v v

dv
dx
x

c

v
v v

dv
dx
x

c

cos sin

sin

cos

sin

lo

2

1
2

gg(sin ) log log

( )sin

( )sin

v v x c

vx v k

xy
y
x

k

2

2

Since y =  / 2 when x = 1, we have k = / 2. Therefore, the 

solution is (xy) sin(y/x) =  / 2.

 Example    5.35  

Find the equation of the curve passing through the point 

(4, 2) and satisfying the equation 

dy
dx

y x y

x y x

( )

( )

3

3

Solution: The given equation can be written as

 ( ) ( )xy x dy xy y dx3 2 4 0

 y x dy ydx x x dy ydx3 0( ) ( )

 y
x dy ydx

x x
x dy ydx3

2

1
0

( )
( )

 y d
y
x x

d xy3 1
0( )

 
y

xy
d

y
x x y

d xy
3

2 2 2

1
0( )

y
x

d
y
x

d xy

x y

( )
2 2

0

On integration we have 

1

2

1
2y

x xy
c

Since the curve passes through the point (4, 2) we have 

1

2

4

16

1

4 2( )( )
c

Therefore c = 0. Hence the equation of the curve is

 

y

x xy

y x

2

2

3

2

1
0

2

 Example    5.36  

Solve 
dy
dx

y x y

x xy

3 2

3 2

3

3
.

Solution: Put y = vx. Therefore

v x
dv
dx

v v

v

x
dv
dx

v v

v
v

v v

v

3

2

3

2

3

2

3

1 3

3

1 3

2 2

1 3

Hence

1 3

1

2
0

2

2

v

v v
dv

x
dx

( )

Integrating we get

 
1 3

1 1
2

2v
v v v

dv
dx
x

c
( )( )

 
1 2

1

2

1
2

v v v
dv

dx
x

c

 log log( ) log( ) logv v v x c2 1 2 1 2

 log
( ) ( )1 12 2 2v v x

v
c

 ( )1 2 2 2v x k v

 
( )x y x

x

k y
x

2 2 2 2

4

 ( )x y k xy2 2 2
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 Example    5.37  

Solve x
dy
dx

y
x

y
2

.  

Solution: The given equation can be written as

dy
dx

y

x

y
x

2

2

Put y = vx. We have

v x
dv
dx

v v2

dv

v

dx
x2

0

Integrating both sides we get

dv

v

dx
x

c

v
x c

x k ex y

2

1
log

/

 Example    5.38  

Solve 
dy
dx

y x y

x

( )
.

2
0  

Solution: Put y = vx. We have

v x
dv
dx

v v

x
dv
dx

v v

v v
dv

dx
x

( )

( )

1 0

2 0

1

2
0

2

Integrating we get

1

2

1

2

1 1

2

2

v v
dv

dx
x

c

v v
dv

dx
x

c

v v

( )

log log( ) 22 log x c

vx k v

yx k
y
x

yx k x y

2

2

2

2

2

( )

( )

5.3.4 Linear Differential Equation

Suppose P and Q are integrable functions of x. Then the differential equation 

dy
dx

Py Q

 is called linear equation of first degree. To solve linear equations, multiply both sides with e P dx  so that we have 

d
dx

ye QeP dx P dx( )

Therefore

ye Qe dx cPdx Pdx

is the solution. Here, e P dx  is called the integrating factor (I. F.)

Note: If P and Q are integrable functions of y, then the equation 

dx
dy

Px Q

 is also called a linear equation whose solution is 

x e Qe dy cP dy P dy

 5.3 Differential Equations
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 Example    5.39  

Solve 
dy
dx

xy x.

Solution: Here P = x, Q = x
 
so that integrating factor is

I.F. e e eP dx xdx x2 2/

Therefore the solution is

ye Qe dx cP dx P dx

ye xe dx c e cx x x2 2 22 2 2/ / /

Therefore y ce x1
2 2/  is the solution.

 Example    5.40  

Solve 
dy
dx

x

x
y

x

2

1

1

12 2 2( )
.

Solution: Here 

P
x

x
Q

x

2

1

1

12 2 2
,

( )

The integrating factor is

I.F. e

e

e

x

P dx

x

x
dx

x

2

1

1

2

2

2

1

log( )

The solution is

 ye Qe dx cP dx P dx

This implies

y x
x

x dx c

dx

x
c

x c

( )
( )

( )1
1

1
1

1

2
2 2

2

2

1Tan

So, the solution is 

y x x c( )1 2 1Tan

 Example    5.41  

Solve (sin ) cos ( cos sin ).y
dy
dx

x y x2 2

Solution: Put cos y = z. Therefore

 (sin )y
dy
dx

dz
dx

 
dz

dx
x z xcos ( sin )2 2

dz
dx

x z x x( cos ) cos sin2 2  (Linear equation)

Here the integrating factor is

I.F. e exdx x2 2cos sin

Therefore the solution is

ze x x e dx cx x2 2 2sin sin(cos sin )  

t e dt c t x

t e e t dt c

t e
t e

t

t t

t

2 2

2 2 2

2 2
2

1

2

1

2
2

2

 where sin

( )

tt

t
t t

t t t

t

dt c

t e
te e dt c

t e te e
c

e

2 2
2 2

2 2 2 2

2

2

1

2

1

2

2 2 4

4
(22 2 12t t c)

So the final solution is

(cos ) ( sin sin )sin
sin

y e
e

x x cx
x

2
2

2

4
2 2 1
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 Example    5.42  

Solve cos cos sin .3 x
dy
dx

y x x

Solution: Given equation can be written as

dy
dx

y x x xsec tan sec2 2
 (Linear equation)

The integrating factor is

I.F. e ex xsec tan2

The solution is

ye x xe dx c

t e dt c t x

t e e d

x x

t

t t

tan tantan sec

tan

( )

2

1

where 

tt c

e t ct ( )1

Hence

ye e x cx xtan tan (tan )1

 Example    5.43  

Solve (cos ) (tan ) cos , .2 42
4 4

x
dy
dx

x y x x

Solution: We have

dy
dx

x

x
x y x

2

1 2

2 2tan

tan
sec cos

Here

P
x

x
x

2

1 2
2tan

tan
sec

Therefore

P dx
t

t
dt t x

t t

2

1

1 1

2

2

where  

Note that  

tan

log( ) ( )

The integrating factor is

I.F. e

e

t

x

P dx

tlog( )

tan

1

2

2

2

1

1

Therefore, the solution is

y x x x dx c

x x dx c

xdx

( tan ) cos ( tan )

(cos sin )

cos

1 1

2

2 2 2

2 2

c

x c
1

2
2sin

 Example    5.44  

Solve y
d
dx

xy x x x( ) (sin log ).

Solution: The given equation is

y y x
dy
dx

x x x

dy
dx

y
x

x x

(sin log )

sin log
2

(Linear) 

The integrating factor is

I.F. e xx
dx

2
2

Therefore the solution is

yx x x x dx c

x x dx x x dx c

x x

2 2

2 2

2

(sin log )

sin log

( cos ) ( coos ) log

cos cos log

x x dx
x

x
x

x
dx c

x x x x
x

x x

2
3 3

1

2
3

1

9

3 3

2
3

33

2
3 3

2
3 9

c

x x x x x
x

x
x

cecos (cos sin ) log

 5.3 Differential Equations
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 Example    5.45  

Solve dx x dy e ydyy sec .2

Solution: The given equation is

dx
dy

x e yy sec2  (Linear)

The integrating factor is

I.F. e edy y1

Therefore, the solution is

xe e y e dy c y cy y y( sec ) tan2

 Example    5.46  

Solve ( ) .1 03xy
dy
dx

y

Solution: The given equation is 

dx
dy

xy

y

dx
dy

x

y y

1
0

1

3

2 3

  

(Linear)

The integrating factor is

I.F. e e
dy y y/ ( / )

2
1

Therefore, the solution is

xe
y

e dy cy
y

( / )
( / )

1
3

11

t e dt ct  where t
y
1

 e t ct ( )1

Hence

xe e
y

cy y( / ) ( / )1 1 1
1

or  x ce
y

y1 1
1/

5.3.5 Extended Form of Linear Equation (Bernoulli’s Equation)

The equation 

dy
dx

P y Q yn

where n is rational, is called Bernoulli’s equation. The value n = 0 gives linear equation. To solve it, divide the equation 

by yn
 
and then use the substitution y1 n = z so that the resulting equation is linear in z.

 Example    5.47  

Solve 3
2

1

3

2

dy
dx

y
x

x

y
.

Solution: Multiplying both sides with y2 we get

3
2

1

2
3

3y
dy
dx

y
x

x

Put y3 = z. Therefore

dz
dx x

z x
2

1

3  (Linear)

The integrating factor is

I.F. e e xx
dx x

2

1 2 1 21
log

( )

Therefore we have

z x x x dx c

x x x dx c

( ) ( )

( )

1 1

2 1

2 3 2

3 2

So the solution is

y x x x x c3 2 6 5 41
1

6

2

5

1

4
( )
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 Example    5.48  

Solve x
dy
dx

y y xyexlog .

Solution: Dividing both sides with xy we get

1

y
dy
dx

y
x

exlog

Put log y = z. Therefore

dz
dx

z
x

ex ( )Linear

The integrating factor is

I.F. e xx
dx

1

Therefore 

zx xe dx c e x cx x( )1

The solution is 

x log y = ex(x  1) + c

 Example    5.49  

Solve 
dy
dx

y x y xcot sin .2 2

Solution: Dividing both sides with y2, we have

y
dy
dx y

x x2 21
cot sin

Put 1/y = z. Therefore 

 
dz
dx

z x xcot sin2

dz
dx

x z x( cot ) sin2  (Linear)

The integrating factor is

I.F. e
x

x dxcot

sin

1

Hence the solution is

z
x

x
x

dx c

x c

1 12

sin
sin

sin

cos

So

1

y
x x c xsin cos sin

 Example    5.50  

Solve 
dy
dx x

y x y
1

2 3 2sin cos .

Solution: Dividing both sides with cos2 y, we have

sec (sin )sec2 2 31
2y

dy
dx x

y y x

(sec ) (tan )2 32
y

dy
dx x

y x

Put tan y = z. Then

dz
dx x

z x
2 3  (Linear)

The integrating factor is

I.F. e

e

x

x
dx

x

2

2

2log( )

The solution is

z x x x dx c

x y x c

2 3 2

2 61

6

( )

tan

 5.3 Differential Equations
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Single Correct Choice Type Questions

1. e dxx x[ ]

0

10

 ([·] denotes integral part) is equal to

( ) ( ) ( ) ( ) ( )A B C D10 1
1

10

1

10

1

1

10 10

e
e e e

e

Solution: Let

I e dxx x[ ]

0

10

Since x  [x] is a function with least period unity, we have 

(by P
4
)
 

I e dx

e dx x x

e

x x

x

10

10 0 1 0

10 1

0

1

0

1

[ ]

( [ ] )

( )

∵

Answer: (A)

2. 
e

e e
dx

x

x x

cos

cos cos

0

 is equal to 

( ) ( ) ( ) ( )A B C D
2

0

Solution: Let

I
e

e e
dx

e

e e
dx

x

x x

x

x x

cos

cos cos

cos( )

cos( ) cos( )

0

0

( )

cos

cos cos

By P1

0

e

e e
dx

x

x x

Therefore

2 1

0 0

I
e e

e e
dx dx

x x

x x

cos cos

cos cos

This implies

I
2

Answer: (B)

3. 
x x x

x
dx

2

0

2 2

2

sin sin[( / )cos ]

( ) ( ) ( ) ( )A B C D
4

4 8

8
2

2 2

Solution: Let I be the given integral. Note that for 

x   / 2,
 
the integrand is not defined. Put

 t x
2

Then

I
t t t dt

t
2

2
2 2

1

2

2

2

sin( )sin cos ( )

/

/

/

/ sin sin sin

2

2
2

2

2
4

2
2

2

t t t t

t
dt

Observe that

t t t

t

2
2

4
2

2

2

sin sin sin

 is an odd function (see P
3
). Therefore

I t t dt

t

1

2
2

2

1

2
2 2

2

2

2

( )sin sin sin

sin sin sin

/

/

tt dt

t t t dt

0

2

0

2

2
2

/

/

sin cos sin sin

Put (  / 2) sin t  z so that cos t dt  (2/ ) dz.
 
Therefore

I
z

z dz

z zdz

z

2
2 2

8

8

0

2

0

2

0

sin

sin

sin

/

/

// /
cos

2

0

2z z

WORKED-OUT PROBLEMS
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8
1 0

8

( )

Answer: (D)

4. If 
dt

t t

x

2
2 1 12

,  then x equals

 (A) 4   (B) log 2  (C) 2      (D) 2log 2

Solution: Let

 

dt

t t

t

x

x

2
2

1

2

1 12

12
Sec

Sec Sec

Sec

1 1

1

1

2
12

4 12

4 12 3

3

x

x

x

x

Sec

sec 22

Answer: (C)

5. Solution of the equation 

dt

et

x

e
1 6

2log

is

 ( ) ( ) ( ) log ( ) logA B C D4 2 2 4e e

Solution: Let 

I
dt

e

e

e e
dt

t

x

t

t t

x

e

e

1

1

2

2

log

log

Put e zt 1 2 .  Then e dt zdzt 2 .
 
Now

t zelog 2 1

t x z ex 1

Therefore

1

1
2 2

12

1

1

2

1

1

( )
( )

z z
z dz

dz

z

e ex x

2 1 1

6

1 1( )Tan Tan

(By hypothesis)

ex

Hence

e

e x

x

x
e

1
3

3

4 4

2

tan

logor

Answer: (D)

6. The value of the integral

x x x x

x
dx

7 5 3

2

1

1
3 7

cos

is

 ( ) ( ) ( ) ( )A B C D
2

0
4

2

Solution: We know that x x x x7 5 33 7  is an odd 

function and cos2 x  is an even function. Hence the 

integrand is an odd function. Therefore, the value of the 

integral is zero.

Answer: (B)

7. 
dx

x xe

e

1
1

3

log
 

 ( ) ( ) ( ) ( )A B C D2 4 2 2 4 2

Solution: Let 

I
dx

x xe

e

1
1

3

log

Put logex = t. Therefore x = et
 so that dx e dtt .  Now

x t

x e t

1 0

33

So

I
e t

e dt

dt

t

t
t1

1

1

0

3

0

3
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( )

( / )

( )

( )

( / )1

1 2 1

2 1

2 1 3 1

2 2 1

1 2 1

0

3

0

3

t

t

22

Answer: (A)

8. 
1 10

1

log x

x
dx

e

 

 

( ) log ( )
log

( ) log ( ) log

A B

C D

1

2

1

2

1

2
1 2

10
10

10 10

e
e

e e

Solution: We have

I
x

x

x
dx

x e
x

dx

x

e

e
e

e

e
e

1

1

10

1

1

10

1

1 10

log

log log

log (log ee x

e e

e

e

e e

) (log )

( ) log [(log ) (log ) ]

1

2

1 0
1

2
1

1
1

2

2

1

10
2 2

llog10 e

Answer: (C)

9.  If x f x dx k f x dx(sin ) (sin ) ,

/

0 0

2

 the value of k is

 ( ) ( ) ( ) ( )A B C D
2 3

2

Solution: We have

 I xf x dx

x f x dx

f x dx I

(sin )

( ) (sin( ))

(sin )

0

0

0

So

 

2

0

I f x dx(sin )

2

0

2

f x dx x x(sin ) [ sin( ) sin ]

/

∵

Hence

I f x dx(sin )

/

0

2

So

 

k   .

Answer: (B)

10. 
x x

x
dx

sin

cos1 2

0

 ( ) ( ) ( ) ( )A B C D
2 2 2 2

4 2 2 2 4 2

Solution: We have

I
x x

x
dx

x x

x
dx

x

sin

cos

( )sin( )

cos ( )

sin

c

1

1

1

2

0

2

0

oos2

0
x

dx I

Therefore

2
1

2
1

2

2

0

2

0

2

I
x

x
dx

x

x
dx f a x f x

sin

cos

sin

cos
[ ( ) ( )]

/

∵

Hence

I
x

x
dx

dt

t
t x

dt

t

sin

cos

cos

/

1

1

1

2

0

2

2

1

0

2

0

1

where

Taan 1

0

1
t
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( )Tan Tan1 1

2

1 0

4

Answer: (A)

11. 
t

t
dt

dt

t t
e

x

e

x

1 12

1

2

1/

tan

/

cot

( )

 
( ) (tan ) ( ) tan

( ) ( ) tan cot

A B

C D

2 1 2

1

e e

e e

Solution: Let 

F x
t

t
dt

dt

t t
e

x

e

x

( )
( )

/

tan

/

cot

1 12

1

2

1

Then

F x
x

x
x

x x
x

x

( )
tan

tan
sec

cot ( cot )
( cosec )

tan

1

1

12

2

2

2

( /cot )1

0

x

Therefore F is a constant function. Now

F
t

t
dt

t t
dt

t

t t
dt

e e

e

4 1

1

1

1

1

2

1

1

2

1

1

2

2

1

1

/ /

/

( )

( )

log

( log )

/e e

e

t

e
1

1

0 0

1

Hence F(x)  1.

Answer: (C)

12. ( ) ( )

sin cos

Sin Cos1

0

1

0

2 2

t dt t dt
x x

 

 ( ) ( ) ( ) ( )A B C D
2 4 2 2

Solution: Let 

F x t dt t dt
x x

( ) ( ) ( )

sin cos

Sin Cos1

0

1

0

2 2

Then

F x x x x( ) ( sin )( sin cos )Sin 1 2 2

( cos )( sin cos )

sin cos sin cos

Cos 1 2 2

2 2

0

x x x

x x x x x x

So F(x) is a constant function. Now

F t dt t dt

t t

4

1

0

1 2

1

0

1 2

1 1

0

1 2

Sin Cos

Sin Cos

/ /

/

( )ddt

dt
2

4

0

1 2/

Therefore

F x( )
4

Answer: (C)

13. 
e e

e
dx

x x

x

e
1

3
0

5log

 

 ( ) ( ) ( ) ( )A B C D3 3 4 4

Solution: Let 

I
e e

e
dx

x x

x

e
1

3
0

5log

Put e t e xx x1 1 02 ( )∵ for . Therefore 

e dx t dtx 2

Now

I
t

t
t dt

t

t
dt

t

t
dt

t

2

0

2

2

2

0

2

2

2

0

2

2

4
2

2
4

2
4 4

4

2 1
4

4

( )

0

2

1

0

2

4
8

2 2

dt

t
Tan
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4 4 1 0

4 4
4

0

4

1 1( )Tan Tan

Answer: (D)

14. 
dx

x1 4

3

6

tan
/

/

 ( ) ( ) ( ) ( )A B C D
4 6 12 2

Solution:  Let

 

I
dx

x

dx

x

dx

x

1

1

1

4

3

6

4

6

3

4

6

3

tan

tan ( )

tan

/

/

/

/

/

/

cos

cos sin

cos

sin

/

/ 4

4 4

6

3

4

4

3 6

3 6

x

x x
dx

x

x cos

sin

cos sin

/

/

/

/

4
6

3

4

4 4

6

3

3 6
x

dx

x

x x
dx

Therefore

2

1

3 6

6

4 4

4 4
6

3

6

3

I x x
x x

dx

dx

cos sin
cos sin

/

/

/

/

Hence

I
12

Answer: (C)

15. If 

e e dz f x e dzzx
x

z z
x

0

4

0

2 2

( ) /

then

e f x
x

dxx
elog ( ( ))

2  

( ) ( )

( ) ( )

A B

C D

xe
c

x e
c

x e
c

xe
c

x x

x x

2 4

2 4

2

2

Solution:  Let

I e e dz

e dz

e dz

e e

zx
x

z

zx z
x

x
z

xx

x
z

0

0

4 2

0

4

2

2

2 2

2/

xx

dz2

0

2

Put z x t( / )2  so that dz  dt. Also 

z t x0 2/  

and z x t x/2

Therefore

 
I e e dtx t

x

x
2 24

2

2

/

/

/

e e dt

e e du t

x t
x

x u
x

2 2

2 2

4

0

2

4 4

0

2

2
1

2

/

/

/ /

( )

( )   where 
uu
2

 

 

e e du

e e dz

x u
x

x z
x

2 2

2 2

4 4

0

4 4

0

/ /

/ /

Therefore

f x ex( ) /2 4
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so that 

e f x
x

dx e
x x

dxx
e

xlog ( ( ))
2 4 2

2

x e
c

x2

4

Answer: (B)

16. If

I e dxx
1

5

4

5
2( )

and

 

I e dxx
2

9 2 3

1 3

2 3

3
2[ ( / )]

/

/

then the value of I I1 2  
is

( ) ( ) ( ) ( )A B C D0 1 1e e

Solution: Given

I e dxx
1

5

4

5
2( )

Put t  x + 5 so that 

I e dt e dtt t
1

1

0

0

1
2 2

Again

I e e dxx x
2

9 2 3

1 3

2 3

3 2

1 3

2 3

3 3
2 2[ ( / )]

/

/

( )

/

/

Put t  3x + 2 so that dx  (1/3)dt. Also

x t
1

3
1

and  x t
2

3
0

Therefore

I e dt e dtt t
2

1

0

0

1

3
1

3

2 2

So

I I e dt e dtt t
1 2

0

1

0

1
2 2

0

Answer: (A)

Generally, if a relation between two integrals is 

being asked, try to transform both the integrals to

have same limits of integration.

QUICK LOOK

17. If I
e

t
dt

t

1
0

1

,  then  
e

t a
dt

t

a

a

1
1

( ) ( ) ( ) ( ) ( ) ( )A B C DI e I e I e I ea a a a

Solution: Let 

J
e

t a
dt

t

a

a

1
1

Put t = x + a 1 so that 

t a x1 0

and
 

t a x 1

Therefore 

J
e

x
dx

e
e
x

dx

x a

a
x

( )1

0

1

1

0

1

2

2

Again, put z  1  x so that

J e
e

z
dz

e
e

z
dz

e I

I e

a
z

a
z

a

a

( )
( )

( )

( )

1
1

1

1

0

0

1

Answer: (C)

18. x x dx( )1

2

2

( ) ( ) ( ) ( )A B C D
17

3

11

3

13

3

16

3

Solution: We have

I x x dx

x x x x dx x x dx

( )

( ) ( ) ( )

1

1

2

2

2

0

2

0

1

2

1

2
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1

3

1

2

1

2

1

3

1

3

3

2

0 2

2

0 2

0

1 3

0

1

3

1

2

x x x x

x
11

2

2

1

2
x

 

8

3
2

1

2

1

3

7

3

3

2

8

3
2

3 2 14 9

6

8

3
2 1

17

3

Answer: (A)

19.  The maximum value of e dxx

a

a
( )1

1

1
2

 is attained (a is 

real) at 

 (A) a  2 (B) a  1

 (C) a  1 (D) a  0 

Solution: Let 

F a e dxx

a

a

( ) ( )1

1

1
2

 Now by Leibnitz Rule (Theorem 5.21), we have

F a e e

e e

a a

a a

( ) ( ) ( )

( )

1 1 1 1

2

2 2

2 2

So

F a

e e

a

a a

( )

( )

0

1

2 22

Also 

F a ae a ea a( ) ( ) ( )2 2 2
2 22

 F e e( )1 2 2 01 1

Therefore F is maximum at a  1.

Answer: (B)

20.  f x x dx k f x x dx(sin )sin (cos )cos

//

2 2

0

4

0

2

 where 

k equals

 (A) 2  (B) 4  (C) 2   (D) 2 2

Solution: Let 

 I f x x dx(sin )sin

/

2

0

2

 (5.9)

 

f x x dx

f x x dx

sin sin

(sin )cos

/

2
2 2

2

0

2

0

/2

 (5.10)

From Eqs. (5.9) and (5.10), we have

 

 2 2

2 2
4

0

2

0

2

I f x x x dx

f x x dx

(sin )(sin cos )

(sin )sin

/

/

Now, put 

t x
4

 

so that 

x t0
4

 and x t
2 4

and dx  dt. Therefore

2 2 2
4 4 4

2

4

4

I f t t dt

f

sin sin ( )

(

/

/

ccos )cos

(cos )cos

/

/

/

2

2 2 2

4

4

0

4

t t dt

f t t dt

 (∵cos x  is an even function). Therefore

I f t t dt2 2

0

4

(cos )cos

/

Hence

k 2

Answer: (C)
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21. sin 2

0

1

x dx  

 ( ) ( ) ( ) ( )A B C D
1 2 4

Solution: Let

I x dxsin 2

0

1

Put t  2  x. Now

x t0 0  

and  x t1 2

Also 

dx dt
1

2

Therefore

 I t dt
1

2
0

2

sin

1

2

1

2

1

2

1

2

0

2

0

2

sin ( sin )

cos cos

t dt t dt

t t

11

2
1 1

1

2
1 1

1 1

2

( ) [ ( )]

Answer: (B)

22. (sin cos )

/

4 4

0

2

x x dx  

 ( ) ( ) ( ) ( )A B C D
8

3

8

5

8

7

8

Solution: Let

I x x dx

x x dx

(sin cos )

( sin cos )

/

/

4 4

0

2

2 2

0

2

1 2

 

1
1

2
22

0

2

sin

/

x dx

1
1

2

1 4

2

1

4
3 4

1

4
3

0

2

0

2

0

2

( cos )

( cos )

/

/

/

x
dx

x dx

x
1

4
4

1

4

3

2

1

4
0 0

3

8

0

2
sin

( )

/x

Answer: (B)

Try it out Since  sin4x xcos4  is of period  / 2, 

the value of the integral

(sin cos )4 4

2

x x dx
a

a

is also 3  / 8.

23. If [t] stands for the integral part of t, then 

[tan ]

/

x dx
0

5 12

 ( ) ( ) ( ) ( )A B C D
2 4

2

Solution: We have

tan tan
5

12
75 2 3  

and  tan 0 0

1, 2 and 3 are integers between 0 and 2 3.  Therefore

[tan ] [tan ] [tan ]

/

x dx x dx x dx
0

5 12

1

2

2

3

1

1

1

1

Tan

Tan

Tan

Tan

[tan ]

( )

( )

x dx

dx dx dx

Tan

Tan

Tan

Tan

T

1

1

1

1

3

2 3

3

2 3

1 2 3

aan

Tan

Tan

Tan

1

1

1

1

2

3

1

2
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( ) ( )

[ ( ) ]

Tan Tan Tan Tan

Tan Tan

1 1 1 1

1 1

2 1 2 3 2

3 2 3 3

 

4
3 2 3

5

12

5

4 4

3 2

1 6

1 1

1

( )Tan Tan

Tan ( )

[ ( ) ]

∵6 1

1

4

4

1Tan

Answer: (C)

24. cos logx
x
x

dxe
1

1
1

1

 (A) 0 (B) 1 (C) 1/2 (D) 2

Solution: Let

I x
x
x

dxecos log

1

1
1

1

 

Let 

f x x
x
xe( ) cos log

1

1

so that

f x x
x
x

x
x
x

e

e

( ) cos( ) log

cos log

1

1

1

1

f x( )

 

Therefore f  is an odd function so that I  0.

Answer: (A)

25. If 

x

x
dx A

2

2

0
1( sin )

 then 

2 2

1

2 2

2

0

x x

x
dx

cos ( / )

( sin )

 

( ) ( )

( ) ( )

A B

C D

A A

A A

2 2

2 22

Solution: Let 

 I
x x

x
dx

2 2

1

2 2

2

0

cos ( / )

( sin )

x x

x
dx

x

x
dx

x x

x

2

2

0

2

2

0

2

2

1

1

1 1

( cos )

( sin )

( sin )

cos

( sin )
00

2

2

0
1

dx

A
x x

x
dx

cos

( sin )

Therefore

 I A
x x

x
dx

2

2

0
1

cos

( sin )
 (5.11)

Let 

I
x x

x
1

2

2

0
1

cos

( sin )

Take

u x

dv
x

x
dx

2

21

cos

( sin )

so that

v
x

1

1 sin

Now using integration by parts, we have

I x
x

x
x

dx1
2

0 0

1

1
2

1

1sin
( )

sin

 I
x

x
dx2

0

1 0 2
1

( )
sin

 (5.12)

 I
x

x
dx2

0

2
1 sin( )

 I
x

x
x

dx2

00

2
1

2
1sin sin

 (5.13)
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Adding Eqs. (5.12) and (5.13) we get

2 2 2
1

1
2

0

I
dx

xsin

So

I
x

x
dx1

2
2

0

1 sin

cos

 2
0 0

2 0 1 1

tan sec

[ ( )]

x x

 2 2  (5.14)

Substituting the value of I1  [from Eq. (5.14)] 2 2  

in Eq. (5.11), we get

I A 2 2

Answer: (D)

26.  If a and b are real numbers different from zero, 

then 

 ab

a x b x
dx

2 2 2 2

0

2

cos sin

/

 

 (A) 
2

 (B)  (C) 
4

 (D) 
3

4

Solution: Let

I
ab

a x b x
dx

2 2 2 2

0

2

cos sin

/

ab x

a b x
dx

ab

b

x

a b x
dx

a

sec

tan

sec

( / ) tan

/

/

2

2 2 2

0

2

2

2

2 2

0

2

bb
dt

a b t
t x

a

b a b
bt
a

( / )

/

2 2

0

1

0

1

where tan

Tan

 Tan Tan1 1 0

2

( ) ( )

Answer: (A)

27. 
( )

( )

x

x
dx

2

3 2

23

23
3

29

 (A) 4
3 3

2
 (B) 2

3 3

2

 (C) 4
3

2
 (D) 8

3 3

2

Solution: Put ( ) .x t2 2/3  Therefore

x t

dx t dt

3/2 2

3

2

1 2/

Now

x t3 1

 and  x t29 9

Therefore

I
x

x
dx

t
t

t dt

( )

( )

2

3 2

3

3

2

23

23
3

29

1

9

 
3

2 3
1

9
t t

t
dt

Now put t z2  so that dt  (2z) dz. Again

t z1 1  

and  t z9 3

Therefore

 I
z

z
z dz

3

2 3
2

3

2

1

3

( )

3
3

3
9 9

3

3 3
9

3

4

2

1

3

4

2

1

3

2

2

z

z
dz

z

z
dz

z
z

dz( )

11

3

3

1

3

1

3 1

1

3

3
1

3
3

27

3 3

3
26

3
6

z z
z

Tan

27

3 3 6

 8
3 3

2

Answer: (D)
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28. 
dx

x x( )

/

2 1 12 2
0

1 3

 (A) 
2

 (B) Tan 12

 (C) Tan 11 2/  (D) 

Solution: Let

I
dx

x x( )

/

2 1 12 2
0

1 3

Put t  1/x or x  1/t  so that 

dx
t

dt
1
2

Now

x t0

and  x t
1

3
3

Therefore

I
t

t t t
dt

3

2 2 2

3

2 1

1

( )

 
t

t t
dt

( )2 12 2
3

Now, put 1 2 2t z ,  so that t dt  z dz. Again

t z3 2  

and  t z

Hence

 I
dz

z z
z

( )
( )

2

2
1

 

Tan

Tan

Cot Tan Tan

1

2

1

1 1 1

2
2

2 2 2

z

 
Cot Tan1 12

1

2

Answer: (C)

29. 
dx

x1 1 6 2

0

2

( / )sin

/

 

 (A) 
2

6

7
  (B) 

6

7
  (C) 

2

7
  (D)

6

7

Solution: Let

I
x

dx

x

x x
dx

x

6

6

6

6

6

7

2

0

2

2

2 2

0

2

2

sin

sec

sec tan

sec

tan

/

/

22

0

2

6x
dx

/

 6
7 62

0

dt

t
 where t  tan x

 
6

7

7

6 2 2

6

7

Answer: (A)

30. 
dx

x a x

a

2 2
0

 (A) 
2

   (B) 
4

   (C)    (D) 
3

4

Solution: We have

I
dx

x a x

a

2 2
0

Put x  a sin   so that dx  a cos   d . Therefore

I
a a

a d
1

0

2

sin cos
( cos )

/

 
cos

sin cos

/

d
0

2

4

Answer: (B)

31.  If I x dxn e
n

e

(log )

1

 (n is a positive integer), then 

I I2012 20112012( )

 (A) I I2011 20102010( )  (B) I I2013 20122013( )

 (C) I I2011 20092011( )  (D) I I2012 20112012( )
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Solution: We have

I xn e
n

e

(log )

1

 

Using integration by parts we get

I x x x n x
x

dxn e
n e

e
n

e

(log ) ( log )
1

1

1

1

 e n x dxe
n

e

(log ) 1

1

 e n In 1

Therefore

I n I en n 1

Hence

I I e

I I
2012 2011

2013 2012

2012

2013

( )

( )

Answer: (B)

32. ( ) /1 2 3 2

0

1

x dx

 (A) 
3

4
  (B) 

3

8
  (C) 

3

16
  (D) 

3

32

Solution: Put x  sin . Then 

( ) (cos )(cos )

cos

/

/

/

1

1 2

2

2 3 2

0

1

3

0

2

0

2 2

x d d

d

 
1 2 2 2

4

2

0

2
cos cos

/

d

1

4

1

2
2

1

4

1 4

2
0

2

0

2

0

2

d d d
/ / /

cos
cos

3

8

1

4
2

1

8

1

4
4

0

2

0

2

0

2d
/

/ /
sin sin

3

8 2

1

4
0

1

32
2 0sin sin sin sin

 
3

16
0 0

3

16

Answer: (C)

33. If f x e dtt

x

x

( ) ,
2

2

2 1

 then f (x) increases in

 (A) ( 2, 2) (B) no value of x

 (C) ( , )0  (D) ( , )0

Solution: We have

f x e x e x

xe e

x x

x x

( ) ( ) ( )

[ ]

( )

( )

2 2 4

2 2 2

1

1 2 1

2 2

2 1

We know that 1 2 12

e x  for all real x. Therefore f x( ) 0  

if  x < 0. So f increases in ( , ).0

Answer: (D)

34. If f(x) is differentiable and 

xf x dx t
t

( )

0

5

2

2

5

then f(4/25) 

 (A) 
2

5
 (B) 

5

2
 (C) 1 (D) 

5

2

Solution: Differentiating the given equation both sides 

with respect to t we have

t f t t t2 2 42 2( )( ) f t t( )2

Put t  2/5 so that 

f
4

25

2

5

Note: One may get the doubt why cannot we have t  2/5. 

You should not take t  2/5 as t > 0.

Answer: (A)

35. Let f be a positive valued function. Let 

I x f x x dx
k

k

1

1

1[ ( )]

and  I f x x dx
k

k

2

1

1[ ( )]  

then I I1 2/ is 

 (A) 2 (B) k (C) 
1

2
 (D) 1
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Solution: We have

 

I k k x f k k x k k x dx

f x dx f a

k

k

1

1

1 1 1 1( ) [( )( )]

( ) (∵ b x dx

x f x x dx

I I

a

b

a

b

k

k

)

( ) (( ) )1 1

1

2 1

Therefore

2 1 2I I  

Hence 

I
I

1

2

1

2

Answer: (C)

36. If 

f t dt x t f t dt
x

x

( ) ( )

1

0

then f(1) is

 (A) 
1

2
 (B) 0 (C) 1 (D) 

1

2

Solution: Differentiating the given equation w.r.t. x, 

we have 

f(x)  1 + 0  x f (x)

Therefore

f (x)(1+x)  1 

or  f ( )1
1

2

Answer: (A)

37. 
1

1
0

1
x
x

dx

 (A) 
2

1  (B) 
2

1

 (C) 1 (D) 1

Solution: We have

1

1

1

10

1

2
0

1
x
x

dx
x

x
dx

 
dx

x

x

x
dx

1 12
0

1

2
0

1

Sin

Sin Sin

1

0

1 2

0

1

1 1

1

1 0 1 1 1 0

x x

( ) ( )

 
2

1

Note: The above integral can also be evaluated by using 

the substitution x  cos

Answer: (B)

38.  Let f(x)  x  [x], where [x] is the integral part of x. 

Then 

f x dx( )

1

1

 (A) 1 (B) 2 (C) 0 (D) 
1

2
Solution: We have

 f x dx f x dx f x dx( ) ( ) ( )

1

0

0

1

1

1

( [ ]) ( [ ])

( )

x x dx x x dx

x dx x dx

x dx

1

0

0

1

0

1

1

0

1

1

1

dx

x x

1

0

2

1

1

1

01

2

 0 + (0 + 1)  1

Answer: (A)

39. If 

I m n t t dtm n( , ) ( )1

0

1

then the expression for I(m, n) in terms of I(m + 1,  

n  1) is

 (A) 
2

1 1
1 1

n

m
n

m
I m n( , )



 Worked-Out Problems 505

 (B) 
n

m
I m n

1
1 1( , )

 (C) 
2

1 1
1 1

n

m
n

m
I m n( , )

 (D) 
m

n
I m n

1
1 1( , )

Solution: Take u t n( )1 an dv t dtm .  Hence, using 

integration by parts we have

I m n
t
m

t
t
m

n t dt
m

n
m

n( , ) ( ) ( )
1

0

1 1
1

0

1

1
1

1
1

22

1 1
1 1

n

m
n

m
I m n( , )

Answer: (A)

40. If 

I
nx

x
dx nn x

sin

( )sin
, , , ,

1
0 1 2

then

 (A) In n 2
 (B) I m

m
2 1

1

20( )

10

 (C) I m
m

2

1

10

10( )  (D) I In n 1

Solution: We have

I
n x

x
dx

f x dx f a

n x

a

b

sin ( )

( )sin( )

( ) (

1

∵ bb x dx

nx

x
dx

nx

x
d

a

b

x

x

x

)

sin

( )sin

sin

( )sin1 1
xx

Therefore

 

2
1

1

2

I
nx

x
dx

nx
x

dx

nx

n

x

x

( )sin

( )sin

sin

sin

sin

sinn x
dx

0

This is  because sin nx / sin x is an even function. Hence 

I
nx
x

dxn
sin

sin
0

Now 

 

I I
n x nx

x
dxn n2

0

2sin ( ) sin

sin

 
2 1

0

cos( ) sin

sin

n x x
x

dx

 

2 1

2

1
1

0

0

0

cos( )

sin( )

n x dx

n
n x

Therefore

I In n2

Answer: (A)

41. The value of 
cos

,
2

1
0

x

a
dx a

x
 is

 (A)  (B) a  (C) 
2

 (D) 2

Solution: We have

 

I
x

a
dx

x

a
dx f x dx f a

x

x

cos

cos ( )
( ) (

2

2

1

1
∵ bb x dx

x

a

a x

a
dx

a

b

a

b

x

x

x

)

cos

cos

2

2

1

1

Therefore

2
1

1

2

2

2

2

0

I
a x

a
dx

x

x

x

x

( )cos

cos

cos
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( cos )

sin

1 2

1

2
2

0

0

0

x dx

x

Therefore 

I
2

Answer: (C)

42.  Let f x t
x

( ) .2 2

1

 Then the real roots of the 

equation x f x2 0( ) are

 (A) 1  (B) 
1

2

 (C) 
1

2
 (D) 0 and 1

Solution: We have

x f x

x x

x x

x x

x x

2

2 2

4 2

4 2

2 2

0

2 0

2

2 0

1 2 0

( )

( )( )

x2 1  or x

Answer: (A)

43.  If [x] represents integral part of x, then the value of 

the integral

[ ] log

/

/

x
x
x

dxe
1

1
1 2

1 2

is

 (A) 
1

2
 (B) 0

 (C) 1 (D) 2 2loge

Solution: One can notice that loge x x[( )/( )]1 1 is 

an odd function. Therefore the given integral is

[ ] ( )

/

/ /

/

x dx dx dx
1 2

1 2

0

1 2

1 2

0

1 0

x
1 2

0

0
1

2

1

2

/

Answer: (A)

44. If f x t dt
x

( ) cos ,4

0

 then f(x + ) equals

 (A) f(x) + f( ) (B) f(x)  f( )

 (C)  f(x) f( ) (D) 
f x
f

( )

( )

Solution: We have

f x t dt

t dt t dt

x

x

( ) cos

cos cos

4

0

4

0

4

 f t dt
x

( ) cos4  (5.15)

Let 

I t dt
x

cos4

Put y  t    so that dy  dt. Now

t y 0  

and  t x y x

Therefore

I y dy

y dy

t dt

f x

x

x

x

cos ( )

cos

cos

( )

4

0

4

0

4

0

Substituting the value of I  f(x) in Eq. (5.15), we have 

f(x + )  f( ) + f(x)

Answer: (A)
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45. Let a, b, c be non-zero real numbers such that

( cos )( ) ( cos )

( )

1 18 2 8

0

2

0

1

2

x ax bx c dx x

ax bx c dx

Then the quadratic equation ax bx c2 0  has

 (A) no root in (0, 2)

 (B) at least one root in (0, 2)

 (C) a double root in (0, 2)

 (D) two imaginary roots

Solution: By hypothesis 

( cos )( )1 08 2

1

2

x ax bx c dx

Define 

f x t at bt c dt
x

( ) ( cos )( )1 8 2

1

so that f is continuous on [1, 2] and differentiable in  

(1, 2) and f(1)  0  f(2). Therefore, by Rolle’s theorem 

f x( ) 0  for at least one value of x in (1, 2). Thus

 ( cos )( )1 08 2x ax bx c  

for at least one x ( , ).1 2  So ax bx c2 0  has at least 

one root in (1, 2).

Answer: (B)

46. If a  b and 

af x bf
x x

( )
1 1

5

for all x  0, then 

f x dx
a b

a
b

( ) (log )
1

2
22 2

1

2

where     is equal to

 (A) 12 (B) 5 (C) 7 (D) 2

Solution: We have

 a f x b f
x x

( )
1 1

5  (5.16)

Replacing x with 1/x we get

 b f x a f
x

x( )
1

5  (5.17)

From Eqs. (5.16) and (5.17), we obtain

( ) ( ) ( )a b f x a
x

b x2 2 1
5 5

Therefore

f x
a b

a
x

b x( ) ( )
1 1

5 5
2 2

So

f x dx
a b

a
x

bx b a dx( ) ( )

1

2

2 2

1

2
1

5

1
2

2
4 1 5 2 1

1
2

3

2

2 2

2 2

a b
a

b
b a

a b
a

b

e

e

log ( ) ( )( )

log 5( )b a

 
1

2 5
7

22 2a b
a

b
e(log )  

Therefore   5,   7.

Answer: (D)

47. For n > 0, 

x x

x x
dx

n

n n

sin

sin cos

2

2 2

0

2

 

 (A) 
2

2
 (B) 

2

4
 (C) 2  (D) 

2

2 2

Solution: Let

I
x x

x x
dx

x x

x x
dx

n

n n

n

n n

sin

sin cos

( )sin

sin cos

2

2 2

0

2

2

2 2

2

00

2

Therefore

2 2

4

2

2 2

0

2

2

2 2

0

I
x

x x
dx

x

x x
dx

n

n n

n

n n

sin

sin cos

sin

sin cos
[ ( ) ( )]

sin

sin cos
[ ( )

/

∵

∵

f a x f x

x

x x
dx f a x

n

n n

2

8 2
2

2 2

0

2

f x( )]

8
4

2 2

So I 2.

Answer: (C)
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48. 
x

x x
dx

5
2

3

 (A) 2 (B) 
1

2
 (C) 3 (D) 

1

3

Solution: It is known that 

f x
f x f a b x

dx
b a

a

b
( )

( ) ( ) 2

Taking f x x( ) , a = 2 and b = 3 in this equation we 

get

x

x x
dx

5

3 2

2

1

2
2

3

    

Answer: (B)

49. 
f x

f x f a x
dx

a
( )

( ) ( )2
0

2

 (A) 2a (B) a (C) 
a
2

 (D) 1

Solution: Since

f x
f x f a b x

dx
b a

a

b
( )

( ) ( ) 2

Now in the present case a = 0 and b =2a. Therefore the 

given integral is

2 0

2

a
a

Answer: (B)

50. Let 

F x f x f
x

( ) ( )
1

where 

f x
t

t
dte

x

( )
log

1
1

Then F(e) is equal to

 (A) 1 (B) 2 (C) 
1

2
 (D) 0

Solution: We have

F x
t
t

dt
t
t

dt
xx

( )
log log

/

1 1
1

1

1

By Leibnitz Rule,

F x
x
x

x
x x

x
x

x
x

( )
log log( / )

( / )

log log

1

1

1 1

1

1

2

(( )

log

1 x

x
x

Therefore

F x
x

x
dx

x c

( )
log

(log )
1

2

2

But F c( ) .1 0 0  Therefore

F x x( ) (log )
1

2

2

F e( )
1

2

Note: The solution to Problem 50 is quite different from 

the routine types of solutions.

Answer: (C)

51. Let 

f x
e

e

I xg x x dx

I g x x dx

x

x

f a

f a

f a

f

( )

( ( ))

( ( ))

( )

( )

( )

(

1

1

1

1

2

aa)

then I I2 1/ is

 (A) 1 (B) 3 (C) 1 (D) 2

Solution: We have

f a f a
e

e

e

e

e

e e

a

a

a

a

a

a a

( ) ( )
1 1

1

1

1

1
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Therefore

I x g x x dx

g x x dx I

I

f a

f a

f a

f a

1

1

2

1 1

1

( ) (( ) )

( ( ))

( )

( )

( )

( )

II1

So

2 1 2I I  
I
I

2

1

2

Answer: (D)

52. 
x

x x
dx

9
3

6

 

 (A) 
1

2
 (B) 

3

2
 (C) 2 (D) 1

Solution: We have

f x
f x f a b x

dx
b a

a

b
( )

( ) ( ) 2

Here f x x a b( ) , ,3 6. Therefore, the given inte-

gral is

6 3

2

3

2

Answer: (B)

53. 1 2

2

3

x dx  

 (A) 
1

3
 (B) 

14

3
 (C) 

7

3
 (D) 

28

3

Solution: Let 

I x dx1 2

2

3

( ) ( ) ( )x dx x dx x dx

x x

2 2 2

1

3

1

1

2

1

3

2

1

1 1 1

1

3 2

1

1

1 3

1

1 3

1

3

1

31

3

1

3

1

3
1 8

x x x x

( ) ( 11 2 1 1
1

3
1 1

1

3
27 1 3 1) ( ) ( ) ( ) ( )

7

3
1 2

2

3

26

3
2

1

3
7 3 6 2 26 6

1

3
39 11

28

3

( )

( )

Answer: (D)

54. Let 

 

I
x

x
dx

sin

0

1

 

and  J
x

x
dx

cos

0

1

Then which of the following is true?

 (A) I
2

3
 and J > 2 (B) I

2

3
 and J < 2

 (C) I
2

3
 and J > 2 (D) I

2

3
 and J < 2

Solution: We know that 

 0 1 1x
x

x
sin

 (See Theorem 1.27)

Therefore

sin x

x

x

x
x

Integrating we get

sin x

x
dx x dx

0

1

0

1
2

3

So I < 2/3. Also 

 0 1 1x x
x

x
cos

sin
 (See Theorem 1.27)

 
cos x

x x

1

Therefore

J
x

x
dx

x
dx

cos

0

1

0

1
1
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2

2

1 2

0

1
x /

So

I
2

3
 and J < 2

Answer: (B)

55.  Suppose [x] denotes the integral part of x. Then the 

value of 

[ ] ( ) ,x f x dx a
a

1

1

is

 (A) a f a f f f a( ) ( ) ( ) ([ ])1 2 �

 (B) [ ] ( ) { ( ) ( ) ([ ])}a f a f f f a1 2 �

 (C) [ ] ([ ]) { ( ) ( ) ( )}a f a f f f a1 2 �

 (D) a f a f f f a([ ]) ( ) ( ) ( )1 2 �

Solution: Let 

I x f x dx
a

[ ] ( )

1

Then

I f x dx f x dx a f x dx
a

a

1 2

1

2

2

3

( ) ( ) [ ] ( )

[ ]

�

[ ( ) ( )] [ ( ) ( )] [ ][ ( ) ([ ])]f f f f a f a f a2 1 2 3 2 �
[ ] ( ) { ( ) ( ) ([ ])}a f a f f f a1 2 �

Answer: (B)

56. x x dxn( )1

0

1

 (A) 
1

1

1

2n n
 (B) 

1

1n

 (C) 
1

2n
 (D) 

1

1

1

2n n

Solution: We have

I x x dx

x x dx f x dx f a x dx

n

n
aa

( )

( ) ( ) ( )

1

1

0

1

0

1

00

∵

x dx x dxn n 1

0

1

0

1

1

1

1

2

1

0

1 2

0

1

n
x

n
xn n

 
1

1

1

2n n

Answer: (D)

57.  Let f(x) be a function satisfying f x f x( ) ( )  

with f(0)  1 and g(x) be a function which satisfies 

f x g x x( ) ( ) .2  Then 

f x g x dx( ) ( )

0

1

 (A) e
e2

2

5

2
 (B) e

e2

2

5

2

 (C) e
e2

2

3

2
 (D) e

e2

2

3

2

Solution: We have

f x f x

f x e cx

( ) ( )

( )

Now

f c( )0 1 0

Therefore

f x ex( )

So

g x x e f x g x xx( ) [ ( ) ( ) ]2 2∵

Hence

 f x g x dx e x e dxx x( ) ( ) ( )

0

1

2

0

1

 x e dx e dx

x e xe e e

e e

x x

x x x x

2 2

0

1

0

1

2

0

1 2

0

1
2 2

1

2

2( 2 2
1

2
12e e) ( )

 e
e2

2

3

2

Answer: (D)

58. 
2 1

1 2

x x

x
dx

( sin )

cos

 (A) 
2

4
 (B) 2  (C) 0 (D) 

2
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Solution: We have

I
x x

x
dx

x

x
dx

x x

2 1

1

2

1

2

1

2

2

( sin )

cos

cos

sin

cos22 x
dx

 

Now 
2

1 2

x

xcos
 is an odd function. This implies 

2

1
0

2

x

x
dx

cos

Now

I
x x

x
dx

x x

x
dx

x x

x

2

1

4
1 1

2

2

0

2

sin

cos

sin

cos

sin

cos
∵ is  even

 

4
1

4
1

2

0

2

0

( )sin( )

cos ( )

sin

cos

x x

x
dx

x

x
dx I

So

 

2 4
1

8
1

2

0

2

0

2

I
x

x
dx

x

x
dx

sin

cos

sin

cos

/

8

8

1 2

0

1

1

0

1

dt

t

t xtTan where cos

 

 
8

4

2 2

This implies

I 2

Answer: (B)

59. If 

I x dxn
ntan

/

0

4

then lim ( )
n

n nn I I 2  equals

 (A) 
1

2
 (B) 1 (C)  (D) 0

Solution: Let

 I x dxn
ntan

/

0

4

tan (sec )

tan sec

tan

/

/

n

n
n

n

x x dx

x x dx I

n

2

0

4

2

2

0

4

2
2

1

1

1

1

0

4

2

2

1

1

x I

n
I

n

n

/

Therefore

I I
nn n 2

1

1

Replacing n with n + 2, we have

I I
nn n 2

1

1

Therefore

n I I
n

n nn n( )
( / )

2
1

1

1 1

So

lim ( )
n

n nn I I 2 1

Answer: (B)

60. If f(a + b  x)  f(x), then x f x dx
a

b

( )

 (A) 
a b

f a b x dx
a

b

2
( )  (B) 

a b
f b x

a

b

2
( )

 (C) 
a b

f x dx
a

b

2
( )  (D) 

b a
f x dx

a

b

2
( )

Solution: Let

I x f x dx
a

b

( )
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( ) ( )

( ) ( ) [ ( )

a b x f a b x dx

a b x f x dx f a b x

a

b

a

b

∵ ff x( )]

Therefore

2 I a b f x dx a b f x dx
a

b

a

b

( ) ( ) ( ) ( )

This implies

I
a b

f x dx
a

b

2
( )

Answer: (C)

61. Let f :  be a continuous function satisfying 

f x x f t dt
x

( ) ( )

0

for all x . Then, the number of elements in the 

set S x f x| ( ) 0  is

 (A) 1 (B) 2 (c) 3 (D) 4

Solution: Using Leibnitz Rule, we get

f x f x( ) ( )1

If y  f(x), then we have the differential equation 

dy
dx

y 1

which is a linear equation. The solution of the differential 

equation is

ye e dx c e cx x x1

This implies

y c ex1

or f x cex( ) 1

Substituting the value of f(x) in the given equation, we 

have 

1 1

0

ce x ce dt

x x c e

ce c

x t
x

x

x

( )

[ ( )]

This implies c  1. So

f x ex( ) 1

and f x x( ) 0 0

Hence S has only one element.

Answer: (A)

62. For each positive integer n, define

f xn( ) Min 
x
n

x
n

n n

!
,
( )

!

1
 

for 0 1x .  Let 

I f x dxn n( )

0

1

 

for n 1.  Then the value of In
n 1

 is 

 (A) 2 3e  (B) 2 2e

 (C) 2 1e  (D) 2 e

Solution: Let

f x

x
n

x

x
n

x
n

n

n
( )

!

( )

!

for

for

0
1

2

1 1

2
1

Therefore

 I
x
n

dx
x

n
dxn

n n

!

( )

!

/

/0

1 2

1 2

1
1

1

1

1

2
0

1

1

1

2

1 1

( )! ( )!n n

n n

 2
1 2

1

1( / )

( )!

n

n

Hence

In
n

2
1 2

2

1 2

3

1 2

4

2 3 4

1

( / )

!

( / )

!

( / )

!
�

2 1
1 2

1

1 2

2

1 2

3
1

1

2

2 3( / )

!

( / )

!

( / )

!
�

 
2

3

2

1 2e / 2 3e

Answer: (A)
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63.  Let f x x ax bx c( ) ,3 2  where a, b, c are real 

numbers. If f(x) has a local minimum at x  1 and a 

local maximum at x  1/3 and f(2)  0, then 

f x dx( )

1

1

 (A) 
14

3
 (B) 

14

3
 (C) 

7

3
 (D) 

7

3

Solution: We have

 f a b c( )2 0 4 2 8  (5.18)

 f a b( )1 0 2 3  (5.19)

 f a b
1

3
0 2 3 1  (5.20)

Solving Eqs. (5.18)–(5.20), we have a  1, b  1, and 

c  2. Therefore

f x x x x( ) 3 2 2

Now

f x dx x dx x dx xdx dx( )

1

1

3 2

1

1

1

1

1

1

1

1

2

 0
2

3
1 0 0 2 1 1( ) ( )

 

2

3
4

14

3

Answer: (B)

64. lim
n

n n n

n n

1

4 1

1

4 2

1

4 3

1

4

2 2 2 2 2 2

2 2
�

 (A) 
1

4
 (B) 

12
 (C) 

4
 (D) 

6

Solution: We have

T rr th  term 
1

4 2 2n r

Put n  1/h so that 

T
h

x
r

4 2

where x  r h. Since the sum contains n terms, the required 

limit is

 

dx

x

x

4 2

1

2

6

2
0

1

1

0

1

1

Sin

Sin

Answer: (D)

65.  If [t] denotes the integral part of t, then

cos( ) cos([ ] )x x dx
0

1

2  

 (A) 1    (B) 1    (c) 
2

   (D) 
2

Solution: We have

[ ]2

0
1

2

1
1

2
1

x
x

x

for 0 <

for

 

Therefore

cos( ) cos ([ ] ) cos( ) cos( )( )

/

/

x x dx x dx x dx
0

1

1 2

1

0

1 2

2 1

 
1 1

0

1 2

1 2

1
sin( ) sin( )

/

/
x x

 

1 1
0 1

2

( )

Answer: (D)

66. 
Cos Tan1

2
1

2

1 3

1 3
2

1

2

1

1

x

x

x

x
e

dxx
/

/

 

 (A) 
2

 (B) 
4

 (C) 
4 3

 (D) 
2 3

Solution: Let I be the given integral. Then

I
x x

e
dx

dx

e

x

x

[( / ) ]

/

/

/

/

2 2 2

1

2 1

1 1

1 3

1 3

1 3

1 3

Tan Tan
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2 1

2 1

2 1

1 3 1 3

1 3

1 3

1 3

1 3

dx

e
dx

dx

e

e

x

x

x

( / ) ( / )

/

/

/

/

e
dxx

1 3

1 3

/

/

So

2
2

1

2

1

3

1

3 3

1 3

1 3

I dx
/

/

Hence

I
2 3

Answer: (D)

67. e x
x

x
dxx Sin 1

2 3 2

0

1 2

1( ) /

/

 

 (A) e
6

1

3
1  (B) e

6

2

3
1

 (C) e
6

2

3
1  (D) e

6

1

3
1

Solution: Let

I e x
x

x
dx

e x
x x

x

x

x

Sin

Sin

1
2 3 2

0

1 2

1

2 2

1

1

1

1

1

( ) /

/

(( ) /

/

1 2 3 2

0

1 2

x
dx

e x
x

dx e
x

x

x
x xSin 1

2
0

1 2

2 2 3 2

0

1
1

1

1

1 1

/

/

/

( )

22

1

0

1 2

2
0

1 2

1

6
0

1

dx

e x
e

x

e
e

x
x

Sin
/

/

(11 4

1

1

6

2

3
1

/ )

e e

 

e
6

2

3
1

Answer: (C)

68. The function 

F x t t dt
x

( ) ( sin cos )

/

4 3

6

attains least value on [  /4, 3  /4] at x equals

 (A) 
3

 (B) 
2

 (C) 
3

4
 (D) 

4

Solution: We have

F x x x x( ) sin cos sin4 3 5
3

4

1Tan

Now 

4

3

4

4

3

4

3

4

3

4

3

4

1 1 1

x

xTan Tan Tan

 
2

3

4

1x Tan

Hence

F x x( ) sin5
3

4
01Tan

So F is increasing in [  /4, 3  /4] and  F is least at x   /4. 

Answer: (D)

69. 
x x x

x
dx

sin sin cos2
2

2
0

 (A) B C D
2 8 2 8

2 2
( ) ( ) ( )

Solution: Let

I
x x x

x
dx

sin sin cos2
2

2
0

Put x  (  /2)  t so that dx  dt. Therefore

I
t t t dt

t
2

2
2 2

2
2

2 sin( )sin cos

/

/

2

2
2

2

1

2
2

2
2

( sin )sin sin

sin sin sin

/

t t

t
dt t t

/

/

/ 2

2

2

dt
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/

( ) sin sin sin

0

2

4
0

1

2
2 2

2
t t dt

2
2

0

2

sin cos sin sin

/

t t t dt

Now, put (  /2) sin t  z, so that cos t dt  (2/  ) dz.

Therefore

I
z

z dz

z zdz

z z

2
2 2

8

8

0

2

2

0

2

2

/

/

(sin )

sin

( cos ) siin

( )

/z
0

2

2

2

8
0 1 0

8

Answer: (B)

70. If f x t dt
x

x

( ) sin( )

/

2

1

 then f ( )1  is

 (A) (B) (C) (D)
3

2
1

1

2
1

3

2
1sin sin sin

Solution: We have

f x x
x x x

( ) [sin( ) ] sin2

2 2

1

2

1 1

(by Leibnitz Rule, Theorem 5.21). Therefore

f ( ) sin sin sin1
1

2
1 1

3

2
1

Answer: (D)

71. 
dx

x x e x( )( )5 2 2 12 2 4

0

1

 (A) (B)
1

11

11 2

11

1

11

11 1

10
log loge e

 (C) (D)
1

10

10 2

11

1

10

10 1

11
log loge e

Solution: Let

I
dx

x x e x( )( )5 2 2 12 2 4

0

1

dx

x x e

dx

x x

x[ ( ) ( )]( )
( )

( )(

( )5 2 1 2 1 1

5 2 2 1

2 2 4 1

0

1

5

2

By P

e

e

x x e
dx

x

x

x

( ))

( )( )

2 4

0

1

2 4

2 2 4

0

1

5 2 2 1

Therefore

2
1

5 2 2 1

5 2 2

2 4

2 2 4

0

1

2

0

1

I
e

x x e
dx

dx

x x

x

x( )( )

This implies

I
dx

x x

dx

x

1

4 5 2

1

4 1 2 5 2 1 4

2

0

1

2

0

1

( / )

[ ( / )] ( / ) ( / )

1

4 11 4 1 2

1

4

1

2 11 2

11

2

1

2

11

2

1

2

2

0

1
dx

x

x

x
e

( / ) [ ( / )]

/
log

0

1

1

4 11

11

2
1

1

2

11

2
1

1

2

11

2

1

2

11

2

1

2

log loge e

1

4 11

11 1

11 1

11 1

11 1

1

4 11

log loge e

llog
( )

( )

log

log
( )

e

e

e

11 1

11 1

1

2 11

11 1

11 1

1

2 11

11 1

2

2

2

111 1

1

11

11 1

10
loge

Answer: (B)
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72. Let

f x
y dy x

x x

x

( )
{ | |}5 1 2

5 1 2

0

if

if

Then

 (A) f (x) is continuous but not differentiable at x  2.

 (B) f (x)  is not continuous at x  2.

 (C) f (x)  is differentiable everywhere.

 (D) The right derivative of f (x) at x  2 does not exist.

Solution: For x  2,

( | |) ( ) ( )

( ) ( )

5 1 5 1 5 1

6 4

0 0

1

1

0

1

1

y dy y dy y dy

y dy y

x x

xx

dy

x x

x x

6
1

2
4 1

1

2
1

1

2
4 1

2

2

( ) ( )

Therefore

f x
x x

x x x
( )

( / )

5 1 2

1 2 4 1 22

for

for

Now 

lim ( ) ( )
x

f x
2 0

5 2 1 11

and lim ( )
x

f x
2 0

4

2
8 1 11

So f  is continuous at x  2. Again 

Lf Rf( ) ( )2 5 2 2 4 6and

Therefore f is not differentiable at x  2.

Answer: (A)

73. x dx2

4

3

4  

 (A) (B) (C) (D)
55

6

55

3

71

3

71

6

Solution: We have x2 4 0  if either x  2 or x  2. 

Also

x x2 4 0 2 2

Therefore

| | ( ) ( ) ( )x dx x dx x dx x dx2

4

3

2

4

2

2 2

2

3

2

2

4 4 4 4

 

x
x x

x x
x

3

4

2 3

2

2 3

2

3

3
4 4

3 3
4

1

3
8 64( ) 4 2 4 4 2 2

1

3
8 8

1

3
27 8 4 3 2

1

3
56 16 19 8 16

( ) ( ) ( )

( ) ( )

( ) 4

59

3
4

71

3

Answer: (C)

74. If 

f x
e x xxcos sin | |for

otherwise

2

2

then f x dx( )

2

3

 (A) 0 (B) 1 (C) 2 (D) 3

Solution: In [ 2, 2], the function e xxcos sin  is an odd 

function. Therefore

f x dx e x dx dxx( ) sin

( )

cos

2

3

2

2

2

3

2

0 2 3 1 2

Answer: (C)

75.  If 
4

2 3

4

3

3
1

3

3
x

x
dx k

cos[ ( / )]
( ),

/

/

Tan  then k 

equals

 (A) (B) (C) (D)1
1

2
2

1

2

Solution: We know that

4

2
3

3x

xcos

is an odd function. Therefore, the  given integral equals

2

2
3

0

3
dx

xcos

/

2
2 3

2

1
2

2 1
2

3

2 3

2

2

dt
t

t x

t

t

cos

tan

tan

/

/

where

1
2

2
3

2 3

tan/

/

t
dt
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4
1 3 2

4

3
3

4

3
3

2

1 3

3

1

1 3

3

1

dz

z
z

t

z

/

/

tan

(

where

Tan

Tan TTan

Tan

1

1

1

4

3

1

2

)

So k  1/2.

Answer: (B)

76. 
sin log (cot )

cos

/
8

2
0

2
x x

x
dxe

 (A) (B) (C) (D)0 1
2 4

Solution: We have

I
x x

x
dx

x x

e

e

sin log (cot )

cos

sin( )log cot

/
8

2

4 8
2

0

2

cos

/

2
2

0

2

x
dx

 
sin log (tan )

cos

sin log( /cot )

cos

/

/

8

2

8 1

2

0

2

0

2

x x
x

dx

x x
x

d

e

xx

I

Thus, 2I  0 or I  0.

Answer: (A)

77. 
x

a x b x
dx

2 2 2 2

0
cos sin

 (A) (B) (C) (D)
2 2 2

2 2 2ab ab ab

Solution:

I
x

a x b x
dx

x

a x b x
dx

2 2 2 2

0

2 2 2 2

0

cos sin

cos sin

dx

a x b x
I

2 2 2 2

0
cos sin

So

2

2

2 2 2 2

0

2 2 2 2

0

2

I
dx

a x b x

dx

a x b x

cos sin

cos sin

/

Therefore

I
dx

a x b x

x

a b x
dx

b

x

2 2 2 2

0

2

2

2 2 2

0

2

2

2

cos sin

sec

tan

sec

/

/

(( / ) tan

( / )
tan

/

a b x
dx

b

dt

a b t
t x

2 2

0

2

2 2 2

0

where

 

b a b
tb
a

ab

ab

2
1

0

2

1

2
0

2

/
Tan

Answer: (D)

78. If 

f x
x t

t
dt

x

( )
cos cos

sin
/

1 2

162

2

then  f (  ) is equal to

 (A) (B) (C) (D)0 2
2

Solution: We have

f x x
t

t
dt

x

( ) cos
cos

sin
/

1 2

162

2

Then

f x x
t

t
dt x

x

x
x

x

( ) sin
cos

sin
cos

cos

sin
( )

/
1 1

2
2

16

2
2

2
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Hence

f ( ) cos( )
cos

sin
( )0

1
2 2

2

Answer: (C)

79. Cot 1

0

1

21( )x x dx

 

(A) (B)

(C) log 2 (D) log 2e e

2
2

2
2log loge e

Solution: We have

 I x x dxCot 1 2

0

1

1( )

Tan

Tan

1
2

0

1

1

0

1

1

1

1

1 1

x x
dx

x x
x x

dx
( )

( )

[TTan Tan

Tan Tan

Tan

1 1

0

1

1 1

0

1

0

1

1

1

1

x x dx

xdx x dx

( )]

( )

xx x dx

xdx

Tan

Tan

1

0

1

0

1

1

0

1

1 1

2

( )

2
1

2
4

0 2
1

2

1

0

1

2

0

1

x x
xdx

x

e

Tan

log (11

2
2

2

0

1
x

e

)

log

Answer: (A)

80. Consider the function

f x t dt
x

( ) [ ]

0

where x  0 and [t] is the integral part of t. Then

 (A) f (x) is not defined for x  1, 2, 3, . . . 

 (B)  f (x) is defined for all x  0 but is not 

continuous at x  1, 2, 3, . . .

 (C)  f (x) is continuous for all x  0 but is not 

differentiable for x  1, 2, 3, . . .

 (D) f (x) is differentiable for all x  0

Solution: We have

f x dt dt dt x dt
x

x

( ) ([ ])

( ) ( ) (

[ ]

0 1 2

0 2 1 2 3 2 3

2

3

1

2

0

1

�

44 3

1 2 3 1

1

2

2

) [ ]( [ ])

( [ ] ) [ ] [ ]

([ ] )([ ])

�

�

x x x

x x x x

x x
x x x[ ] [ ]2

Let n  0 be an integer. Then

f n f n h

n n
n h n n

n

h

h

( ) lim ( )

( )( )
lim( )( ) ( )

(

0

2 1

2
1 1

0

0

2

2 1

2
1 1

1

2
2 2 2 1

1

2

2)( )
( ) ( )

[ ( )]

( )

n
n n n

n
n n n

n n

Now

f n f n h

n n
n h n n

n n
n n

h

h

( ) lim ( )

( )
lim( )

( )

0

1

2

1

2

0

0

2

2 2

(( )n n1

2

Therefore f is continuous at all positive integers. We can 

see that 

f  (n  0)  n 1

and f  (n  0)  n

So f is not differentiable at positive integers.

Answer: (C)

81. lim

cos

sinx

x

t dt

x x0

2

0

2

 (A) (B) (C) (D)
1

2
1 0 2
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Solution: We have

 

lim

cos

sin
lim

(cos )( )

sin cosx

x

x

t dt

x x
x x

x x x0

2

0

0

2

2

0

0

2

lim
cos( )( )

(sin / ) cosx

x
x x x0

2 2

2

1 1

1

Answer: (B)

82. If 

S
n n n n

n
1

1

1

2 2

1

2
�

then lim
n

nS is equal to

 

(A) 2 (B) 2

(C) 2 (D)

log log

log log

e e

e e

2 2

2 2 2

Solution: We have

T r
r rn

r th term
1

Put n  1/h. Then

T
h

r h r
h

rh rh

r

Therefore

 

lim

( )

n
nS

dx

x x

dx

x x

0

1

0

1

1

1

1
2

2 1

2 2

0

1

0

1

t t
t dt t x

te

e

( )
( )

log ( )

log

where

Answer: (D)

83. lim
( )n

n
r

r
r

n
C

n r 3
0

 (A) e  1 (B) e (C) e  2 (D) e  1

Solution: We know that

x dx
r

r 2

0

1
1

3

Therefore

lim
( )

lim
n

n
r

r
r

n

n

n
r

r

n

r
rC

n r
C

n
x dx

3

1

0 0

2

0

1

 

x C
x
n

dx

x
x
n

n

n
r

r

n r

n

2

0

1

0

2

0

1

1

lim

lim
n

x

x x x

dx

x e

x e x e e

e e e

2

0

1

2

0

1
2 2

2 2 0 0 2

( )

( ) ( ))

e 2

Answer: (C)

84. x x dxsin

/

1

3 2

 (A) (B) (C) (D)
1 3 1 3 1 3

2 2 2 2

Solution: Let 

I x x dxsin

/

1

3 2

Put t   x so that 

x   1  t   

and x t
3

2

3

2

Therefore

 I
t

t dt

t t dt

sin

sin

/

/

1

1

3 2

2

3 2

1

1
2

2

3 2

2

0

( sin ) ( sin )

sin

/

t t dt t t dt

t t dt tt t dtsin

/3 2
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1
2

1
2 0

2 0

3 2

2

sin cos sin cos

[ ( cos )

/t t t t t t

[[ ( cos )]

( )

1 0 0

1
2 1

3 1

2

2

Answer: (B)

85. [ ]

.

x dx2

0

1 5

([x] is the integral part of x) is equal to

 (A) (B) (C) (D)2 2 1 2 2 2 1

Solution: We have

0
3

2
0

9

4

2x x

so that [ ] , .x2 0 1 2or  Therefore

[ ] [ ] [ ] [ ]

. /

x dx x dx x dx x dx2

0

1 5

2

0

1

2

1

2

2

2

3 2

0 1 2

0 2 1 2
3

2
2

2 1 3 2 2

2 2

1

2

2

3 2

dx dx
/

( )

Answer: (C)

86.  Area of the region bounded by the curves 

y x y x2 2,  and the x-axis is

 (A) (B) (C) (D)
4

3

5

3

5

4

5

6

O x

y

2

−2 −1

( −1, 1)

FIGURE 5.13 Single correct choice type question 86.

Solution: The line y  x  2 and the parabola y x2  

intersect in the two points ( 1, 1) and (2, 4). The required 

area is shown as the shaded portion in Fig. 5.13.  Math-

ematically, it is given by

Area required   Area of the triangle with vertices 

( , ), ( , ), ( , )1 1 2 0 1 0 2

1

0

x dx

1

2
1 1

1

3

1

2

1

3
0 1

1

2

1

3

5

6

3

1

0
( )( )

[ ( )]

x

Answer: (D)

87.  The area of the region in the first quadrant enclosed 

by the circle x y2 2 4,  the x-axis and the line 

y x/ 3  is

 (A) (B) (C) (D) 1
2 3 4

O (2, 0)M x

y

x =
 y

3

P (     , 1)3

FIGURE 5.14 Single correct choice type question 87.

Solution: The line y x/ 3  meets the circle in the 

first quadrant at P( , ).3 1  Therefore

Area required OPM x dx4 2

3

2

1

2
3 1

4

2

4

2 2

3

2
2 1

3

2
2

3

2

2
1

3

2

1 1

x x x
Sin

Sin Sin

3

2

3

2
2

3

3

Answer: (B)



 Worked-Out Problems 521

88.  For which values of m, does the area of the region 

bounded by the curve y x x2  and the line y  mx 

equals 9/2?

 (A)  4, 1 (B)  2, 1

 (C) 2,  1 (D) 4,  2

Solution: We have

y x x x2
2

1

4

1

2

Therefore

x y
1

2

1

4

2

This equation represents downward parabola with vertex 

at (1/2, 1/4) and y  1/4 (see Fig. 5.15). The parabola 

y x x2  meets the x-axis in (0, 0) and (1, 0). The line 

y  mx meets the curve in ( , ) ( , ).0 0 1 2and m m m  

Note that 1 0m .  Therefore

Required area ( )x x mx dx

m
x x

m

m m

2

0

1

2

0

1 3

0

11

2

1

3

 
1

2
1 0

1

3
1

1

6

2 3

3

m
m m

m

[( ) ] ( )

( )

Now

( )
(

( )

1

6

9

2

1 27

1 3

2

3

3

m

m

m

m

Given)

Also, if 1  m  0, then we have

1−m 1 x

y

y = mx

1
2

1
4

, ))
1
4

1
2

FIGURE 5.15 Single correct choice type question 88.

( )1

6

9

2

1 3

4

3m

m

m

Hence m   2, 4.

Answer: (D)

89.  The area of the figure bounded by the straight lines 

x  0, x  2 and the curves y y x xx2 2 2,  is

 (A) 
4

3

3

2loge

 (B) loge 2
4

3

 (C) 
3

2

4

3loge

 (D) 
3

2

2

3loge

Solution: We have

y x x x

x y

2 1 1

1 1

2 2

2

( ) ]

( ) ( )

This is the equation of a downward parabola with vertex 

at (1, 1) meeting the x-axis in (0, 0) and (2, 0). See Fig. 

5.16.  Hence 

Required area (shaded portion) [ ( )]

log

2 2

2

2

2

0

2

x

x

e

x x dx

0

2

2

0

2 3

0

21

3

4 1

2
4

8

3

x x

elog

3

2

4

3loge

O x

y

y = 2x

2

FIGURE 5.16 Single correct choice type question 89.

Answer: (C)

90.  The area bounded by the curve y x x2 2  and the 

straight line y   x is

(A) (B) (C) (D)3
7

2

9

2
4
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O
B

A (1, 1)

(2, 0)

(3, −3)

y = −x

x

y

FIGURE 5.17 Single correct choice type question 90.

Solution:  We have

y x x x2 1 12 2( )

 ( ) ( )x y1 12

This implies that the curve meets the x-axis in (0, 0) 

and (2, 0). The line y  x meets the parabola 

y x x2 0 0 3 32 in and( , ) ( , ).  See Fig. 5.17.  Therefore

Required area (shaded portion) [( ) ( )]2

3

2

0

3

0

3

x x x dx

xdx x dx2

0

3

 

3

2

1

3

3

2
9

27

3

81 54

6

27

6

9

2

2

0

3 3

0

3
x x

Answer: (C)

91.  The area between the curve y x x2 4 2 , the x-axis 

and the ordinates of the two minima of the function 

y x x2 4 2  is

 (A) (B) (C) (D)
7

120

7

60

3

40

1

20

Solution: We have 

y x x2 4 2

which is symmetric about y-axis. The curve meets the 

x-axis in ( / , ), ( , ) ( / , ).1 2 0 0 0 1 2 0and   Differentiating 

the equation of the curve w.r.t. x we get

dy
dx

x x8 23

Now

dy
dx

x x

x

0

4 1 0

0
1

2

2( )

,

Differentiating again we get

d y

dx
x x

d y

dx
x

2

2
2 2

2

2
1

2

24 2 2 12 1

2 12
1

4
1

2

( )

2 0

So  y is minimum at x   1/2 and  1/2, and y is maximum 

at x  0.  The required area is shown as the shaded por-

tion in Fig. 5.18.

Required area 2

0

1 2

( )

/

y dx

2 2

2
1

3

2

5

2
1

24

2

5

1

32

2 4

0

1 2

3

0

1 2 5

0

1 2

x x

x x

/

/ /

1

12

1

40

10 3

120

7

120

O

y

x

1
2

−1
2

FIGURE 5.18 Single correct choice type question 91.

Answer: (A)
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92.  The area of the bounded region enclosed between 

the curves y x3 2  and y x2 2  is

(A) (B) (C) (D)1
1

15
2

2

15
2

4

15
2

14

15

Solution: The curve y x3 2 is symmetric about y-axis. 

Also y  0. Now

y x

x y

2

2

2

2 ( )

This represents parabola with vertex (0, 2) and y  2 (see 

Fig. 5.19). Again

y x y

y y

y y y

3 2

3

2

2

2 0

1 2 0( )( )

This implies y  1, x   1. Therefore

Requiredarea(shaded portion) 2 2

4
2

3

2 2 3

0

1

0
1

[( ) ]

[ ] [

/x x dx

x xx x3
0
1 5 3

0
12 3

5

4
2

3

6

5

60 10 18

15

32

15

2
2

15

] [ ]/

O

y

(0, 2)

(1, 1)(−1, 1)

x2− 2

FIGURE 5.19 Single correct choice type question 92.

Answer: (B)

93.  The area of the region enclosed between the curve 

x y2 2  and the straight line y  2 equals

 (A) (B) (C) (D)
4

3

8

3

16

3

32

3

Solution: The line y  2 meets the curve x y2 2  in 

the points ( 2, 2) and (2, 2) (see Fig. 5.20). Therefore 

Area 2 2
2

4
1

3

8
8

3

16

3

2

0

2

0

2 3

0

2

x
dx

x x

−2 2O

2
y = 2

y

x

FIGURE 5.20 Single correct choice type question 93.

Answer: (C)

94.  The area enclosed between the curves y2  4x and x2 

 4y inside the square formed by the lines x  1, y  

1, x  4, y  4 is 

 (A) (B) (C) (D)
8

3

16

3

13

3

11

3

Solution: The two curves intersect at (4, 4) which is a 

vertex of the given square (see Fig. 5.21). Therefore

Requiredarea(shaded portion) 2

4
2 1 1

2
2

3

1

4

2

2

4

3

x

x
dx

x

( )

[ // ] [ ]2
1
4 3

2
41

12
1x

1

y

x2 4O

(1, 4)

(1, 1)
(2, 1)

y
2  = 4x

x
2  =

 4
y

(4, 4)

FIGURE 5.21 Single correct choice type question 94.
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4

3
8 1

1

12
64 8 1

28

3

56

12
1

112 56 12

12

44

12

11

3

[ ] ( )

Answer: (D)

95.  Let f x x x x x( ) { , ( ) , ( )}Max 2 21 2 1  where 0  x  

 1. Then the area of the region bounded by the curve 

y  f (x), the x-axis and the lines x  0, x  1 is

 (A) (B) (C) (D)
17

7

17

27

14

17

14

27

Solution: See. Fig. 5.22. The colored arcs represent  

the graph of y  f (x). Let C y x C y x1
2

2
21: ; : ( ) ;   

C3: y = 2x (1 x). Then C C2 3and intersect in (1/3, 4/9) 

and C1  intersect C3  in (2/3, 4/9). Now

f x

x x

x x x

x x

( )

( ) /

( ) / /

/

1 0 1 3

2 1 1 3 2 3

2 3 1

2

2

for

for

for

Required area (shaded portion)

( ) ( )

/

/

1 2 12

0

1 3

1 3

2

x dx x x dx
//

/

/

/

/

/
( )

3

2

2 3

1

3

0

1 3 2

1 3

2 3 3

1 3

21

3
1

2

3

x dx

x x x
//

/

3 3

2 3

11

3

1

3

8

27
1

4

9

1

9

2

3

8

27

1

27

x

1

3
1

8

27

O

1

1
3

1
2( (, 1

2−

2
3( (, 4

9
1
3( (, 4

9

(1, 1)

1 x2
3

y

FIGURE 5.22 Single correct choice type question 95.

19

81

3

9

14

81

19

81

19 27 14 19

81

51

81

17

27

Answer: (B)

96.  The area of the bounded region enclosed between the 

lines x  1/2, x  2 and the curves y x ye
xlog and 2  

is

(A)

(B)

1

2
4 2

5

2
2

3

2

1

2
4 2

5

2
2

log
( ) log

log
( ) log

e
e

e
e

(C)

(D)

1
2

4 2 5
2

2 3
2

1
2

4 2 5
2

2

log
( ) log

log
( ) log

e
e

e
e

1O 2 x

y

y = 2x

y = logex

1
2

1
2

−log21
2

, ))

FIGURE 5.23 Single correct choice type question 96.

Solution: See Fig. 5.23. The shaded portion is the 

required area. Now

Required area ( log )

log
[ ] [ log ]

/

/ /

2

1

2
2

1 2

2

1 2
2

1

x
e

e

x
e

x dx

x x x 22
2

2 1 21

2
2 2

log
( )/

e

( log ) log

log
log

2 2 2
1

2

1

2

1

2

4 2

2
2 2

e e

e
e

11

2
2 2

1

2

4 2

2

5

2
2

3

2

log

log
log

e

e
e

Answer: (C)
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97.  The x-axis divides the region bounded by the parab-

olas y x x y x x4 2 2and  in the ratio

 (A) (B) (C) (D)
121

4

111

4

81

4

91

4

Solution: Let

P y x x x1
2 24 4 2: ( )

Therefore P1  is a parabola with vertex at (2, 4) and y  4. 

Also

P y x x x2
2

2
1

2

1

4
:

It is a parabola with vertex at (1/2,  1/4) and y   1/4. 

See Fig. 5.24. P P1 2and  intersect in (0, 0) and (4/2, 15/4). 

So

A  Area shaded by vertical and horizontal lines

[( ) ( )]

( )

/

/

/

4

5 2

5

2

2

3

2 2

0

5 2

2

0

5 2

2

0

5 2 3

x x x x dx

x x dx

x x
0

5 2

2 3
5

2

5

2

2

3

5

2

125

8

125

12

125

24

/

B  Area (shaded by vertical lines) below the x-axis 

( )

( )

x x dx2

0

1

1

2
1

1

3

1

6

(2, 4)

1 xO

5
2( (, 15

4

1
2( (, 1

4−

y

FIGURE 5.24 Single correct choice type question 97.

Now

A B
125

24

1

6

125 4

24

121

24

Therefore

A B
B

121

24

6

1

121

4

Answer: (A)

98.  The area of the figure enclosed by the curve 

( )y x x xSin 1 2 2  is

 (A) (B) (C) (D)
2 4 3

2

3

O 1 x

y

y = sin
−1 x + x − x

2

y = sin−1x + x−x 2

1,( (p2

FIGURE 5.25 Single correct choice type question 98.

Solution: Clearly 

x x x2 0 0 1

and y x x xSin 1 2  

The equation represents curve consisting of two branches 

intersecting in (0, 0) and (1,  /2) (see Fig. 5.25). Hence 

the area is

( )Sin Sin1 2 1 2

0

1

x x x x x x dx

2

2
1

4

1

2

2
1 2

2

2

0

1

2

0

1

2

0

1

x x dx

x dx

x x x[ ( / )] 1

8

1 2

1 2

1

0

1

Sin
x ( / )

/
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2 0
1

8
1 1

1

4 2 2

4

1 1[ ( )]Sin Sin

Answer: (B)

99. The area bounded by the curve 

y a a x a a2 4 0( ) ( )

 is

 (A) 
8

3

2a
 (B) 

16

3

2a
 (C) 

19

3

2a
 (D) 

13

3

2a

Solution: See Fig. 5.26. We have

y
a a a x ax x a

a a x a a a x x a
2 4 4

4 4 2

[ ( )]

[ ( )] ( )

if

if

Therefore

Area 4 4

8
2

3

16

3

0

2 3

0

2

ax dx

a x

a

a

a/

x

y 2 = 4ax

y 2 = 4a(2a −x)

I II

y

(a, 0)

FIGURE 5.26 Single correct choice type question 99.

Note: If a 3,  then the area is 16.

Answer: (B)

100. The area of the region bounded by the curve 

32 16 41 9 03 2x y x x x( )[ | |],

is

 (A) 18  (B) 27  (C) 36  (D) 45

Solution: See Fig. 5.27. 

Case I: x  0. Now

32 16 41 9

32

50
16

32

50
16

3 2

2 2

2 2

x y x x

x y

x y

( ) ( )

So

x y2 2

25 16
1  (upper portion of the ellipse)

xO

y

FIGURE 5.27 Single correct choice type question 100.

Case II: x 0. We have

32 16 41 9

16

3 2

2 2

x y x x

x y

( )( )

So

x y2 2 16  (Portion of the circle below x-axis)

Therefore

Required area  (Area in the first and fourth quadrants 

of the ellipse)  (Area in the second and third quadrants 

of the circle)

( ) ( )5 4

2

4

2

10 8

18

2

Note: The area of the ellipse 

x

a

y

b

2

2

2

2
1

is  ab (see Example 5.15).

Answer: (A)

101.  The area of the region bounded by the curves y = x2,

y x x1 1 2/ /and  is log ,e p2  where p equals

 (A) 
5

24
 (B) 

5

24

 (C) 
7

24
 (D) 

7

24
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(1, 1)

1O x

y

y = x 2

1
2

y = 1
x

FIGURE 5.28 Single correct choice type question 101.

Solution: The two curves intersect in ( 1, 1). See 

Fig. 5.28. Now

Requiredarea(shaded portion)
1 2

1 2

1

1 2

1

x
x d2 xdd

/1 21 2

/1 21 2

1

3

0 2
1

3
1

1

8

2
7

24

3

1 2

1
x

e

e

/1 21 2

( l g )

log

Therefore p 7/24.

Answer: (C)

102. The area of the region bounded by the curve 

y x xx2 4 and the line y x is

(A)
7

2
(B) 4 (C)

9

2
(D) 5

Solution: The line y x meets the parabola

( ) y) 4) y))2

in (0, 0) and (3, 3). See Fig. 5.29. Now

Required area [( ) ( )]

( )

xx) ( x d)] xdd

dx

x

2

0

3

2

0

3

2

0

3

4

3

2

1

33

3

2
9

9

2

3

0

3
x

( )9( )99

2

(2, −4)

y = −x

(3, −3)

3
O

y

x

FIGURE 5.29 Single correct choice type question 102.

Answer: (C)

103. The area enclosed by the curve y2 x2 x4 is

(A)
1

3
(B)

2

3
(C)

4

3
(D)

5

3

1
O

(1, 0) −1 x

y

FIGURE 5.30 Single correct choice type question 103.

Solution: Since x and y have even powers, the curve is 

symmetric about both axes (see Fig. 5.30). The curve cuts 

x-axis in ( 1, 0), (0, 0) and (1, 0). Also 1 x 1. Hence

the area enclosed by the curve equals four times the area

in the first quadrant, that is

Area 14

2 1

2
3 2

0

1

2

0

1

2

2 3 2

0

1

x x11 dx

x1 dx( )2x

( )1 2x
/22

/33 22

44

3

4

3

( )0 1

Answer: (C)

104. The area of the region bounded by the parabola 

y2 x 2 and the line y x  8 is
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 (A) 
115

6
 (B) 

125

3
 (C) 

115

3
 (D) 

125

6

x2
(6, −2)

y = x − 8

(11, 3)

11O

3

−2

y

FIGURE 5.31 Single correct choice type question 104. 

Solution: See Fig. 5.31. The area is the shaded portion. 

Therefore

Area [( ) ( )]y y dy

y y y

8 2

1

2

1

3
6

2

2

3

2

2

3 3

2

3

2

3

11

2
9 4

1

3
27 8 6 3 2

5

2

35

3
30

15 70 180

6

125

6

( ) ( ) ( )

Answer: (D)

105.  The area of the bounded region enclosed between 

the parabola y2  x and the line y  x  6 is 

 (A) 
125

3
 (B) 

115

3
 (C) 

115

6
 (D) 

125

6

y

x

2

O

−3
(−9, −3) 

(−4, 2) 

FIGURE 5.32 Single correct choice type question 105. 

Solution: See Fig. 5.32. The area is the shaded portion. 

Therefore

Area [ ( )]y y dy

y y y

2

3

2

3

3

2 2

3

2

3

2

6

1

3

1

2
6

1

33
8 27

1

2
4 9 6 2 3

35

3

5

2
30

70 15 180

6

125

6

( ) ( ) ( )

Answer: (D)

106.  The area of the figure (Fig. 5.33) bounded by the 

curves y  ex, y  e x and the line x  1 is

 (A) e
e
1

2  (B) e
e
1

1

 (C) 
1

2

1
2e

e
 (D) e

e
1

(0, 1)

O 1

y = e x

y = e −x y

x

FIGURE 5.33 Single correct choice type question 106.

Solution: We have

Area ( )

( ) ( )

e e dx

e e

e e

e
e

x x

x x

0

1

0

1

0

1

11 1

1
2

Answer: (A)

107.  The area of the region bounded between the para-

bola 4y  3x2 and the line 2y  3x  12 is

 (A) 9 (B) 18 (C) 27 (D) 36
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Solution: The line 2y  3x  12 intersects the parabola 

4y  3x2 in the points ( 2, 3) and (4, 12). The required 

area is the shaded portion of Fig. 5.34. Therefore

Area
3 12

2

3

4

3

4
6

1

4

2

2

4

2

2

4

2

4 3

x
x dx

x x x
22

4

3

4
16 4 6 4 2

1

4
64 8

9 36 18

27

( ) ( ) ( )

x4

(4, 12)2y = 3x + 12

y

−2

(−2, 3)

FIGURE 5.34 Single correct choice type question 107.

Answer: (C)

108.  Area enclosed between y  ax2 and x  ay2 (a  0) 

is 1. Then the value of a is

 (A) 
1

3
  (B) 

1

2
  (C) 1  (D) 

1

3

(IIT-JEE 2004)

Solution: The two curves are parabolas which intersect 

in (0, 0) and (1/a, 1/a). Hence,

1 Area
x
a

ax dx

a
x

a
x

a

a a

2

0

1

3 2

0

1 3

0

11 2

3 3

/

/ / /

22

3

1

3

1

2

3

1

3

1

3

3

2 2

2

a a a

a

a

a a

a

So

a a2 1

3

1

3
or

Answer: (A)

109.  The curve y a x bx  passes through the point 

(1, 2) and the area enclosed by the curve, the x-axis and 

the line x  4 is 8. Then

 (A) a  3, b  1 (B) a  3, b  1

 (C) a  3, b  1 (D) a  1, b  3 

Solution:  By hypothesis the curve passes through the 

points (0, 0) and (1, 2) and x  0. Also

8

2

3 2

16

3
8

0

4

3 2

0

4 2

0

4

( )

/

a x bx dx

a
x

b
x

a
b

So

 2a  3b  3 (5.21)

Since the curve passes through (1, 2), we have

 a  b  2 (5.22)

From Eqs. (5.21) and (5.22), a  3 and b  1.

Answer: (B)

110.  The area of the region bounded by the curves y  x2  

and y  2/(1  x2) is 

 (A) 
3 2

3
 (B) 

3 1

3

 (C) 
3 1

3
 (D) 

3 2

3

(IIT-JEE 1992)

O 1

(1, 1)

(0, 2)

(−1, 1)

x

y

−1

FIGURE 5.35 Single correct choice type question 110.

Solution: y  x2  is a parabola which we denote by P. 

Let C be the curve 

y  2/(1  x2)

Now

(i) C is symmetric about y-axis.
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(ii) C meets y-axis in (0, 2) and cannot meet x-axis.

(iii) x     y  0 and y  0.

(iv) P and C intersect in the points ( 1, 1) and (1, 1).

Shape of C is as shown in Fig. 5.35. Therefore

Required area
2

1 2

2

1

1

x
x dx

2
2

1

4
2

3

4 1
2

3

2
2

0

1

0

1 3

0

1

x
x dx

x xTan

Tan

1

1

44
4

2

3

3 2

3

Answer: (D)

111. The area bounded by the curve y   1  x2 is

 (A) 3  (B) 
8

3
  (C) 

7

3
  (D) 2

x

y

(0, −1)

(0, 1)

(1, 0)(−1, 0)

FIGURE 5.36 Single correct choice type question 111.

Solution: |y|  1  x2 represents two parabolas y   

1  x2 and y  x2  1 with vertices at (0, 1) and (0,  1), 

respectively. Both will intersect with x-axis on ( 1, 0) and 

(1, 0) (see Fig. 5.36). Therefore

 

Area 4 1

4
4

3

4
4

3

8

3

2

0

1

3

0

1

( )x dx

x

Answer: (B)

112.  The area of the plane region bounded by the curves 

x  2y2  0 and x  3y2  1 is equal to

 (A) 
5

3
  (B) 

1

3
  (C) 

2

3
  (D) 

4

3

O (1, 0) x

y

B (−2, −1)

A (−2, 1) 1

−1

FIGURE 5.37 Single correct choice type question 112.

Solution: See Fig. 5.37.  The curve x  2y2  0 represents 

parabola with vertex at (0, 0) and x  0. Now

3 1
1

3
12 2y x y x( )

This is a parabola with vertex at (1, 0) and x  1. There-

fore

Requi d areare 2 2 2 1 32

0

1

2

0

1

( ) ( )y dy y dy

4

3
2 2

4

3
2 2

4

3

3

0

1

0

1 3

0

1
y y y

Note: For the parabola x 3y2  0, x  0 so that in the first 

integral, we have taken x  2y2.

Answer: (D)

113.  The parabolas y2  4x and x2  4y divide the square 

region bounded by the lines x  4, y  4 and the 

coordinate axes. If S1, S2, S3 are, respectively, the 

areas of these parts numbered from top to bottom, 

then S1  S2  S3 is

 (A) 1 2 1 (B) 1 2 3

 (C) 2 1 2 (D) 1 1 1
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x

y

4

4

S3

(4, 4)

0

S1
S2

FIGURE 5.38 Single correct choice type question 113.

Solution: See Fig. 5.38. Now

 

S
y

dy1

2

0

4

4

1

12
64

16

3
( )

S x
x

dx

x x

2

2

0

4

3 2

0

4 3

0

4

3 2

4
4

2
2

3

1

12

4

3
4

1

1

/

/

22
64

4

3
8

16

3

16

3

( )

 S
x

dx3

2

0

4

4

1

12
64

16

3
( )

Therefore

S1  S2  S3  1 1 1

Answer: (D)

114. The graph of y  f (x) meets the x-axis in the points 

(0, 0) and (2, 0) and encloses an area of 3/4 square 

units with the axes. Then

x f x dx( )

0

2

 (A) 
3

2
  (B) 

3

4
  (C) 

3

4
  (D) 1 

Solution: By hypothesis f (0)  f (2)  0 and

f x dx( )

0

2
3

4

Now

x f x dx x f x f x dx( ) ( ) ( )

0

2

0

2

0

2

2 2
3

4

0
3

4

3

4

f ( )

Answer: (C)

115.  Let C1 and C2 be the graphs of the functions y  

x2 and y  2x, 0  x  1,
 
respectively. Let C3 be the 

graph of a function y  f (x), 0  x  1, f (0)  0. For a 

point P on C1, let the lines through P, parallel to the 

axes, meet C2 and C3 at Q and R, respectively (see 

Fig. 5.39). If for every position of P on C1, the ar-

eas of the shaded regions OPQ and ORP are equal, 

then f (x) is equal to

 (A) x2  x (0  x  1) (B) x3  x2 (0  x  1)

 (C) x4  x3 (0  x  1) (D) x  x2 (0  x  1)

(IIT-JEE 1998)

O

(0, 1) (1, 1)

(1, 0)

y

Q P

RC3

C1C2

x

FIGURE 5.39 Single correct choice type question 115.

Solution: We have

C1  y  x2 (0  x  1) 

C2  y  2x (0  x  1) 

C3  y  f (x) (0  x  1) 

Let P  (t, t2) so that ordinate of Q is t2 and the abscissa 

of R is t. Therefore

Area of OPQ ( )x C x C dy
t

value of value of1 2

0

2

 

y
y

dy

t
t

t

2

2

3 4

0

3
4

2

 

(5.23)

Area of value of value of

of

OPR ( )y C y C dx

y C

t

1 3

0

3 0∵
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[ ( )]

( )

x f x dx

t f x dx

t

t

2

0

3

0

1

3

 

(5.24)

Now, by hypothesis,

Area of OPQ  Area of OPR

From Eqs. (5.23) and (5.24),

2

3 4

1

3

3
4

3

0

t
t

t f x dx
t

( )

1

3 4

3
4

0

t
t

f x dx
t

( )

Differentiating both sides w.r.t. x, we get

t2  t3  f (t) 

 f (t)  t3  t2

Answer: (B)

Problem 116 onwards are based on Differential Equation

116.  The order of the differential equation whose gen-

eral solution is given by

y C C x C C ex C( ) cos ( )1 2 3 4
5

where C1, C2, C3, C4, and C5 are arbitrary constants, 

is

 (A) 5 (B) 4 (C) 3 (D) 2 

Solution: The given solution can be written as

y  a cos(x  C3)  C4e
5  ex 

where a  C1  C2. That is

y  a cos(x  C3)  bex

where a  C1  C2 and b  C4e
5.

 
Since there are only 3 arbi-

trary constants, the order of the differential equation is 3.

Answer: (C)

117.  The differential equation representing the family 

of curves y c x c2 2 ( ), where c is a positive pa-

rameter, is of

 (A) Order 1, degree 2 (B) Order 1, degree 3

 (C) Order 2, degree 2 (D) Order 2, degree 3

Solution: We have

 y c x c2 2 ( )  (5.25)

Therefore

 y
dy
dx

c  (5.26)

From Eqs. (5.25) and (5.26), we get

y y
dy
dx

x y
dy
dx

2 2

or y xy
dy
dx

y
dy
dx

2
2

3
3

2 4

Therefore, the highest order derivative in the equation is 

dy/dx and its power is 3. Hence, order is 1 and degree  

is 3.

Answer: (B)

118. The order and degree of the differential equation

d y

dx

dy
dx

y
2

2

2

2 0

are, respectively

 (A) 1, 2 (B) 2, 2 (C) 2, 1 (D) 2, 3

Solution: The highest order derivative occurring in the 

given equation is 2 and its power is 1. Therefore order is 

2 and degree is 1.

Answer: (C)

119.  The order and degree of the differential equation

x
dy
dx

a
d

dx

y2 3 2
2

2

/

are, respectively

 (A) 2, 2 (B) 2, 3 (C) 2, 1 (D) 2, 4

Solution: The given equation can be written as

x
dy
dx

a
d y

dx

2 3

2
2

2

2

Therefore order is 2 and degree is 2.

Answer: (A)

120.  The order and degree of the differential equation 

of all straight lines in the xy-plane which are at con-

stant distance p from the origin are, respectively,

 (A) 1, 1 (B) 2, 1 (C) 2, 2 (D) 1, 2

Solution: The equation of a straight line which is at a 

constant distance p from the origin is

 x cos   y sin    p (5.27)

Differentiating both sides w.r.t. x we get

cos sin
dy
dx

0

dy
dx

cot
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This implies

sin

cot

( / )

1

1

1

1

1

2

2

cosec

dy dx

and cos (sin )cot

/

( / )

dy dx

dy dx1 2

Substituting the values of cos  and sin  in Eq. (5.27), we 

have

x
dy dx

dy dx

y

dy dx
p

/

( / ) ( / )1 12 2

 y x
dy
dx

p
dy
dx

2
2

2

1

Order is 1 and degree is 2.

Answer: (D)

121.  The differential equation of the family of curves 

represented by the equation y  Ae3x  Be5x is

 (A) 
d y

dx

dy
dx

y
2

2
8 15 0

 (B) 
d y

dx

dy
dx

y
2

2
8 15 0

 (C) 
d y

dx

dy
dx

y
2

2
8 15 0

 (D) 
d y

dx

dy
dx

y
2

2
8 15 0

Solution: We denote dy/dx, d2y/dx2, etc. by y1, y2, y3, … . 

Given equation is 

 y  Ae3x  Be5x (5.28)

Therefore

 y1  3Ae3x  5Be5x (5.29)

Again

 y2  9Ae3x  25Be5x (5.30)

If we multiply Eq. (5.29) with 5 and subtract it from Eq. 

(5.30) we get 

6Ae3x  y2  5y1

 Ae y yx3
2 1

1

6
5( )  (5.31)

Similarly, if we multiple Eq. (5.29) with 3 and subtract it 

from Eq. (5.30) we get

y2  3y1  10Be5x

 Be
y yx5 2 13

10
 (5.32)

Substituting the values of Ae3x and Be5x as in Eqs. (5.31) 

and (5.32) in Eq. (5.28), we have

 y y y
y y1

6
5

3

10
2 1

2 1( )

 30y  5(y2  5y1)  3(y2  3y1)  0

30y  2y2  16y1  0

y2  8y1  15y  0

Hence

d y

dx

dy
dx

y
2

2
8 15 0

Answer: (A)

122.  The differential equation for which Ax2  By2  1  

(A and B are arbitrary constants) is the general  

solution, is

 (A) y
d y

dx

dy
dx

y
dy
dx

2

2

2 2

 (B) x y
d y

dx

dy
dx

y
dy
dx

2

2

2

 (C) x y
d y

dx

dy
dx

y
dy
dx

2

2

2

 (D) y x
d y

dx

dy
dx

x
dy
dx

2

2

2

Solution: Given equation is

 Ax2  By2  1 (5.33)

Differentiating both sides of Eq. (5.33) w.r.t. x we get

 Ax By
dy
dx

( ) 0  (5.34)

Again differentiating Eq. (5.34) w.r.t. x we get

 A B
dy
dx

By
d y

dx

2 2

2
0( )  (5.35)

From Eqs. (5.34) and (5.35), we have

 
y dy dx

x
A

B
dy
dx

y
d y

dx

( / )
2 2

2
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Therefore

y
dy
dx

x y
d y

dx

dy
dx

2

2

2

Answer: (B)

Try it out The differential equation for which

x

a

y

b

2

2

2

2
1

 is the general solution, is

(A) y
d y

dx

dy
dx

x y
dy
dx

2

2

2
2

(B) x y
d y

dx

dy
dx

y
dy
dx

2

2

2 2

(C) x y
d y

dx

dy
dx

y
dy
dx

2

2

2

(D) x
d y

dx
y

dy
dx

x
dy
dx

2

2

2

Hint: In Problem 122, take

A
a

1
2

and B
b

1
2

Therefore (C) is the correct answer. The student is

advised to proceed as in Problem 122.

123. If the substitution x  tan z is used, then the trans-

formed form of the equation

( ) ( )1 2 1 02 2
2

2

2x
d y

dx
x x

dy
dx

y

is

(A) 
d y

dz
y

2

2
2 0  (B) 

d y

dz

dy
dz

y
2

2
2 0

(C) 
d y

dz

dy
dz

y
2

2
2 0  (D) 

d y

dz
y

2

2
0

Solution: Given that x  tan z. Therefore

dy
dx

dy
dz

dz
dx

dy
dz x

1

1 2

So

( )1 2x
dy
dx

dy
dz

Again differentiating both sides w.r.t. x, we get

( )1 22
2

2

2

2

x
d y

dx
x

dy
dx

d
dx

dy
dz

d
dz

dy
dz

dz
dx

d y

dz

1

1 2x

Therefore

( ) ( )1 2 12 2
2

2

2
2

2
x

d y

dx
x x

dy
dx

d y

dz

Hence the given equation will be transformed to

d y

dz
y

2

2
0

Answer: (D)

124. The differential equation of all circles in the xy-

plane is

(A) y y y y3 1
2

1 2
21 3( )

 
(B) y y y y3 1

2
1
2

21 3( )

 (C) y y y y3 2
2

1 2
21 3( )  (D) y y y y3 2

2
1
2

21 3( )

where y1, y2, y3 are the first-, second- and third-order 

derivatives of y, respectively.

Solution: Equation of a circle in the xy-plane is 

x2  y2  2gx  2fy  c  0 (5.36)

where g, f, c are arbitrary constants. Differentiating w.r.t. 

x, we get

x  y y1  g  fy1  0 (5.37)

Again differentiating Eq. (5.37) w.r.t. x, we get

1 01
2

2 2y yy fy (5.38)

Again 

2y1y2  y1y2  y y3  fy3  0

Therefore

 
3 1 2 3

3

y y yy

y
f  (5.39)

Substituting the value of f  [obtained in Eq. (5.39)] in Eq. 

(5.38) we have

1 3 01
2

2
2

3
1 2 3y yy

y
y

y y yy( )
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y y y y3 1
2

1 2
21 3( )

Answer: (A)

125. The differential equation whose general solution 

is

y  A sin x  B cos x  x sin x

is

 (A) 
d y

dx
y x

2

2
cos  (B) 

d y

dx
y x

2

2
2cos

 (C) 
d y

dx
y x

2

2
2 sin  (D) 

d y

dx
y x

2

2
2cos

Solution: We have 

 y  A sin x  B cos x  x sin x (5.40)

Differentiating w.r.t. x, we get

 y1  A cos x  B sin x  sin x  x cos x (5.41)

Again, differentiating w.r.t. x, we get

y A x B x x x x x

y A x B x x x
2

2 2

sin cos cos cos sin

( sin cos sin ) coss

cos

x

y x2

Therefore

y2  y  2 cos x

Answer: (B)

126. If y  y(x)
 
and

2

1
0 1

sin
cos , ( )

x
y

dy
dx

x y

then y(  /2)

 

equals

 (A) 
1

3
 (B) 

2

3
 (C) 

1

3
 (D) 1

Solution: Given equation is

2

1

sin
cos

x
y

dy
dx

x

Therefore

dy x
x

dx
y 1 2

cos

sin
 (Variables Separable)

Integrating we get

dy
y

x
x

dx c
1 2

cos

sin

 log(y  1)(2  sin x)  c

 (y  1)(2  sin x)  k

Now

y(0)  1  (1  1)(2  0)  k

 k  4

Therefore

(y  1)(2  sin x)  4

 y
x

4

2
1

sin

Hence

y
2

4

2 1
1

1

3

Answer: (A)

127. Solution of the equation

dy
dx

x ysin( )

is

 (A) 

1

1
2

tan
x y

x c

 (B) 1
2

2
tan

x y
x c

 (C) tan
x y

x c2

2

 (D) tan( )x y
x c

2
1

Solution: We have

dy
dx

x ysin( )

Put x  y  z. Therefore

dy
dx

dz
dx

1

This implies

dz
dx

x y z1 sin( ) sin

 
dz
dx

z1 sin

 
dz

z
dx

1 sin

Integrating we get

dz
z

x c
1 sin
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dz

z z
x c

z
dz x c

z

[sin( / ) cos( / )]

[ tan( / )]

sec ( / )

2 2

1 2

2

2

2

2

2

1 2tan( / )z
x c

2
1

2x c
x y

z x ytan ( )∵

Answer: (B)

128. The differential equation

dy
dx

y

y

1 2

determines family of circles with

 (A) Variable radii and fixed centre at (0, 1)

 (B) Variable radii and fixed centre at (0, 1)

 (C) Fixed radius 1 and variable centres along x-axis

 (D) Fixed radius 1 and variable centres along y-axis

Solution: Given equation can be written as 

y

y
dy dx

1 2
 (Variables Separable)

Integrating we get

y

y
dy dx c

1 2

1

2

2

1

1

2
2 1

2

2

y

y
x c

y x c

Therefore

 1 22 2 2y x cx c

x y cx c

x c y

2 2 2

2 2

2 1

1( )

Answer: (C)

129.  The equation of the curve passing through the 

point (1, 1) and satisfying the differential equation

dy
dx

e x ex y y2

is given by

 (A) e e
xy x

2

1

2
 (B) e e

xy x

3

1

2

 (C) e e
xy x

3

3

1

3
 (D) e e

xy x

3

1

3

Solution: We have

dy
dx

e x ex y y2

 eydy   (ex   x2) dx (Variables Separable)

Integrating we get

e dy e x dx cy x( )2

 e e x cy x 1

3

3

The curve passes through (1, 1) implies

e e c
1

3

c
1

3

Therefore the curve equation is

e e
xy x

3

3

1

3

Answer: (C)

130.  Equation of the curve passing through the point (1, 1) 

and which is a solution of the equation

dy
dx

y
x

x y
2

0 0, ,

is

 (A) y2  x (B) y2  x3

 (C) x2  y3 (D) x2  y

Solution: We have

 
dy
dx

y
x

2

dy
y x

dx
2

 (Variables Separable)

Integrating we get

dy
y

dx
x

c2

log logy x c

y kx

2

2

Curve passes through (1, 1)  k  1. Therefore the curve 

is y  x2. 

Answer: (D)

131. Solution of the equation

y
dy
dx

y x( )1 2 2

is



 Worked-Out Problems 537

 (A) y ce x2 2 33

1/  (B) y cex2 33

1/

 (C) y ce x3 2 33

1/  (D) y ce x3 2 33

1/

Solution: Given that

y
dy
dx

y x( )1 2 2

Therefore

y

y
dy x dx

1 2
2  (Variables Separable)

Integrating we get

y

y
dy x dx c

1 2
2

1

2
1

1

3

1
2

3
2

1

2 3

2 3

2 2 3 23

log( )

log ( )

/

y x c

y x c

y e x c

Hence

y k e x2 2 33

1/  where k  e2c

Answer: (A)

132. Solution of the equation

dy
dx

y

x

1

1

2

2

is given by

 (A) y x x c1 2 sin

 (B) y x c x ccos sin1 2

 (C) xy x c1 2

 (D) y xy x y c( ( ))1 12 2

Solution: We have

dy
dx

y

x

1

1

2

2

Therefore

dy

y

dx

x1 12 2

Integrating we get

dy

y

dx

x
c

1 12 2

 Sin Sin1 1y x c

So

y  sin (Sin 1x  c) 

sin ( )cos cos( )sin

cos sin

Sin Sin1 1

21

x c x c

x c x c

Answer: (B)

133.  The equation of the curve passing through the 

point (1, 3) and whose slope at any point (x, y) is 

[1  (y/x)] is given by

 (A) xy  4x2  7 (B) 2xy  x2  7

 (C) 3xy 2x2  7 (D) xy x4 72

Solution: By hypothesis

dy
dx

y
x

1

dy
dx

y
x

1

Put z  y/x. Therefore

z x
dz
dx

z 1

x
dz
dx

z( )2 1

Therefore, 

 
dz
z

dx
x2 1

0  (Variables Separable)

Integrating we get

dz
z

dx
x

c
2 1

1

2
2 1

2 1

2 1

2

2

2

2

2

log log

log log( )

log( )

z x c

z x c

z e
k

x
c x

zz
k

x
y
x

k

x

1

2 1

2

2

The curve passes through (1, 3)  k  7.  Therefore 2xy  

 x2  7 is the curve equation.

Answer: (B)

134. Solution of the equation

dy
dx

x y( )2

is
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 (A) y  tan(x  c)  x (B) y  tan(x  c)  x
 (C) y  cot(x  c)  x (D) y  tan x  cx

Solution: The given equation is not directly variable 

separable, but it will be variable separable if we put z   

x  y. Now

dz
dx

z1 2

or 
dz

z

dx
x2 1

Therefore the solution is

Tan 1z  x  c

or z  tan(x  c) 

Hence

y  tan(x  c)  x

Answer: (A)

135.  A curve y  f (x) passes through the point P(1, 1). 

The equation of the normal at P(1, 1) to the curve 

y  f (x)
 
is

(x  1)  a(y  1)  0

and the slope of the tangent at any point on the 

curve is proportional to the ordinate of the point. 

Then the equation of the curve is

 (A) x2  y2  1 (B) y2  x

 (C) (y  1)2  a(x  1) (D) y  ea(x  1)

Solution: By hypothesis,

dy
dx

ky

where k  0. Therefore the slope of the normal at (1, 1) is

1 1

k a
 (By hypothesis)

Therefore k  a. Now

dy
y

adx  (Variables Separable)

Integrating we get

dy
y

a dx c

log y ax c

y eax c

The curve passes through the point (1, 1). This implies

1  ea c

So

a  c  0 or c  a 

Hence the curve equation is

 y  eax  a  ea(x 1)

Answer: (D)

136.  A and B are locations and the distance AB is 8 m.  

O is the midpoint of AB. At the point ‘O’, a 2 m 

long object is fired vertically upwards. The speed of 

the object after t seconds is given by

ds
dt

t( )2 1 m/s

Let  and  be the angles subtended by the object 

at A and B, respectively, after 1s and 2 s. Then 

cos(   
 
) is

 (A) 
4

26
  (B) 

3

5
  (C) 

4

5
  (D) 

5

26

Solution: See Fig. 5.40. Let OM1  2 be the starting 

position of the object. Let M1N1 and M2N2 be the positions 

of the object after 1s and 2s, respectively. Since ‘O’ is the 

midpoint of AB and ON2 is perpendicular to AB, the 

object subtends equal angles at A and B.

Let OAM1  1 and OAM2  2.  By hypothesis

ds
dt

t2 1

ds t dt

s t t c

( )2 1

2

So 

t  0, s  0  c  0

Now s  t2  t is the distance travelled by the object in  

t seconds. When t  1, we have s  2.

tan 1

2

4

1

2

O4

q 1

N2

N1

M2

M1
a

b

2

2

2

2

A B

FIGURE 5.40  Single correct choice type question 136.
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and tan( )1

4

4
1

Therefore

tan tan( )

tan( ) tan

tan( )tan

( / )

1 1

1 1

1 11

1 1 2

1 1 1 2

1

3( / )

Again

and

 

tan

tan( )

2

2
2

6

4

3

2

8

4
2

ON
OA

Therefore

tan tan( )

( / )

( / )

2 2

2 3 2

1 2 3 2

1

8

Now, tan    1/3 and tan   1/8 implies

tan( )
( / ) ( / )

( / )( / )

1 3 1 8

1 3 1 81

5

25

1

5

Hence

cos( )
tan ( )

( / )

1

1

1

1 1 25

5

26

2

Answer: (D)

137.  A normal is drawn at a point P (x,y)
 
of a curve. It 

meets x-axis in Q. If PQ is of constant length k and if 

the curve passes through (0, k), then its equation is

 (A) xy  k2 (B) x2  y2  k2

 (C) y2  kx (D) x2  4ky

x

y

O Q

P
K

FIGURE 5.41 Single correct choice type question 137.

Solution: See Fig. 5.41. The length of the normal at  

P (x, y)  PQ which equals

y
dy
dx

k1
2

 (By hypothesis)

Therefore

dy
dx

k

y

2 2

2
1

dy
dx

k y

y

2 2

Now

y

k y
dy dx

2 2
 (Variables Separable)

Integrating we get

or

 

y

k y
dy x c

k y x c

2 2

2 2

The curve passes through (0, k)  c  1.  Therefore the 

curve is x2  y2  k2.

Answer: (B)

138. A solution of the differential equation

dy
dx

x
dy
dx

y
2

0

is

 (A) y  2 (B) y  2x

 (C) y  2x  4 (D) y  2x2  4

Solution: We have

dy
dx

x x y2 4

2

 
2

42dy
dx

x x y  (5.42)

Put x2  4y  z. So

 2 4x
dy
dx

dz
dx

 (5.43)

From Eqs. (5.42) and (5.43)

dz

z
dx∓ 2
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Integrating we get

dz

z
dx c∓ 2

2 2

2

4 2

4 2

2 2

2 2 2

z x c

z x c

z x c x c

x y x c x c

y c

∓

∓

xx c

y c x c

2

24 2∓

If 4y  2c x  c 2 and c   4, then y  2x  4 is a solution and 

if 4y  2c x  c 2 and c   4 then also y  2x  4 is a solu-

tion.

Answer: (C)

139.  If the length of the tangent at any point on the curve 

y  f (x)
 
intercepted between the point of contact 

and this x-axis is 1, then the equation of the curve is

 (A) log
1 1

1 1

2

2

y

y
x c

 (B) log
1 1

1 1

2

2

2y

y
x c

 (C) 1
1

2

1 1

1 1

2
2

2
y

y

y
x clog

 (D) 1
1 1

1 1

2
2

2
y

y

y
x clog

Solution: The length on the tangent is 1. This implies

 y dx dy1 12( / )

 

1
1

1

1

2

2

2 2

2

2

dx
dy y

dx
dy

y

y

dy
dx

y

y

1 2y

y
dy dx  (Variables Separable)

Integrating we get

1 2y

y
dy x c

Put 1  y2  t2 so that y dy  t dt. Therefore

1 2

2

y

y
ydy x c

t

t
t dt x c

t

t
dt x c

t
dt x

1

1 1

1

1
1

1

2

2

2

2

( )

cc

t
t
t

x
1

2

1

1
log

So

1
1

2

1 1

1 1

2
2

2
y

y

y
x clog

Answer: (C)

140. Let

dy
dx x y

6

where y(0)  0. If x  y  6,
 
then the value of y is 

equal to

 (A) loge 4 (B) 2loge 3

 (C) 6loge 2 (D) 4 loge2

(IIT-JEE 2006)

Solution: Put z  x  y in the given equation. We get

 
dz
dx

dy
dx z

1
6

z
z

dz dx
6

 (Variables Separable)

Integrating we get

z
z

dz x c
6

1
6

6

6 6

6 6

z
dz x c

z z x c

y x y c x y z
e

e

log

log ( )∵

Now

y(0)  0  c  6 loge 6

Therefore

y  6 loge 6  x  y  6 loge 6
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When x  y  6, then

y 6 loge 12  6 loge 6

 y  6 loge2  6 loge 6  6 loge 6

 y  6 loge 2

Answer: (C)

141.  Tangent is drawn at any point P of a curve which 

passes through (1, 1) cutting x- and y-axes in A and 

B, respectively. If AP  PB  3  1, then

 (A)  differential equation of the curve is 

3 02x
dy
dx

y

 (B)  differential equation of the curve is 

3 0x
dy
dx

y

 (c) the curve passes through the point (1/8, 2)

 (d) the normal at (1, 1) is x  3y  2

(IIT-JEE 2006)

xO A

B

P

3

1

y

FIGURE 5.42 Single correct choice type question 141.

Solution: See Fig. 5.42. Equation of the tangent at 

(x1, y1) is

y  y1  m(x  x1)

where

m
dy
dx x y( , )1 1

Now

y x x
y
m

0 1
1

so that A  (x1  y1/m, 0)

 

and

x y m x y0 1 1

so that B  (0, y1  mx1).
 
Now AP  PB  3  1 implies

x
x y m

1
1 1

4

( / )

and y
y mx

1
1 13

4

( )

Therefore

3 01
1x

y
m

and y1  3mx1  0

So the differential equation is

 3 0x
dy
dx

y  (5.44)

3
0

y
dy

dx
x

 (Variables Separable)

Integrating we get

3

y
dy

dx
x

c

3

3

log logy x c

xy k

Curve passes through (1, 1)  k  1. Therefore 

xy3  1

Also (1/8, 2) lies on xy3  1.

Answer: (C)

142.  Let f be a real-valued differentiable function on �  

such that f (1)  1. If the y-intercept of the tangent 

at any point P(x,y) on the curve is equal to the cube 

of the abscissa of P, then the value of f (2) is

 (A) 1 (B) 2 (C) 1 (D) 2

(IIT-JEE 2010)

Solution: Equation of the tangent at (x1, y1) is 

y  y1  m(x  x1)

where

m
dy
dx x y( . )1 1

Now 

x  0  y  y1  mx1

By hypothesis,

y mx x1 1 1
3

Therefore the differential equation is

y x
dy
dx

x

dy
dx

y
x

x

3

2 (Linear equation)
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The integrating factor is

I.F. e
x

dx x/ 1

Therefore the solution is

y
x

x
x

dx c

y
x

x c

1 1

1

2

2

2

( )

Now 

 f (1)  1

1
1

2

3

2

c

c

Therefore

y
x

x

f x
x

x

3

3

2

3

2

2

3

2
( )

So

f ( ) ( )2
8

2

3

2
2

4 3 1

Answer: (C)

143.  A spherical raindrop evaporates at a rate propor-

tional to its surface area at any instant t. The dif-

ferential equation giving the rate of change of the 

radius of the raindrop is

 (A) 
dr
dt

k k0 0( )  (B) 2 02dr
dt

k

 (C) r dr t dt k  (D) r dr t dt2 0

Solution: Let r be the radius of the raindrop at any 

instant and V its volume. Then

V r
4

3

3

By hypothesis, V is proportional to the surface area S  

(  4 r2). Then

d
dt

r k r
4

3
43 2( )

where k is the constant of proportionality. So

4 42 2r
dr
dt

k r

dr
dt

k

( )

Since r is decreasing (because V is decreasing) we have

dr
dt

k
dr
dt

kor 0

Answer: (A)

144. Solution of the differential equation

( ) ( )y x y dx xy x dy3 2 2 32 2 0

is

 (A) xy x y c( )2 2  (B) xy y x c2 2

 (C) xy x y c( )2 2  (D) x y c xy2 2

Solution: We have

dy
dx

x y y

xy x

2

2

2 3

2 3

which is a homogeneous equation. Put y  vx. Then

v
xdv
dx

v v

v

x
dv
dx

v v

v
v

v v

v

v

v

2

2 1

2

2 1

3 3

2 1

2 1

1

3

2

3

2

3

2

2

( v
dv

x
dx

2

3

)

Integrating we get

1 1

2 1

1

2 1

3

12 3

3

v v v
dv

x
dx c

v v x c

x

( ) ( )

log( ) log

yy
x

y

x
c

xy y x c

2

2

2 2

1

Answer: (B)

145.  The normal at any point P(x, y) of a curve meets 

x- and y-axes in A and B, respectively. If O is the 

origin and OA and OB are the algebraic intercepts 

of the normal at P such that

1 1
1

OA OB

then the equation of the curve is [given that (5, 4) 

is a point on the curve]

 (A) x2  y2  9

 (B) xy  20
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 (C) (x  1)2  (y  1)2  61

 (D) (x  1)2  (y  1)2  25

Solution: Normal at (x1, y1) is

y y
m

x x1 1

1
( )

where

m
dy
dx x y( , )1 1

Now

y x x my

x y y
x
m

0

0

1 1

1
1

By hypothesis

 
1 1

1
1 1 1 1x my y x m( / )

1
1

1

1

1 1

1 1

1 1

1 1

m
x my

m x my

dy
dx

x y
dy
dxx y( , ) ( , )x y1 1

Therefore, the differential equation is

 1
dy
dx

x y
dy
dx

 ( )1 1y
dy
dx

x

( ) ( )1 1y dy x dx  (Variables Separable)

Integrating we get

c y dy x dx( ) ( )1 1

 c  (y  1)2  (x  1)2 

 (x  1)2  (y  1)2  c

The curve passes through (5, 4)  c  25. Therefore

(x  1)2  (y  1)2  25

Answer: (D)

146.  If the algebraic sub-tangent at any point of a curve 

is equal to half of the sum of the coordinates of the 

point, then the equation of the curve is

 (A) x2  y2  cy (B) (x  y)2  cy

 (C) (x  y)2  cx (D) x2  y2  c2 

Solution: By hypothesis

 
y

dy dx
x y

/ 2

dy
dx

y
x y
2

 (Homogeneous)

Put y  vx. Then

v x
dv
dx

v
v

2

1

x
dv
dx

v
v

v
v v

v
v

v v
dv

dx
x

2

1 1

1

1

2

( )

Integrating we get

 
1

1

v
v v

dv
dx
x

c
( )

1 2

1

2 1

1 2

v v
dv

dx
x

c

v v x c

v x cv

x

log log log

( )

( y cy)2

Answer: (B)

147. By a suitable substitution, the equation 

y
dy
dx

x y3 2 0

can be transformed to

 (A) Variables separable (B)  Homogeneous

 (C) Linear (D) Bernoulli’s equation

Solution: Putting z  x   y2 in the given equation, we 

get 

 
dz
dx

y
dy
dx

1 2( )

 

( )

( )

( )

z x
dz
dx

z

z x
dz
dx

z

z x
dz
dx

1

2
1 0

1 2 0

(( )z x z2 0

 

( )z x
dz
dx

z x

dz
dx

z x
z x

0

0

which is a homogeneous equation.

Answer: (B)



544 Chapter 5   Definite Integral, Areas and Differential Equations

148. Solution of the equation 

dy
dx

y x

is

 (A) 2 2 1y x y x x clog

 (B) 2 1y x y x x clog

 (C) 2 1y x y x x clog

 (D) log y x y x c1

Solution:  Putting y  x  z2  in the given equation, we 

get

 
dy
dx

z
dz
dx

1 2

 1 2z
dz
dx

z

2

1

z
z

dz dx  (Variables Separable)

 
2

1

z
z

dz dx c

Integrating we get

2
2

1z
dz x c

2 2 1

2 2 1

z z x c

y x y x x c

log

log

Answer: (A)

149. Solution of the differential equation 

dy
dx

y y y x

x

3 2 2 2

3

is

 (A) y y x k xy2 2  (B) y x k xy2 2

 (C) y x k xy2 2  (D) y x k x y2 2 2 2

Solution: Substituting y  vx in the given equation, we 

get

v x
dv
dx

v v v3 2 2 1

x
dv
dx

v v v v

v v v v

( )

( )

2 2 2

2 2

1 1

1 1

1

1 12 2v v v v
dv

dx
x( )

Integrating we get

dv

v v v v

dx
x

c
2 21 1( )

v v

v v
dv x c

v v
dv x c

v v

2

2

2

2

1

1

1

1

1

1

log

log

log( )) log logv x c

v v k y

y y x k xy

2

2 2

1

Answer: (A)

150.  The equation of the curve passing through the point 

(1,  /4) and tangent at any point of which makes 

angle Tan 1 2y
x

y
x

cos  with the x-axis, is

 (A) y
e
x

Tan 1 log

 (B) y x
y
x

Tan 1 1

 (C) y x xTan 1 1( log )

 (D) y x xTan 1 1( log )

Solution: By hypothesis 

dy
dx

y
x

y
x

y
x

y
x

tan cos

cos

Tan 1 2

2

Put y  vx. Then 

v x
dv
dx

v vcos2

(sec )2 0v dv
dx
x

Integrating we get

(sec )2 v dv
dx
x

c

tan log

tan log

v x c

y
x

x c

The curve passes through (1,  /4)  1  c. Therefore
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tan v  log x  1

tan log

( log )

( log )

y
x

x

y
x

x

y x x

1

1

1

1

1

Tan

Tan

Answer: (C)

151. Solution of the differential equation 

y2dx  (x2  xy  y2) dy  0

is

 (A) y ke y xTan 1( / )  (B) y kxe y xTan 1( / )

 (C) y kx y xTan 1( / )  (D) x kye x yTan 1( / )

Solution: We have

y2dx  (x2  xy  y2) dy  0

dy
dx

y

x xy y

2

2 2
 (Homogeneous)

Put y  vx. Then 

v x
dv
dx

v

v v

2

21

x
dv
dx

v

v v
v

v v

v v

v v

v v
dv

dx
x

2

2

3

2

2

2

1 1

1

1
0

( )

( )

Integrating we get

1 1

1 2v v
dv x clog

log log

log( )

( / )

v x v c

v x v c

y e k ec y x

Tan

Tan

Tan Tan

1

1

1 1

1

( / )

( / )

y x

y xy k eTan

Answer: (A)

152. Solution of 

x dy dx y

x y
mx

( / )

2 2

2

is

 (A) Sin 1

2

y
x

mx
c

 (B) Sin 1
2

2

y
x

mx
c

 (C) sin
y
x

xy c

 (D) y mx
y
x

csin

Solution: We have

x
dy
dx

y mx x y2 2 2

Put y  vx. Then

v x
dv
dx

v mx x v x2 2 2

 

x
dv
dx

mx v

dv

v
mx dx

2 2

2

1

1
( )

Integrating we get

dv

v
m xdx c

1 2

Sin

Sin

1
2

1
2

2

2

v
mx

c

y
x

mx
c

Answer: (B)

153. Solution of the equation 

x
dy
dx

y x y2 2

is

 (A) y x y k x2 2 2

 (B) y x y k x2 2

 (C) x y k x2 2 2

 (D) x x y k y2 2 2

Solution: We have

x
dy
dx

y x y2 2

dy
dx

y
x

x y

x

2 2

Put y  vx. Then

v x
dv
dx

v v

dv

v

dx
x

1

1

2

2
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Integrating we get

dv

v

dx
x

c
1 2

log( ) logv v x c

v v k x

y x y k x

1

1

2

2

2 2 2

Answer: (A)

154. Solution of the equation

x
y
x

dy y
y
x

x dxsin ( sin )

is

 (A) sin log
y
x

k x  (B) y x k xlog

 (C) cos log
y
x

k x  (D) tan log
y
x

k x

Solution: We have

x
y
x

dy y
y
x

x dxsin sin

dy
dx

y y x x
x y x
sin( / )

sin( / )

Put y  vx. Then

v x
dv
dx

v v
v

sin

sin

1

x
dv
dx

v v
v

v
v

v dv
dx
x

sin

sin sin

(sin )

1 1

0

Integrating we get

(sin )v dv
dx
x

c

cos log

cos log

v x c

y
x

k x

Answer: (C)

155. The general solution of the equation 

x
y
x

dy
dx

y
y
x

xcos cos

is

 (A) Cos 1 y
x

c xlog

 (B) sin log
y
x

c x

 (C) Sin 1 y
x

c xlog

 (D) cos (log )
y
x

c xSin 1

Solution: We have

dy
dx

y y x x
x y x
cos( / )

cos( / )

Put v  y/x. Then

v x
dv
dx

v v
v

cos

cos

1
 

x
dv
dx

v v
v

v
v

vdv
dx
x

cos

cos cos

cos

1 1

The solution is

sin log

sin log

v x c

y
x

cx

Answer: (B)

156. The general solution of the differential equation 

2yex/ydx  (y  2xex/y) dy  0

is

 (A) 2e x cx y/ log  (B) e y x cx y/ log2

 (C) xe y cx y/ log  (D) 2e y cx y/ log

Solution: We have

2yex/ydx  (y  2xex/y) dy  0

Therefore

dx
dy

y xe

ye

e
x
y

x y

x y

x y

2

2

1

2

/

/

/

So

 
dx
dy

x
y

e x y1

2

/  (5.45)

Put x  vy. Then

 v y
dv
dy

dx
dy

y
dv
dy

e v1

2
 [By Eq. (5.45)]

 2 0e dv
dy
y

v
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Integrating we get

2e dv
dy
y

cv

2

2

e y c

e y c

v

x y

log

log/

Answer: (D)

157. General solution of the differential equation 

ydx xdy

y2
0

is

 (A) xy  c (B) x2  cy

 (C) y2  cx (D) y  cx

Solution: We have

dy
y

dx
x

0

log logy x c

y kx

 Answer: (D)

158.  A curve is passing through the point (0, 1). If the slope 

of the curve at any point (x, y) is equal to x  xy, then 

the equation of the curve is

 (A) y ex2
2 2/  (B) y ex1 2

2 2/

 (C) y ex1
2 2/  (D) x ex1 2

2 2/

Solution: By hypothesis, 

 
dy
dx

x xy

dy
dx

x y x( )  (Linear equation)

Now P  x, Q  x. The integrating factor is 

I.F. e ePdx x2 2/

Therefore, the solution is

y e xe dx c

e dt c t
x

e c

e

x
x

t

t

x

2
2

2

2
2

2

2

1
2

/
/

/

( ) where

c

That is

y cex1
2 2/

The curve passes through the point (0, 1) implies that

1  1  c or c  2

Therefore the curve equation is 

y e

y e

x

x

1 2

1 2

2

2

2

2

/

/

Answer: (B)

159. General solution of the differential equation

(cos ) tan2 0
2

x
dy
dx

y x x

is

 (A) y  1  tan x  ce tan x

 (B) y  1  tan x e tan x  c 

 (C) (y  1)etan x  tan x  c

 (D) (y  1) tan x  c  e tan x 

Solution: We have

(cos ) tan2 x
dy
dx

y x

dy
dx

x y x x(sec ) sec tan2 2  (Linear)

So P  sec2 x and Q  sec2 tan x. The integrating factor is

I.F. e ePdx xtan

Therefore, the solution is 

ye x x e dx c

t e dt t x

x x

t

tan tan(sec tan )

tan

2

where

So

ye e t c

e x c

x t

x

tan

tan

( )

(tan )

1

1

Hence

y  1  tan x  c e tanx

Answer: (A)

160. The general solution of the equation 

dy
dx

y
x

x2

is

 (A) xy
x

c
2

2
 (B) xy

x
c

3

3

 (C) xy
x

c
4

4
 (D) xy

x
c

5

5
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Solution: We have

dy
dx

y
x

x2  (Linear)

Therefore P  1/x and Q  x2. The integrating factor is

I.F. e e xP dx xlog

Therefore, the solution is 

y x x x dx c

x
c

( ) ( )2

4

4

This implies

xy
x

c
4

4

Answer: (C)

161. General solution of the differential equation 

( log ) logx x
dy
dx

y
x

x
2

is

 (A) xy x cx xlog ( log( ) )2 1

 (B) y x cx xlog ( log )2 1

 (C) x x cx y xlog ( log )2 1

 (D) xy x cx xlog ( log )2 1

Solution: Given equation is

dy
dx

y
x x xlog

2
2

 (Linear)

The integrating factor is

I.F. e e x
dx

x x xlog log(log ) log

Therefore, the solution is 

 y x
x

xdx c

x
x

x x
c

x
x c

log log

log

(log )

2

2
1 1 1

2
1

2

Therefore

xy log x  cx  2 (log |x|  1)

Answer: (D)

162. Solution of 

x
dy
dx

y x xy x xcot ( )0 0

is

 (A) xy
c

x
x x

sin
cot1

 (B) xy  c sin x  x cot x

 (C) xy sin x  c  cot x 

 (D) y sin x  cx  x cot x 

Solution: We have

x
dy
dx

x x y x( cot )1

dy
dx

x x
x

y
( cot )1

1  (Linear)

Here

P
x x
x

Q
1

1
cot

,

The integrating factor is

I.F. e e e x xP dx x
x dx

x x
1

cot
log( sin ) sin

Therefore, the solution is 

y x x x x dx c

x x x c

( sin ) ( sin )

sin cos

1

So

xy x x
c

x
1 cot

sin

Answer: (A)

163.  If y  0 when x  1, then a particular solution of the 

equation

( )1 2
1

1

2
2

x
dy
dx

xy
x

is

 (A) y x x( )1
3

2 1Tan

 
(B)

 
y x x( )1

2

2 1Cot

 (C) y x x( )1
4

2 1Cot

 (D) y x x( )1
4

2 1Tan

Solution: Given equation is

dy
dx

x

x
y

x

2

1

1

12 2 2( )
 (Linear)

The integrating factor is
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I.F. e

e

x

x

x
dx

x

2

1

1

2

2

2

1

log( )

Therefore, the solution is 

y x
x

x dx c

x c

( )
( )

( )1
1

1
12

2 2
2

1Tan

Now x y1 0  so that 

0 1
4

1Tan orc c

Hence the solution is

y x x

x

( )1
4

2 4

2 1

1

Tan

Cot

So

y x x( )1
4

2 1Cot

Answer: (C)

164. General solution of the equation 

( cos ) ( sin cos )x x
dy
dx

y x x x 1

is

 (A) y sec x  tan x   c  (B) xy sec x  tan x   c 

 (C) xy  sec x tan x   c  (D) y sec x  x tan x   c

Solution: Given equation is

dy
dx

y
x x x

x x x
x

( sin cos )

cos
sec

1

So

dy
dx

x
x

y
x

xtan sec
1 1

 (Linear)

The integrating factor is

I.F. e

e

x x

x
x

dx

x x

tan

log( sec )

sec

1

Hence the solution is

y x x
x

x x x dx c( sec ) sec ( sec )
1

sec

tan

2 x dx c

x c

Therefore

xy sec x  tan x  c

Answer: (B)

165. General solution of the equation 

( )1 1x
dy
dx

xy x

is

 (A) y(1  x)  c ex (B) y(1  x)  x  c ex 

 (C) x(y  1)  x  c ex  (D) x(y  1)  c ex

Solution: Given equation is

dy
dx

x
x

y
x
x1

1

1
 (Linear)

The integrating factor is

I.F. e

e

e

e x

x
x

dx

x
dx

x x

x

1

1
1

1

1

1

log( )

( )

Hence the solution is

y e x
x
x

e x dx

e x dx c

e x

x x

x

x

[ ( )] ( )

( )

[

1
1

1
1

1

ee e dx c

e xe e c

xe c

x x

x x x

x

( ) ]1

Therefore

y(1  x)  x  c ex

Answer: (B)

166. General solution of the equation 

( )1 2 1

x
dy
dx

y e xTan

is

 (A) y e cxTan 1

 (B) ye cex xTan Tan1 12

 (C) 2
1 1

y e ce xxTan Tan

 (D) 2 2 1

y e cxTan
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Solution: The given equation is

dy
dx

y

x

e

x

x

1 12 2

1Tan

 (Linear)

The integrating factor is

I.F. Tane e
dx

x x1 2 1

Therefore the solution is

ye
e

x
e dx c

e c

e

x
x

x

x

Tan
Tan

Tan

Tan

Tan

1

1

1

1

1

1

1

2

1

2

2

2

2

( )

xx c

Hence

2 2
1 1

y e cex xTan Tan

Take 2c as c.

Answer: (C)

167. If y(t) is a solution of 

( )1 1t
dy
dt

ty

and y(0)  1, then y(1) is equal to

 (A) 
1

2
   (B) 

1

2
   (C) 1   (D) 1

(IIT-JEE 2003)

Solution: Given equation is 

dy
dt

t
t

y
t1

1

1
 (Linear)

The integrating factor is 

I.F. e

e

e

t e

t
t
dt

t
t

dt

t t

t

1

1 1

1

1

1

log( )

( )

The solution is

y t e
t

e t dt c

e c

t t

t

( ) ( )1
1

1
1

Therefore

y(1  t)  1  cet

Now 

y(0)  1

 1  1  c

 c  0 

Hence

y t y
t

( )1 1
1

1
or

Therefore

y( )1
1

2

Answer: (A)

168.  If y  y(x) is a function of x and y(0)  0, then a solu-

tion of the equation 

dy
dx

y x xtan sec

is

 (A) y  xsec x (B) y  xcosec x

 (C) x  ycosec x (D) x  ysec x

Solution: The given equation is

dy
dx

y x xtan sec

The integrating factor is

I.F. e e xdx xtan log(cos ) cos

Therefore the general solution is

y x x x dx c x c(cos ) sec cos

Now

y(0)  0  c  0

So the solution is y cos x  x or y = x sec x.

Answer: (A)

169.  If y  y(x) is a function of x and y(1)  0, then the 

solution of the equation 

x
dy
dx

y
x

x
1

 

is

 (A) y
x

x
x x

1
( log )

 (B) y
x

x x
1

1
1( log )
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 (C) y
x

x
x x

1
1( log )

 (D) y
x

x
x x

1
1( log )

Solution: Given equation is

dy
dx

y
x x( )1

1

The integrating factor is

I.F. e

e

e

x
x

dx
x x

x x
dx

x
x

( )

log

1

1 1

1

1

1

The solution is

y
x

x
x

x
dx c

x x c

1 1

log

Now

y(1)  0  0  1  0  c

c  1

Therefore

y
x

x
x x

1
1log

y
x

x
x x

1
1( log )

Answer: (D)

170.  Tangent at any point P(x, y) of a curve y  f(x) 

meets the y-axis in B. If the algebraic value of OB 

is equal to x  2, then the equation of the curve is

 (A) y  2  c x  x log |x|

 (B) y  c x  x log |x|

 (C) y  2  c x  x log |x|

 (D) x  2  c y  x log |x|

Solution: Tangent at (x1, y1) is

y  y1  m (x x1) 

where 

m
dy
dx x y( , )1 1

Now 

x  0  y  y1 mx1

Therefore

OB  y 1  mx1  x1  2 (By hypothesis)

Therefore differential equation is 

 y x
dy
dx

x 2

dy
dx

y
x

x
x

2
 (Linear)

The integrating factor is

I.F. e
x

x dx( / )1 1

The solution is

 

y
x

x
x x

dx c

x x
dx c

x
x c

1 2 1

2 1

2

2

log

Therefore

y  2   xlog |x|  cx

 y  2  cx  xlog |x|

Answer: (A)

171.  The tangent at any point P on the curve y  f (x) 

meets the y-axis in B. N is the foot of the perpendic-

ular drawn from P onto the x-axis. If the rectangle 

with OB and ON (O is the origin) as adjacent sides 

is of constant area and equals a2, then the equation 

of the curve is

 (A) y cx
a2

2
 (B) y cx

a
x

2
2

 (C) y cx
a
x

2

 (D) y cx
a

x

2

2

Solution: Tangent at (x1, y1) is

y  y1  m(x  x1) 

where

m
dy
dx x y( , )1 1

B  (0, y1  mx1), N  (x1, 0). The differential equation is

Now

x y x
dy
dx

a2
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xy x
dy
dx

a

dy
dx

y
x

a

x

2 2

2

2
∓

(i) 
dy
dx

y
x

a

x

2

2
 (Linear)

I.F. e
x

x
dx

1
1

Therefore

y
x

a

x x
c

a

x
c

1 1

2

2

2

2

2

This implies

y cx
a

x

2

2

(ii) If 

dy
dx

y
x

a

x

2

2

then

y cx
a

x

2

2

Therefore the solution is

y cx
a

x

2

2

Answer: (D)

172.  Tangent at a point P on the curve meets the x-axis 

in A and O is the origin. If the area of the triangle 

OAP is constant (  a2), then the equation of the 

curve is

 (A) x cy
a
y

2

 (B) y cx
a
x

2

 (C) xy c x y( )  (D) cxy a2

Solution: See Fig. 5.43. The equation of the tangent at 

(x1, y1) is

y  y1  m(x  x1) 

where

m
dy
dx x y( , )1 1

 

O A

y

P (x, y )

B

y

x

FIGURE 5.43 Single correct choice question 172.

The co-ordinates of A are (x1  (y1/m), 0). Now

Area of OAP y x
y
m

a1 1
1 22

Differential equation is

xy y
dx
dy

a2 22

(i) We have

xy y
dx
dy

a

dx
dy

x
y

a

y

2 2

2

2

2

2

The integrating factor is

I.F. e e
y

y
dy

y
1

1log

The solution is 

x
y

a

y y
dy c

a
y

c

a

y
c

1 2 1

2
3 1

2

2

2
3 1

2

2

Therefore

x
a
y

cy
2

(ii) If 

xy y
dx
dy

a2 22

then 

dx
dy

x
y

a

y

2 2

2
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In this case 

x cy
a
y

2

Therefore the solution is

x cy
a
y

2

Answer: (A)

173.  If y(0)  1, then the solution of the differential 

equation

x
dy
dx

x y y x3 2 4 cos

is given by

 (A) x3  y3 sin x (B) x3  3y3 sin x

 (C) 3x3  y3 sin x  (D) y3  3x3 sin x

Solution: Dividing the given equation with x3 y4, we 

have 

y
dy
dx

y
x

x

x
4

3

3

cos

Put y 3  z so that

3 4y
dy
dx

dz
dx

1

3

3 3

3

3

dz
dx

z
x

x

x
dz
dx

z
x

x

x

cos

cos

The integrating factor is

I F. .
( / )

e x
x dx3 3

Therefore the solution is

zx
x

x
x dx c

x c

3
3

33

3

cos
( )

sin

This implies

x

y
x c

3

3
3sin

Now y(0)  1  c  0. Therefore

x3  3y3 sin x

Answer: (B)

174. General solution of the equation 

dy
dx

y x y2 2tan

is

 (A) cos sin2

2
2x y

x
x cy

 (B) 2
1

2
22cos sinx y x x cy

 (C) cos sin2

2

1

4
2x y

x
x cy

 (D) cos sin2

4
2x

y
x cy

Solution: The given equation is

dy
dx

y x y2 2tan  (Bernoulli)

y
dy
dx y

x2 2
1tan

Put 1/y  z. Therefore

 
1
2y

dy
dx

dz
dx

dz
dx

z x2 1tan

dz
dx

x z( tan )2 1  (Linear)

The integrating factor is

I.F. e

e

x

x dx

x

2

2

2

tan

log(cos )

cos

Therefore the solution is

z x x dx c

x dx c

x
x

c

cos cos

( cos )

sin

2 2

1

2
1 2

1

2

2

2

xx x
c

2

2

4

sin

But z  1/y. Therefore

cos
sin2

2

2

4
x y

x x
cy

cos
sin2

2

2

4
x y

x x
cy

Answer: (C)
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175.  The curve passing through the point (0,  /4) satis-

fying the differential equation 

dy
dx

x y x ysin cos2 3 2

is

 (A) tan ( ) /y x e x1

2
1

3

2

2 22

 (B) tan ( ) /y x e x1

2
1

3

2

2 22

 (C) tan ( )y x e x1

2
1

3

2

2 2

 (D) tan ( )y x e x1

2
1

3

2

2 2

Solution: The given equation is 

sec ( tan )2 32y
dy
dx

x y x

Put tan y  z. Therefore

dz
dx

x z x( )2 3  (Linear in z)

The integrating factor is

I.F. e e
x dx x2 2

Therefore

ze x e dx c

x e x dx c

x e x dx c

te dt c

x x

x

x

t

2 2

2

2

3

2

21

2
2

1

2

( )

wherre t x

e t c

e x c

t

x

2

2

1

2
1

1

2
1

2

( )

( )

So

tan ( )y x ce x1

2
12 2

The curve passes through (0,  /4). This implies

1
1

2

3

2

c

c

Therefore

tan ( )y x e x1

2
1

3

2

2 2

Answer: (C)

176. General solution of the equation 

( )1 2 3 3x
dy
dx

xy x y

is

 (A) 
1

1

1 1

2

1

2
1

2 2
2

x y x
x clog( )

 (B) 
1

1

1
1 1 1

2 2

2

x y
x clog( )

 (C) 
1

1

1

2
1

2 2
2

y x
x c

( )
log( )

 (D) 
1

1

1

2 12 2 2y x x
c

( ) ( )

Solution: The given equation is 

1

1

1 2

13 2 2

3

2y

dy
dx

x

x y

x

x

Put 1/y2  z so that

 
2
3y

dy
dx

dz
dx

1

2 1 12

3

2

dz
dx

x

x
z

x

x

dz
dx

x

x
z

x

x

2

1 12

3

2
 (Linear)

The integrating factor is

I.F. e

e

x

x x dx

x

[ /( )]

log( )

2 1

1

2

2

2

1

1

Therefore

z
x

x

x x
dx c

x

x
dx c

t

t
dt

1

1

2

1

1

1

2

1

1

2

3

2 2

3

2 2

2

( )

c t x

t t
dt c

where

=

1

1 1

2

2
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1

1

1
1

2

2

t
t c

x
x c

log

log( )

So

1

1

1

1
1 1

2 2 2

2

y x x
x c

( ) ( )
log( )

1

1

1
1 1 1

2 2

2

x y
x clog( )

Answer: (B)

177. Solution of the equation 

dy
dx

e e ex y x y( )

is

(A) e e cey x x( )1

(B) e e c ey x ex

( ) ( )1 1

(C) e e cex y x ex

( )1

(D) e e e cx y x ex

Solution: The given equation is 

e
dy
dx

e e ey x y x2

dz
dx

e z e z ex x y2 where

The integrating factor is

I.F. e e
e dx e

x x

Therefore

ze e e dx c

e e e dx c

te dt c t e

e t

e x e

x e x

t x

t

x x

x

2

1

where

( ) cc

e e ce xx

( )1

This implies

e e c ey x ex

( ) ( )1 1

Answer: (B)

178. General solution of the equation 

dy
dx x

e

x

y1
2

is

(A) 2 2 12x e cxy( )  (B) 2 2 12y e cxx( )

 (C) 2 12x e cxy( )  (D) 2 12y e cxx( )

Solution: We have

dy
dx x

e

x

y1
2

e
dy
dx

e
x x

y
y 1

2

Put e zy so that

 e
dy
dx

dz
dx

y

 
dz
dx

z
x x

1
2

dz
dx

z
x x

1
2

 (Linear)

The integrating factor is

I.F. e

e

x

dx
x

xlog

1

Therefore

z
x x x

dx c
1 1 1

2

e
x x

c

x e cx

y

y

1

2

2 2 1

2

2( )

Answer: (A)

Multiple Correct Choice Type Questions

1. If

x

x
dx a b k

1 4
1

0

16

1

/

( )Tan

then

(A) a
8

3
 (B) b  2

(C) k  2 (D) b  4

Solution: Let

I
x

x
dx

1 4

0

16

1

/

Put t  x1/4 so that dx  4t3dt. Also 
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x  0  t  0 

and x  16  t  2

Therefore

I
t

t
t dt

t

t
dt

t
t

dt

1
4

4
1 1

1

4 1
1

1

2

0

2

3

4

2

0

2

2

2

0

2

( )

44
1

3
8 0 2 0

4
8

3
2 4 2

8

3

1

0

2

1

( ) ( ) Tan

Tan

t

44 21Tan

Therefore a  8/3, b  4 and k  2.

Answers: (A), (C), (D)

2. Which of the following statements are true?

 (A) 
sin

sin

/

/ x

x dx
1 2

2

2

 (B) 
dx

x1 2 2
0

tan

 (C) [( ) cos ( )]

/

/

x x dx3 2

3 2

2

3
2

 (D) lim

( )

( / )
( )

/

sec

x

x

f t dt

x
f

4

2
2 2

2

16

2
2

Solution (A) We have

I dx

d

x

x

x

x

sin

sin

/

/

sin( / / )

sin( / / )

1

1

2

2

2 2

2 2
xx

dx
x

x

/

/

sin

sin

/

/

2

2

2

2

1

dx
I

x1
2

2

sin

/

/

Therefore

2 1
2

2

2

I dx I
/

/

So (A) is true.

(B) We have

I
dx

dx

dx

dx

x

x

x

x

1 2

1 2

1 2

2

1 2

0

0

0

tan

tan( )

tan

tan

tann x dx

I
0

Therefore

2 1
2

0

I dx I

So (B) is true.

(C) We have

I x x dx[( ) cos ( )]

/

/

3 2

3 2

2

3

Put t  x    so that

x t
3

2 2

and x t
2 2

Therefore

I t t dt x x( cos ) ( )

/

/

3 2

2

2

3 2∵

 

0
1 2

2

2
1 2

2

2

2

0

2

cos

cos

/

/

/

t
dt

t
dt

 (∵ t3 is an odd function)

 2

2

2

2
0

2

0

2
sin

/t
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Therefore (C) is true.

(D) We have

lim

( )

sec

x

x

f t dt

x4

2

2
2

2

16

0

0

lim
(sec ) sec tan

( ) ( )( )

( / )

( )

x

f x x x
x

f

f

4

2 22

2

2 2 2 1

2 4

8
2

So (D) is not true.

Answers: (A), (B), (C)

3. If In 
sin( )

sin
,

/
2 1

0

2
n x

x
dx  then

 (A) I
1
, I

2
, I

3
, … are in AP (B) In

2

 (C) (2012)In  (2012)  (D) (2012)In  (606)

Solution: We have

I I
n n

x
dx

n x x
x

n n1

0

2
2 3 2 1

2 2 1

sin( ) sin( )

sin

cos ( ) sin

sin

/

ddx

n
n x

0

2

0

22

2 1
2 1 0

/

/

( )
sin ( )

Therefore

In 1
  In

 I
1
  I

2
  I

3
    

So (A) is true.

Now

I I

x
x

dx

x x
x

dx

n 1

0

2

3

0

2

3

3 4

sin

sin

sin sin

sin

/

/

3 2 1 2

3
2

2
2

2
1

2
2

0

2

0

2

dx x dx

x

( cos )

sin

//

0

2

3

2
0

2

/

So (B) is true.

Also

( ) ( ) ( )2012 2012
2

606In

Therefore (D) is true.

Answers: (A), (B), (D)

4. Let

J
nx
x

dxn
sin

sin

/ 2

0

2

and I
n
x

x dxn
sin( )

sin

/
2 1

0

2

Then

 (A) Jn 1
  Jn  In (B) Jn  In 1

  In

 (C) J
n

n
2

 (D) Jn
2

Solution: We have

J J
n x n x

x
dxn n1

2 2

2

0

2
1sin ( ) sin

sin

/

 
sin ( ) sin

sin

/
2 1

2

0

2
n x x

x
dx

[  sin (A  B) sin(A – B)  sin2A – sin2B]

 
sin ( )

sin

/
2 1

0

2
n x

x
dx In

Therefore (A) is true. So

J J In n n1
2

 (See Problem 3)

Hence J
1
, J

2
, J

3
, … are in AP with common difference  / 2. 

So

J J n

n

n 1 1
2

2
1

2

( )

( )
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n
2

Answers: (A), (C)

5. f(x) is a differentiable function such that

f x x e f x t dtt
x

( ) ( )2

0

Then

 (A) f x
x

x( )
3

3
 (B) f x

x
x( )

3
2

3

 (C) f x x x( ) 2 2  (D) ( ( ) )f x x dx2

2

2

0

Solution: We have

f x x e f x t dt

x e f x x t dt

x e e f

t
x

x t
x

x t

( ) ( )

( ( ))( )

2

0

2

0

2 (( )t dt
x

0

Therefore

e f x x e e f t dtx x t
x

( ) ( )2

0

Differentiating both sides w.r.t. x we get

e f x e f x x e x e e f xx x x x x( ) ( ) ( )2 2

So

f x x x

f x x x dx

x
x c

( )

( ) ( )

2

2

3
2

2

2

3

Also, f (0)  0  c  0. So

f x
x

x( )
3

2

3

Hence (B), (C), (D) are true.

Answers: (B), (C), (D)

6.  Let f be a real-valued function defined on the interval 

(0, ) by

f x t dt x
x

e( ) sin log1

0

Then which of the following statement(s) is(are) true?

 (A) f (x) exists for all x  (0, )

 (B)  f (x) exists for all x  (0, ) and f  is continuous 

on (0, ), but not differentiable on (0, )

 (C)  There exists   1 such that | ( ) | | ( ) |f x f x  for 

all x  (0, )

 (D)  There exists   0 such that | ( ) | | ( ) |f x f x  

for all x  (0, )

(IIT-JEE 2010)

Solution: We have

f x tdt x
x

e( ) sin log1

0

By Leibnitz Theorem,

f x x
x

( ) sin1
1

and f x
x

x x
( )

cos

sin2 1

1
2

When sin x  1  0, f (x) does not exist. Therefore (A) is 

not true. Hence, f (x) exists for all x  0, is continuous but 

not differentiable when sin x  1 and hence (B) is cor-

rect.

Since lim ( )
x

f x , f (x) is bounded and both f(x) 

and f (x) are positive in (1, ), there exists   1 such 

that

f x f x x( ) ( ) 0

Hence (C) is correct.

Answers: (B), (C)

7. Let

S
n

n kn k
n

k

n

2 2
1

and T
n

n kn k
n

k

n

2 2
0

1

for n  1, 2, 3, . Then

 (A) Sn
3 3

 (B) Sn
3 3

 (C) Tn
3 3

 (D) Tn
3 3

Solution: We can see that {Sn} is an increasing 

sequence and {Tn} is a decreasing sequence. Also

lim lim
n

n
n

nS
dx

x x
T

1 2

0

1



 Worked-Out Problems 559

S
dx

x x

dx

x

x

n
1

1

2

3

4

2

3

1

2

2

3

2

0

1

2

0

1

1Tan
0

1

1 12

3

3

2

2

3

1

2

2

3

2

3 3 6

Tan Tan

2

3 6

3 3

Also {Tn} is decreasing. This implies

T
dx

x x
n

1 3 32

0

1

Answers: (A), (C)

8. The value(s) of 
x x

x
dx

4 4

2

0

1
1

1

( )
 is (are)

 (A) 
22

7
 (B) 

2

105

 (C) 0 (D) 
71

15

3

2

(IIT-JEE 2010)

Solution: Let

I
x x

x
dx

x
x x x x x dx

x x

4 4

2

0

1

2

8 7 6 5 4

0

1

6 5

1

1

1

1
4 6 4

4 5

( )

[ ]

xx x
x

dx

x x
x

x
x x

4 2

2

0

1

7 6
5

3
1

4 4
4

1

7

4

6

4

3
4 4 Tan

0

1

11

7

4

6
1

4

3
4 4 1

22

7

Tan

So only (A) is correct.

Answer: (A)

8. If I
n x

x
dx nn x

sin

( )sin
, , , ,...

1
0 1 2  then

 (A) I In n 2  (B) I m
m

2 1

1

10

10

 (C) I m
m

2

1

10

0  (D) I In n 1

(IIT-JEE 2009)

Solution: We have

I
n x

x
dx

n x

x
dx

n x

n x x

sin

( )sin

sin

( )sin

sin ( )

(

1 1

1

0

0

x x

x

x

x
dx

n x

x
dx

n x

x
dx

)sin( )

sin

( )sin

sin

( )sin

0 0

0

1

1

sin

( )sin

sin ( )

( )sin

n x

x
dx

n x

x
dx

x

x

x

1

1

1

0

0

 
sin

sin

n x
x

dx
0

 (5.46)

Now

I I
n x n x

x
dx

n x x
x

dx

n n2

0

0

2

2 1

2

sin( ) sin

sin

cos( ) sin

sin

nn
n x

n

1
1

2

1
0 0

0
sin( )

( )

Therefore In  In  2
. So (A) is true.

Now, from Eq. (5.46)

I
x
x

dx dx

I
x

x
dx xdx

1

00

2

0 0

1

2
2

sin

sin

sin

sin
cosand 
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2

2 0 0

0
sin

(sin sin )

x

Therefore

I
1
  I

3
  I

5
  I

7
    I

21
  

This implies

I m
m

2 1

1

10

10

Also

I
2
  I

4
  I

6
    I

20
  0

This implies

I m
m

2

1

10

0

Answers: (A), (B), (C)

9. Let

 f x

e x

e x

x e x

x

x( )

,

,

,

0 1

2 1 2

2 3

1

and  g x f t dt
x

( ) ( )

0

 for 1  x  3

Then g (x) has

 (A) local maximum at x  1  log 2

 (B) local maximum at x  1 and local minimum at x  2

 (C) no local maxima

 (D) local minima at x  e 

(IIT-JEE 2005)

Solution:

 (i) For 0  x  1, 

 g x f t dt e dt e
x

t
x

x( ) ( )

0 0

1  (5.47)

(ii) For 1 2x ,

g x f t dt f t dt

e dt e dt

e x

x

t t
x

( ) ( ) ( )

( )

( )

10

1

1

10

1

2

1 2 2 (( )e

x e e

x

x

1

1

1

2 2

Therefore

 g(x)  2x  ex  1  e  2 for 1  x  2 (5.48)

(iii) For 2  x  3,

 g x f t dt f t dt f t dt
x

( ) ( ) ( ) ( )

0

1

1

2

2

( ) ( ) ( )

( ) ( ) (

e e dt t e dt

e e x e x

t
x

1 2

1 2 1
1

2
4 2

1

21

2

2 ))

x
ex e

2

2
2

Therefore

 g x
x

ex e( )
2

2
2  for 2  x  3 (5.49)

From Eqs. (5.47), (5.48) and (5.49), we have

g x

e x

x e e x

x
ex e x

x

x( )

1 0 1

2 2 1 2

2
2 2 3

1

2

for

for

for

Clearly g is continuous at x  1, 2. Also g  (x)  f (x) 

(by Leibnitz rule) and f is not differentiable at x  1, 

because f is discontinuous at x  1. Even though f is 

continuous at x  2, it is not differentiable at x  2.

Further g  (x)  0 only when x  1  loge 2 or x  e. 

Also

g  (x)  e x 1 for 1  x  2  g  (1  loge 2)  0 

and g  (x)  1 for 2  x  3 g  (e)  0

Therefore, g has local maximum at x  1  loge 2 and local 

minimum at x  e.

Answers: (A), (D)

Note: Actually computation of g(x) is not necessary 

because we know that g (x)  f(x) by Leibnitz Rule. 

Finding g(x) is only for academic interest.

10. The function

f x t e t t t dtt
x

( ) ( )( )( ) ( )1 1 2 3

1

3 5

has a local minima at x equals

 (A) 0 (B) 1 (C) 2 (D) 3

(IIT-JEE 1999)
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Solution: By Leibnitz Rule,

f x x e x x xx( ) ( )( )( ) ( )1 1 2 33 5

Therefore

f (x)  0  x  0, 1, 2 and 3

The critical points of f are 0, 1, 2 and 3.

  (i)  Clearly f (x) does not change its sign at x  0; so f 
has no local extrema at x  0.

 (ii)  x  1  f (x)  0 and x  1  f (x)  0. Hence f 
has local minima at x  1. Also f has local minima at  
x  3.

(iii)  x  2  f  (x)  0 and x  2  f (x)  0. So f has 
maxima at x  2.

Answers: (B), (D)

11. For x  0, let

f x
t

t
dte

x

( )
log

1
1

Then

 (A) f x f
x

xe( ) (log )
1 1

2

2

 (B) f e f
e

( )
1 1

2

 (C) f x f
x

xe( ) (log )
1 2

 (D) f (1)  0

Solution: We have

f x
t

t

f
x

t

t
dt

e
x

e
x

( )
log

log
/

1

1

1

1

1

1

Put t  1/u so that

dt
u

du
1
2

So

f
x

u

u u
du

x

x x
dxe

x
e

x
1 1

1 1

1

1
1

2

1

log ( / )

( / )

log

( )

Now

f x f
x

t
t

t
t t

dte e
x

( )
log log

( )

1

1 1
1

log ( )( )

( )

log

(log )

e
x

e
x

e

t t

t t
dt

t

t
dt

x

1

1

1

2

1

1

2

Hence

f e f
e

f( ) ( )
1 1

2
1 0and

So (A), (B) and (D) are true.

Answers: (A), (B), (D)

12. Let

I
x x

dxTan 1

2

0

1
1

1

and J x x dxTan 1 2

0

1

1( )

Then

 (A) I x dxTan

0

1

 (B) I x dx2 1

0

1

Tan

 (C) J  loge 2 (D) I J
2

Solution: We have

I
x x

dx

x x
x x

dx

Tan

Tan

1

2

0

1

1

0

1

1

1

1

1 1

( )

( )

(( ( ))

( )

Tan Tan

Tan Tan

Tan

1 1

0

1

1 1

0

1

0

1

1

1

x x dx

x dx x dx

11 1

0

1

0

1

00

1 1

2

x x dx

f x dx f a x dx
aa

Tan

Ta

( )

( ) ( )∵

nn 1

0

1

x dx
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Now

J x x dxTan 1 2

0

1

1( )

 

 

2
1

2

1

1

2

1 2

0

1

1
2

0

1

Cot

Tan

( )x x dx

x x
dx

I

Therefore

 J  I   / 2 (5.50)

Also

I x dx

x x
x

x
dx

2

2
1

2
4

0
1

2

1

0

1

1

0

1

2

0

1

Tan

Tan

loog( )

log

log

1

2
4

1

2
2

2
2

2

0

1
x

e

e

From Eq. (5.50), we have

J I

e

e

2

2 2
2

2

log

log

Answers: (B), (C), (D)

13. The function

f x t t t t dt
x

( ) ( )( ) ( ) ( )2 1 2 3 1 23 2 2

1

 (A) has three critical points

 (B) has maxima at x  1

 (C) has minima at x
7

5
 (D) f  (2) is equal to zero

Solution: By Leibnitz Rule, 

f x x x x x

x x x x

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 1 2 3 1 2

1 2 2 2 3 1

3 2 2

2

 
( ) ( ) ( )x x x1 2 5 72

Therefore

f x x( ) , ,0 1 2
7

5

Again

f x x x x x x

x x

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 5 7 2 1 2 5 7

1 2 5

2

2

Now f  (1)  2  0  f has maximum at x  1. Also

f  (2)  0

and f
7

5
5

7

5
1

7

5
2 0

2

 

Therefore f is minima at x  7/5. Hence (A), (B), (C) and 

(D) all are true.

Answers: (A), (B), (C), (D)

14.  Area of the region bounded by the curve y  ex and 

the lines x  0 and y  e is

 (A) e  1 (B) log ( )e

e

e y dy1

1

 (C) e e dxx

0

1

 (D) loge

e

y dy
1

(IIT-JEE 2009)

Solution: The line y  e meets the curve y  ex in P(1, e) 

and the y-axis in (0, 1). See Fig. 5.44. Then

Area (shaded part)  ( )e e dxx

0

1

 e(1)  (e  1)  1

So (C) is true. Also,

Area log ( log )e

e
x

ey dy y e x y
1

∵

 

log ( )

( ) ( )

e y dy

f x dx f a b x dx

e

a

b

a

b

1

1

∵

Hence (B), (D) are also correct.
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Q (1, 0) x

(1, e )
1

O

e
p

y

y = ex

y = e

FIGURE 5.44 Multiple correct choice type question 14.

Answers: (B), (C), (D)

15.  The area bounded by the curves y  x2  6x  5,  

y  x2  4x  3 and the line y  3x  15 is divided into 

three regions A
1
, A

2
 and A

3
 (see Fig. 5.45). Then

 (A) A x x dx x x dx1
2

1

5

2

1

3

6 5 4 3( ) ( )

 (B) A x x dx2
2

3

4

4 3( )

 (C) A x dx3

4

5

3 15( )

 (D) A A A1 2 3

73

6

Solution: Let

C x x y

x y

1
2

2

6 5

3 4

:

( ) ( )

Therefore C
1
 represents a parabola (downward) with 

vertex at (3, 4) meeting the x-axis in A(1, 0) and D(5, 0).

(3, 0)
A
(1, 0) A2

C2

C1

y

A3

B D (5, 0)

C (4, −3)

y = 3x  − 15

x

A1

E

FIGURE 5.45 Multiple correct choice type question 15.

Let C
2
 represent

y  x2  4x  3

 (x  2)2  1

 (x  2)2  (y  1)

Therefore C
2
 is also a downward parabola with vertex at 

(2, 1) and meeting the x-axis in A(1, 0) and B(3, 0). The 

line y  3x  15 intersects the curve C
2
 in (4, –3) and the 

curve C
1
 in (5, 0). The area bounded by the curves C

1
, C

2 

and the line y  3x  15 is A
1
  A

2
  A

3
. Now

A x x dx x x dx

x x

1
2

1

5

2

1

3

3

1

5 2

1

5

6 5 4 3

1

3
3 5

( ) ( )

xx

x x x

1

5

3

1

3 2

1

3

1

31

3
2 3

1

3
125 1 3 25[ ] [ 11 5 5 1

1

3
27 1 2 9 1 3 3 1

124

3
72 20

26

3
1

] ( )

( ) ( ) ( )

66 6

124

3
42

26

3

124 152

3

28

3

Now

A x x dx

x x x

2
2

3

4

3

3

4 2

3

4

3

4

4 3

1

3
2 3

1

3
64 27 2

( )

( ) [116 9 3 4 3

37

3
14 3

4

3

] ( )

Finally

A x dx

x x

3

4

5

2
4
5

4
5

3 15

3

2
15

3

2
25 16 15 5 4

3

2

( )

[ ] [ ]

( ) ( )

99 15
3

2
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or  A ED EC3

1

2

1

2
1 3

3

2
( )( )

Therefore

Area A A A1 2 3

28

3

4

3

3

2

32

3

3

2

64 9

6

73

6

So (A), (B), (C), (D) all are correct.

Answers: (A), (B), (C), (D)

16. Function f(x) satisfies the relation

f x e e f t dtx x( ) ( )

0

1

Then

 (A) f (0)  0 (B) f(x) is increasing

 (C) f(x) is decreasing (D) f x dx( )

0

1

0

Solution: We have

 

f x e e f t dt

e e f t dt

e e f t dt

x x

x x

x x

( ) ( )

( )

( )

0

1

0

1

0

1

where 

 

(5.51)

Now

f t dt

e e dtt t

( )

( )

0

1

0

1

[from Eq. (5.51)]

 e e1 1( )

Therefore

( )2 1

1

2

e e

e
e

Hence

f x e
e

e
e

e
e

e

e
e

x x

x

x

( )
1

2

1
1

2

2

So

f
e

( )0
1

2
0

Hence (A) is true. Now

f x
e

e
x

x

( )
2

0 �

Thus f (x) is decreasing and so (C) is true. Again

f x dx
e

e
dx

e
e

e

x

( )

( )

( )

0

1

0

1

2

1

2
1

0 2∵

So (D) is not true.

Answers: (A), (C)

17. f x x
e
t

dt e
tx

x( )

1

 for x  1. Then

 (A) f is increasing in [1, ∞)

 (B) lim ( )
x

f x

 (C) f is decreasing in [1, ∞)

 (D) f  has maximum at x  e

Solution: We have

f x
e
t

dt x
e
x

e

e
t

dt

tx x
x

tx

( )

1

1

0

Therefore f is increasing in [1, ∞). So (A) is true. Now

f x
e
x

x

( ) 0  for x  1

So f  is strictly increasing. Since f is increasing,

lim ( )
x

f x

Hence (B) is true.

Answers: (A), (B)
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18. Consider the equation

(sin ) cos ( cos )y
dy
dx

y x y1

Then

 (A) the equation can be reduced to linear equation

 (B)  the equation can be reduced to homogeneous 

using the substitution cos y  z

 (C)  the equation can be reduced to variable sepa-

rable, using the substitution cos y  z

 (D)  the general solution of the equation is given by 

sec ( )y x cex1

Solution: We have

(sin ) cos ( cos )y
dy
dx

y x y1

Put cos y  z. Therefore

sin y
dy
dx

dz
dx

So the given equation is

dz
dx

z xz

dz
dx

z z x

z

dz
dx z

x

( )1

1 1

2

2

Put 1/z  v, so that

1
2z

dz
dx

dv
dx

Therefore

dv
dx

v x  (Linear)

So (A) is true. The integrating factor is

I.F. e e
dx x

So the solution is

v e xe dx c

xe e c

x x

x x

( )

So

 v x cex( )1

1
1

1

z
x ce

y x ce z y

x

x

( )

sec ( cos )∵

So (D) is true.

Answers: (A), (D)

19. Consider the differential equation

dy
dx

x x y x x y1 3 3( ) ( )

Then the given equation

 (A)  can be reduced to Bernoulli’s (extended form) 

linear equation

 (B)  can be reduced to homogeneous form using the 

substitution x  y  u

 (C)  can be reduced to variable separable using the 

substitution 
1

x y
v

 (D) has solution 
1

1
2

22

( )x y
ce xx

Solution: We have

dy
dx

x x y x x y1 3 3( ) ( )

Put x  y  u. Then

dy
dx

du
dx

1

Therefore, given equation is

 
du
dx

ux x u3 3 (Bernoulli) (5.52)

So (A) is true. Also from Eq. (5.52)

 u
du
dx

u x x3 2 3  (5.53)

Put u 2  z so that

u
du
dx

dz
dx

3 1

2

Therefore, Eq. (5.53) transforms into

dz
dx

x z x( )2 2 3  (Linear)

Now the integrating factor is

I.F.  e e
xdx x2 2

so that the general solution is

ze x e dx c

x e c

x x

x

2 2

2

2

1

3

2( )

So

z x cex2 1
2
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u x ce z u

x y
x ce u x y

x

x

2 2 2

2

2

1

1
1

2

2

( )

( )
( )

∵

∵

So (D) is true.

Answers: (A), (D)

20.  The family of curves for which the length of the nor-

mal at any point equals the length of the radius vec-

tor joining the point with the origin is (are)

(A) circles with centre at origin

(B) ellipses with centre at origin

(C) rectangular hyperbolas

(D) all lines passing through origin

Solution: Let y  f(x) be the curve. Length of the 

normal at P (x, y) is OP. That is

y
dy
dx

x y1
2 1 2

2 2

/

y
dy
dx

x y

y
dy
dx

x

y
dy
dx

x

2
2

2 2

2
2

2

1

Case I: y
dy
dx

x . Then

y dy  x dx (Variables Separable)

1

2

1

2

2

2 2

2 2

y x c

y x c

which is a rectangular hyperbola.

Case II: y
dy
dx

x . Then

ydy xdx  0

 y2  x2  c

which is a circle.

Answers: (A), (C)

Matrix-Match Type Questions

1. Match the items of Column I to those of Column II.

Column I Column II

(A) 
dx

x1 3

0

2

tan

/

(p) 
4

(q) 
2

(r) 

(s) 
3

(t) 
2

3

(B) 
dx

x1
0

2

cot

/

(C) 
sin

cos

x

x
dx

1 2

0

(D) 
f x

f x f x
dx

( )

( ) ( )
0

Solution:

(A) We have

dx

x

x

x x
dx

1 3
0

2 3

3 3
0

2

tan

cos

cos sin

/ /

4

Answer: (A)  (p)

(B) We have

dx

x

x

x x
dx

1

4

0

2

0

2

cot

sin

sin cos

/ /

Answer: (B)  (p)

(C) We have

I
x

x
dx

x

x
dx f a x f x

sin

cos

sin

cos
[( ( ) ( )

/

1

2
1

2

2

0

2

0

2

 where  a / ]2

2
1 2

0

1
dt

t
where t  cos x

2 1
2

1Tan

Answer: (C)  (q)
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(D) We have

I
f x

f x f x
dx

f x
f x f x

dx

( )

( ) ( )

( )

( ) ( )

0

0

Therefore

2 1

2

0

I dx

I

Answer: (D)  (q)

2. Match the items of Column I with those of Column II.

Column I Column II

(A) 
dt

t1 2

1

1

(p) 
3

(B) 
dt

x1 2
0

1

(q) 2
2

3
loge

(C) 
dx

x1 2

2

3

(r) 
1

2

2

3
loge

(D) 
dx

x x2
1

2

1
(s) 

2

Solution:

(A) We have

dt

t

dt

t1
2

1
2 1

22

1

1

2

0

1

1Tan

Answer: (A)  (s)

(B) We have

 

dx

x

dx

x

t

t

t

t

1 1

0

1

2
0

1

1 0 2
0

1 0

1 1

1

lim

lim ( )Sin Sin

Sin
2

Answer: (B)  (s)

(C) We have

dx

x x x
dx

x
x

1

1

2

1

1

1

1

1

2

1

1

1

2

2

2

3

2

3

2

3

log

log
44

2

3

1

1

2

2

3

log

log

Answer: (C)  (r)

(D) We have

dx

x x
x

2
1

2

1

1

2

1 1

1

2 1

3
0

3

Sec

Sec Sec

Answer: (D)  (p)

3. Match the items of Column I with those of Column II.

Column I Column II

(A) lim
n

r

n

n
n r
n r

1

1

 (p) /3

(B) lim
( ) ( )n

r

n n

n r r n r2
1

(q) /2

(C) lim
n

r

n

rn r

1

2 2
1

(r) 
2

2

(D) lim
n

r

n n

n r2 2
1

(s) 
4

Solution:

(A) We have

T r
n

n r
n rr th term =

1

Put n  1/h so that

`T h
rh
rhr

1

1

Since there are n terms in the sum, the required limit is

1

1

1

10

1

2
0

1
x
x

dx
x

x
dx
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( sin )

/

1

0

2

d  where x  sin

 

2

2
0 1

2
1

0

2
cos

( )

/

Answer: (A)  (r)

(B) We have

T r
n

n r r n r
r th term

( ) ( )2

Put n  1/h so that

T
h

rh r rh

h

rh rh rh

r
( ) ( )

( ) ( )

1 2

1 2

Therefore the required sum is

dx

x x x

dx

x x

x

( ) ( ) ( ) ( )

( )

1 2 1 1 1

1

0

1

2
0

1

1

0

1

1

Sec

= Sec 22 1

3
0

3

1Sec

Answer: (B)  (p)

(C) We have

T r
rn r

h

r r h
h

n

h

rh r h

r   th term = 

where 

1

2

2

1

2

2

2

2 2

Therefore the required limit is

dx

x x

dx

x

x

2 1 1

1

0 1

2
0

1

2
0

1

1

0

1

1 1

( )

( )Sin

Sin Sin

2

Answer: (C)  (q)

(D) We have

T r
n

n r
r th term

2 2

Put n  1/h so that

T
h

rh
r

1 2( )

Therefore the required limit is

dx

x
x

1
1

42

0

1

1

0

1 1Tan Tan

Answer: (D)  (s)

4. Match the items of Column I with those of Column II.

Column I Column II

(A) 
dx

x a x

a

2 2
0

(p) 
2

3

(B) 
x

x x
dx

( )( )1 1 2

0

(q) 
2

2 2

(C) x xdxsin3

0

(r) 
2 2

(D) 
x

x
dx

1 2

0
cos

(s) / 4

Solution:

(A) We have

I
dx

x a x

a

2 2
0

Put x  a sin . Therefore

I d
cos

sin cos

/

0

2

4

Answer: (A)  (s)

(B) We have

I
x

x x
dx

( )( )1 1 2

0

Put x  tan   so that x  ∞     /2. Therefore
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I d

d

tan

tan

sin

cos sin

/

/

1

4

0

2

0

2

Answer: (B)  (s)

(C) We have

I x xdx

x x dx

xdx I

sin

( )sin ( )

sin

3

0

3

0

3

0

Therefore

2

2

2
3 1

3

4

3

3

0

3

0

2

I xdx

xdx

sin

sin

( )

/

So

I
2

3

Answer: (C)  (p)

(D) We have

I
x

x
dx

x

x
dx

dx

x
I

1

1

1

2

0

2

0

2

0

cos

cos ( )

cos

Therefore

2
1 2

0

I
dx

xcos

2
1 2

0

2
dx

xcos

/

So

I
dx

x

x

x
dx

x

x
dx

1

1

2

2

0

2

2

2

0

2

2

2

0

2

cos

sec

sec

sec

tan

/

/

/

 
dt

t2 2

0

 where t  tan x

2 2

2 2
0

2 2

2 2

1

0

1

2

Tan

Tan

t

t
t
lim

Answer: (D)  (q)

5. Match the items of Column I with those of Column II.

Column I Column II

(A) x x dx1 3

0

4

 is (p) 5

(B) The value of 
log

/

e

e

e
x

x
dx

1

2

 is (q) 1

(C) x dx
0

9

 where {t} denotes the

fractional part of t is

(r) 5/2

(D) 1

0

2

x dx  equals (s) 10

Solution:

(A) We have

I x x dx

x dx x x dx x dx

1 3

4 2 1 3 2 4

0

4

3

4

1

3

0

1

( ) (( ) ( )) ( )
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 4  (1  0)  2 (3  1)  (16  9)  4 (4  3)

 4  4  7  5  10

Answer: (A)  (s)

(B) We have

I
x

x
dx

x

x
dx

x

x
dx

x

e

e

e

e

e

e
e

e

log

log log

log

/

/

1

1

1

1

2

2

2

1

2 1

1 2

1

2

1

2

1

2
0

1 1

2

2

/
log

log log

e
e

e

e

x

e ee e2 2

2

0

1

2

1

2
2 0

1

2
2

5 2

( )

/

Answer: (B)  (r)

(C) We have

I x dx t{ } ({ }

0

9

 is the fractional part of t)

 ( [ ])x x dx
0

9

 ([t] is the integer part of t)

 

xdx x dx x dx x dx

x

0

9

4

9

1

4

0

1

3 2

0

92

3
0

[ ] [ ] [ ]

/ 11 2

2

3
3 3 2 5

18 13 5

1

4

4

9

3

dx dx

( ) ( )

Answer: (C)  (p)

(D) We have

1 1 1

1
1

2

1

2
2 1 2 1

1
1

2

3

2

0

2

0

1

1

2

2

x dx x dx x dx( ) ( )

( ) ( )

1

1

Answer: (D)  (q)

6. Match the items of Column I with those of Column II.

Column I Column II

(A) 
dx

x1
0

2

sin

/

(p) 
1

2

(B) lim
n

n n

n

n

n

1

1

2

1

3

1 1

2 2

2 2
�

 is (q) 1

(C) 
f x

f x f x
dx

k
( )

( )

/

2
0

2

where k is

(r) 4

(D)  The area common to the 

curves y2  x and x2  y is

(s) 1/3

(t) 2/3

Solution:

(A) We have

I
dx

x

dx

x x

x

x

1

2 2

2

1
2

0

2

2

0

2

2

sin

sin cos

sec

tan

/

/

2

0

2

2

0

1

0

1

2
1

2
1

1

2
1

2
1

1

/

( )

dx

dt

t

t

Answer: (A)  (q)

(B) We have

1

1

2

1

3

1 1

1 2 3

1

1

2 1

2 1

2 2 2 2 2

2

n n n

n

n

n

n
n n

n

n

� �

( )

( )

( n)
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1

2
1

1
n

So

lim

lim

n

n

n n n

n

n

n

1

1

2

1

3

1 1

1

2
1

1

2 2 2 2
�

11

2

Answer: (B)  (p)

(C) We have

I
f x

f x f x

f x

f x f x

( )

( )

( )

/

/

2

2

2

0

2

0

22

dx

Now

2 1
2

0

2

I dx
/

so that I   /4. Hence k  4.

Answer: (C)  (r)

(D) The required area (see Fig. 5.46) is given by

( )x x dx2

0

1
2

3

1

3

1

3

Answer: (D)  (s)

1

y 2 = x

x 2 = y

O x

y

C (1, 1)

FIGURE 5.46 Matrix-match type question 6.

7. Match the items of Column I with those of Column II.

Column I Column II

(A)  The area bounded by the curves 

y x y x( ) , ( )1 12 2 and the 

line y
1

4
 is

(p) 9

(B)  The area bounded by the curves 

y x y x, 2 3  and x-axis in the 

first quadrant is

(q) 5/6

(C)  The slope of the tangent to a curve 

y  f (x) at (x, f (x)) is 2x  1. If the 

curve passes through the point (1, 

2), then the area bounded by the 

curve, the x-axis and the line x  1 

is

(r) 4

(D)  The area bounded by the curve 

y  cos x between x  0 and x  2  

is

(s) 1/3

(t) 2/3

Solution:

(A)  See Fig. 5.47.  The two curves y  (x  1)2 and  

y  (x  1)2 intersect on y-axis at (0, 1).

The line y  1/4 cuts y  (x  1)2 in (1/2, 1/4) and 

(3/2, 1/4).

The curve y  (x  1)2 in (–3/2, 1/4) and (–1/2, 1/4).

Therefore the required area is

2 1
1

4
2 2

3

4

2
1

24

1

4

3

8

2

0

1 2

2

0

1 2

( )

/ /

x dx x x dx

1

3
 

O (1, 0)

(0, 1)

y = 1

y = (x + 1)2 y = (x − 1)2

(−1, 0)

1
2

− 1
2

FIGURE 5.47 Matrix-match type question 7,  part (A).

Answer: (A)  (s)

(B)  The line x  2y  3 meets the curve in (9, 3) (see Fig. 

5.48). Then the required area (shaded portion) is

x dx x
x

dx
0

3

3

9
3

2
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2

3

2

3

1

4

3

2
9 3

2

3
3

2

3
2

3 2

0

3 3 2

3

9 2

3

9

3 2

x x x/ /

/

( )

( 77 3
1

4
81 9

3

2
6

18 18 9 9

3/2) ( ) ( )

x

y

3

(9, 3)

O

− 3
2

FIGURE 5.48 Matrix-match type question 7,  part (B).

Answer: (B)  (p)

(C) We have dy
dx

x

y x x c

2 1

2

The curve passes through the point (1, 2). This implies

2  1  1  c  c  0

Therefore the curve is

y x x x

x y

2
2

2

1

2

1

4

1

2

1

4

(See Fig. 5.49.) Therefore

Area ( )x x dx2

0

1
1

3

1

2

5

6

1−1 x

y

(1, 2)

O

−1
2( (, −1

4

FIGURE 5.49 Matrix-match type question 7, part (C).

Answer: (C)  (q)

(D)  See the graph of y  cos x in [0, 2 ] shown in Fig. 

5.50. Then the required area (shaded part) is

cos ( cos ) cos

sin sin

/

/

/

/

/

xdx x dx xdx

x

0

2

2

3 2

3 2

2

0

2 xx x
/

/

/
sin

2

3 2

3 2

2
 

  (1  0)  [ 1 1]  [0 ( 1)] 

 1  2  1  4

(0, 1) (2p, 1)

2p

y = cos x

x

y

3p
2

p
2

FIGURE 5.50 Matrix-match type question 7, part (D).

Answer: (D)  (r)

8. Match the items of Column I with those of Column II.

Column I Column II

(A)  The area bounded by the 

curves y  x2, y  x2and y2  
4x  3 is

(p) loge
3

2

(B)  The area bounded by the 

curve y  x (x  1)2, the y-axis 

and the line y  2 where 0  x 

 2, is

(q) loge
9

2

(C)  The area of the region 

bounded by the curves 

y x xtan , ,
3 3

y x xcot ,
6 2

and the 

x-axis is

(r) 
1

3

(D)  
3

0

3

e
dx

x

elog

 (where [ ]  

denotes the integer part) is

(s) 
10

3

Solution:

(A)  The curves y  x2,  y  x2 are touched by y2  4x  3 

at the points (1, 1) and (1, 1), respectively (see Fig. 

5.51). The curve y2  4x  3 cuts the x-axis at (3/4, 0). 

The required area (shaded portion ) is given by
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2 4 3
2

3

2

4

2

3
4 3

2

3

2

0

1

3 4

1

3 2

3 4

1
x dx x dx x

/

/

/
( )

11

3
1 0

1

3
( )

0 x

y

(1, 1)

(1, −1)

3
4

FIGURE 5.51 Matrix-match type question 8, part (A).

Answer: (A)  (r)

(B)  The curve y  x(x  1)2 meets x-axis at (0,0) and 

(1, 0) and y    as x   . Also y    as x  

 . Therefore the required area (dotted portion, 

Fig. 5.52) is equal to

(2  2) (= area of the square) ( )x xdx1 2

0

2

4
4

2

3 2

4
3

2

0

2
x

x
x

4
16

4

16

3

4

2

4
48 64 24

12

0 2 x

y

2 (2, 2)

1

FIGURE 5.52 Matrix-match type question 8, part (B).

4
8

12

4
2

3

10

3

Answer: (B)  (s)

(C)  y  tan x and y  cot x intersect in A(  /4, 1). The 

required area (shaded part, Fig. 5.53) is

tan cot log sec log sin

/

/

/

/

/

/

/
xdx xdx x xe e

6

4

4

3

6

4

4

/

log log log log

log log

3

2
2

3

3

2

1

2

2 2 2
3

2

e e e e

e e

log log loge e2
3

4

3

2

A

O x

y

y = cot x

y 
= 

ta
n 

x

p
2

p
3

p
4

p
6−p3

FIGURE 5.53 Matrix-match type question 8, part (C).

Answer: (C)  (p)

(D) We have

 (i) 3e x  3   if x  0

 (ii) 3e x  2   if x elog
3

2

(iii) 3e x 1   if x elog 3

(iv) [3e x]  0 if x elog 3

Therefore

[ ]

log

log log /

/

log

3 2 1

2
3

2

0

3

0

3 2

3 2

3

e dx dx dxx

e

e e

e

e

log

log loge e3
3

2
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log log

log

e e

e

9

4
2

9

2

Answer: (D)  (q)

9.  In Column I, differential equations are given and in 

Column II their solutions are given. Match them.

Column I Column II

(A) 
dy
dx

e x ex y y2 (p) e e
x

cy x
3

3

(B) 
dy
dx

ex y (q) y cx exe( log ) 1

(C) ( log )y x ydx xdye 1 (r) xe y cy tan

(D) 
dx
dy

x e yy sec2 (s) e e cx y

Solution

(A) We have

 
dy
dx

e x ex y y2

e dy e x dxy x( )2  (Variables Separable)

 

e dy e x dx c

e e
x

c

y x

y x

( )2

3

3
Answer: (A)  (p)

(B) We have

dy
dx

e

e dy e dx

x y

y x

The solution is

e y  ex  c
 ex  e y  c

Answer: (B)  (s)

(C) We have

 ( log )y x ydx xdy1

 
dy
dx

y x
y
x

( log )1

 
dy
dx

y
x

y
x

x
2 log

 (Bernoulli)

 
1 1
2y

dy
dx xy

x
x

log

 
dz
dx

z
x

x
x

log
 where z

y
1

 
dz
dx

z
x

x
x

log

The integrating factor is

I.F. e e
x

x
dx

x
1 1

1log

The solution is

z
x

x
x x

dx c

x

x
dx c

x
x

x x

1 1

1 1 1

2

log

log

log ddx c

x
x

x
c

1 1
log

Therefore

z x cx ex cx

y
ex cx

y ex cx

log log ( )

log ( )

[log ( ) ]

1

1

1

Answer: (C)  (q)

(D) We have

dx
dy

x e y

e
dx
dy

xe y

d
dy

xe y

xe y c

y

y y

y

y

sec

sec

( ) sec

tan

2

2

2

Answer: (D)  (r)

10. Match the items of Column I with those of Column II.

Column I Column II

(A)  A normal PG to a curve 

meets the x-axis in G. If the 

distance OG (‘O’ is origin) is 

twice the abscissa of P, then 

the curve is a

(p) hyperbola

(B)  A normal is drawn at a point 

P(x, y) of a curve. It meets 

the x-axis in G. If PG is of 

constant length k and the 

curve passes through  

(0, k), then the curve is a

(q) parabola

(Continued)
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Column I Column II

(C)   The normal at every point 

of a curve passes through a 

fixed point. Then the curve 

is a

(r)  rectangular 

hyperbola

(D)  The curve in which the sub-

tangent at every point is 

bisected at the origin is

(s) circle

(t) ellipse

Solution

(A) See Fig. 5.54. Normal at (x
1
, y

1
) is

y y
m

x x1 1

1
( )

where m dy dx x y( / ) .,1 1
  Therefore G x my( , ).1 1 0  

By hypothesis

x
1
  my

1
  2x

1

y
dy
dx

x
x y

1 1

1 1,

The differential equation is

y
dy
dx

x ydy xdx

The solution is

y x
c

y x c

2 2

2 2

2 2

2

which is a rectangular hyperbola.

GO

P

y

x

FIGURE 5.54 Matrix-match type question 10, part (A).

Answer: (A)  (p), (r)

(B) In Fig. 5.54, PG  k (constant). This implies

y
dy
dx

k1
2 1 2/

y
dy
dx

k

y
dy
dx

k y

2
2

2

2 2

1

 
y

k y
dy dx

2 2
 (Variables Separable)

y

k y
dy dx c

k y x c

2 2

2 2

So the curve passes through (0, k)  c  0. There-

fore the curve is

k2  y2  x2 or x2  y2  k2

Answer: (B)  (s)

(C) Equation of the normal at (x
1
, y

1
) is

y y
m

x x1 1

1
( )

where m dy dx x y( / ) .,1 1
 This passes through a fixed 

point ( ,  ). This implies

y
m

x1 1

1
( )

Therefore, the differential equation is

( ) ( )y dy x dx 0

The solution is

( ) ( )

( ) ( )

( ) ( )

y dy x dx c

y x
c

x y c

2 2

2 2

2 2

2

which is a circle and ( ,  ) is its centre.

Answer: (C)  (s)

(D)  In Fig. 5.55, PG is drawn perpendicular to x-axis 

and T is the point on the x-axis where the tangent 

at P meets x-axis. By definition, TG is the sub-

tangent. The equation of the tangent at P (x
1
, y

1
) is

y  y
1
  m(x  x

1
) 

where m dy dx x y( / ) ,1 1
. Therefore

T x
y
m

G x1
1

10 0, ( , )and

Since (0, 0) is the mid-point of TG, we have

x
y
m

x1
1

1 0
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Therefore the differential equation

2 0x
dy
dx

y

2

y
dy

dx
x

 (Variables Separable)

2

2

2

y
dy

dx
x

c

y x c

y kx

log log

which is a parabola.

G

90°

90°
NT O

P

y

x

FIGURE 5.55 Matrix-match type question 10, part (D).

Answer: (D)  (q)

Comprehension-Type Questions

1.  Passage: f is continuous for all x  0. Then answer the 

following questions.

(i)  If g  [0, a] is continuous and f (x)  f (a x), 

g(x)  g (a  x)  2, then

f x g x dx
a

( ) ( )

0

(A) g x dx
a

( )

0

 (B) f x dx
a

( )

0

(C) 2

0

f x dx
a

( )  (D) 0

(ii) e x dxxcos
sin cos

0

2
1

2

(A)  (B) 
2

(C) 
2

2
 (D) 0

(iii) 
x

x
dx

1
4

3 4

sin
/

/

(A) ( )2 1  (B) ( )2 1

(C) 2 2  (D) 2

Solution:

(i)  Since f and g are continuous for x  0 it follows that 

f x dx
a

( ) ,

0

g x dx
a

( )

0

 and f x g x dx
a

( ) ( )

0

 exist. Now

f x g x dx f a x g a x dx

f x g x dx

a a

a

( ) ( ) ( ) ( )

( )[ ( )]

0 0

0

2

[ ( ) ( ) ( ) ( ) ]∵ f a x f x g x g a xand 2

Therefore

2 2

0 0

0 0

f x g x dx f x dx

f x g x dx f x dx

a a

a a

( ) ( ) ( )

( ) ( ) ( )

Answer: (B)

(ii) Let f x e xxcos
sin cos2

1

2

Since f is continuous for all real x, it follows that 

f x dx
a

( )

0

 exists. Also

f x e x

e

x

x

( ) sin cos( )

sin cos

cos( )

cos

2
1

2

2
1

2
xx

e x

f x

xcos
sin cos

( )

2
1

2

Therefore

f x dx f x dx( ) ( )

0 0
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f x dx( )

0

Now

f x dx( )

0

0

Answer: (D)

(iii) Let

I
x

x
dx

1
4

3 4

sin
/

/

It exists because x/(1  sin x) is continuous on [  /4, 

3  /4]. Now

I
x

x
dx

x

x
dx

1

4

3

4

1
4

3

4

4

3 4

4

3 4

sin

sin

/

/

/

/

∵ ff x dx f a b x dx

x
x

dx

dx

a

b

a

b

( ) ( )

sin
/

/

1

1

4

3 4

ssin
/

/

x
I

4

3 4

So

 2
1

4

3 4

I
dx

xsin
/

/

I
dx

x

x

x
dx

x

2 1

2

1

2

4

3 4

2

4

3 4

2

sin

sin

/

/

/

/

cos

(sec sec xx x dx

x x

tan )

tan sec

[(

/

/

/

/

/

/

4

3 4

4

3 4

4

3 4

2

2
1 1)) ( )]2 2

2
2 2 2

2 1

( )

( )

Answer: (A)

 2.  Passage: If f a b g a b:[ , ] , : [ , ]� �  are continuous 

and 0 f x g x( ) ( ) x a b[ , ],  then the area of the 

region bounded by the curves y  f(x), y  g(x) and 

the lines x  a, x  b is given by [ ( ) ( )] .g x f x dx
a

b

 Us-

ing this information, answer the following questions.

(i)  The area of the region between the curves y  

x2 and y  x3 is

 (A) 
1

3
 (B) 

1

4

 (C) 
1

6
 (D) 

1

12

(ii)  The area of the region bounded between the 

parabola y  x2  x  6 and the line y  4 is

 (A) 
7

2
 (B) 

9

2

 (C) 
5

2
 (D) 4

 (iii)  The area of the region bounded by the curves 

y ex xelog  and y
x

ex
elog

 is

 (A) 
e

e

2 5

4
 (B) 

e
e

2 1

2

 (C) 
e

e

2 1

3
 (D) 

e
e

2 1

Solution:

(i)  The curves y  x2 and y  x3 intersect in (0, 0) and 

(1, 1) only. Also 0  x  1  x3  x2. Hence the 

required area is

( )x x dx x x2 3

0

1
3

0

1 4

0

11

3

1

4

1

3

1

4

1

12

Answer: (D)

(ii) We have

y x x x

x y

2
2

2

6
1

2

25

4

1

2

25

4
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The line y  4 intersects the parabola in ( 1, 4) and 

(2, 4) (see Fig. 5.56). Hence the required area is

[ ( )] ( )4 6 22

1

2

2

1

2

x x dx x x dx

2
1

3

1

2

2 2 1
1

3
8 1

1

2
4 1

6

1

2 3

1

2 2

1

2
x x x

( ) ( ) ( )

33
3

2

9

2

O

(−1, −4) (2, −4)
y = −4

xA

x

y

1 2

1
2( (, 25

4−

FIGURE 5.56 Comprehension-type question 2, part (ii).

Answer: (B)

(iii)  The two curves intersect in (1, 0) and (1/e, 1). 

Since

 lim
x x0

1

lim log
x

e x
0

and lim log lim
log

x
e

x

eex x
e x

x
0 0 1

 

e
x

x

e x

x

x

lim
/

/

lim ( )

0 2

0

1

1

0

Now see Fig. 5.57.

Required area 
log

log
/

e
e

e

x
ex

ex x dx
1

1

1

2 2 2

12

1

1 2

1

1 2

1

1

e
x e

x
x

x
x

dxe
e

e e

log log
/

/ /

1

2
0 1

1

2
0

1 1

4
1

1
2 2e

e
e e

( )

1

2

1

2 4

1

4

4

5

4

5

4

2

e e
e

e
e

e

e
e

x

y

(1, 0)O

y = ex logex

log
e
x

ex
y =1

e( (, −1

FIGURE 5.57 Comprehension-type question 2, part (iii).

Answer: (A)

 3.  Passage: General solution of the differential equa-

tion f x dx g y dy( ) ( ) 0  is f x dx g y dy c( ) ( ) .

Answer the following questions.

 (i) General solution of the equation
dy
dx

x y x ysin( ) cos( )  is

 (A) tan( )x y x c

 (B) 1
2

tan
x y

cex

 (C) tan( )x y kex

 (D) tan
x y

cex y

2

 (ii) Solution of 
dy
dx

x x
y y y

( log )

sin cos

2 1
 is

 (A) sin logy x x c2

 (B) y x x c2 log

 (C) y y x x csin log

 (D) y y x x csin log2

 (iii) Solution of 
dy
dx

y
x x y

1

1 2( log log )
 is

 (A) xy xy
x

c1
2

2
2

(log )

 (B) 1
2

2
2

(log )xy
x

y c
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 (C) xy xy
x

c1
2

2

log ( )

 (D) xy x y
x

c( log log )1
2

Solution

(i) The given equation is

dy
dx

x y x ysin( ) cos( )

Put x  y  u. Then

du
dx

u u

u u u

1

2
2

2
2 2

2

sin cos

cos sin cos

Therefore

1

2
2

2
2 2

2cos sin cos
u u u

du dx

 

1

2 2

1
2

2sec

tan

u

u
du dx

Integrating we get

1

2 2

1
2

2sec

tan

u

u
du x c

 

log tan

tan

1
2

1
2

u
x c

x y
cex

Answer: (B)

(ii) The given equation is

 
dy
dx

x x
y y y

( log )

sin cos

2 1

(sin cos ) ( log )y y y dy x x x dx2

Integrating we get

(sin cos ) ( log )

cos cos sin log

y y y dy x x x dx c

y y y y x x x

2

2 2 11

2

x
dx xdx c

x x clog

Therefore

y sin y  x2 log x  c

Answer: (D)

(iii) We have

dy
dx

y
x x y xy

1

1

1

12 2( log log ) ( log )

Put xy  u so that

du
dx

x

u( log )1 2

Therefore

 ( log )1 2u du xdx

( log )

( log )
( log )

(

1

1
2 1

2

1

2

2
2

u du xdx c

u u
u

u
u du

x
c

u llog ) log

( log ) log

u u u u du
x

c

u u u u u u

2
2

2

2 2 1
2

1 2 2 2
x

c

u u u u u
x

c

2

2
2

2

1 2 2
2

log (log ) log

 

u u
x

c

xy xy
x

c

[ (log ) ]

[ (log( )) ]

1
2

1
2

2
2

2
2

Answer: (A)

 4. Passage: The differential equation

dy
dx

f x y
g x y

( , )

( , )

where f and g are homogeneous functions of same 

degree can be solved by using the substitution y  vx. 

Answer the following questions.

(i)  Solution of the differential equation 

x
dy
dx

y
y
x

xTan 1

is

 (A) x y ke
y
x

y
x2 2

1Tan

 (B) ( )x y y kxe
y
x2 2

1Tan

 (C) xy ke
y
x

y
xTan 1

 (D) xy x y ke
y
x

( )2 2

(ii)  Solution of the equation (x3  2y3) dx  3xy2dy 

 0  is

 (A) x y cx3 3 2  (B) x y cx2 2
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 (C) x y c
x y

3 3

2 2

1 1
 (D) 

1 1
3 3

2

x y
cx

 (iii) Solution of the equation 
dy
dx

y x
y x

 is

 (A) x y
y
x

c2 2 12Tan

 (B) log( )x y
y
x

c2 2 12Tan

 (C) tan( ) logy x
y
x

c2 2

 (D) x y x y
y
x

c2 2 2 2 1Tan

Solution:

(i) Put y  vx so that

v x
dv
dx

dy
dx

Therefore

x v x
dv
dx

vx v x

v x
dv
dx

v v

Tan

Tan

T

1

1 1

( aan 1v dv
dx
x

)

Integrating we get

( )

log

log (

Tan

Tan

Tan

1

1

2

1

1

1

2
1

v dv
dx
x

c

v v
v

v
dv x c

v v v x c

y
x

y
x

x y x x c

2

1 2 21

2

1

2

) log

log( ) log log

lo

Tan

gg( )x y
y
x

y
x

c

x y ke
y
x

y
x

2 2 1

2 2
1

Tan

Tan

Answer: (A)

(ii) We have

( )x y dx xy dy3 3 22 3 0

 
dy
dx

y x

xy

2

3

3 3

2
 (Homogeneous)

Put y  vx. Then

v x
dv
dx

v

v

2 1

3

3

2

x
dv
dx

v

v
v

v

v

v

v
dv

dx
x

2 1

3

1

3

3

1
0

3

2

3

2

2

3

( )

The solution is

3

1

2

3

v

v
dv

dx
x

c

log( ) log

log( )

( )

1

1

1

3

3

3

3 3 2

v x c

v x c

v x c

x y cx

Answer: (A)

(iii) We have

dy
dx

y x
y x

Put y  vx. Then

v x
dv
dx

v
v

x
dv
dx

v
v

v
v

v
v

v
dv

d

1

1

1

1

1

1

1

1

2

2

( )

xx
x

v

v
dv

dx
x

c

0

1

1 2

Tan

Tan

1 2

1 2 2

1

2
1

1

2

v v x c

y
x

x y x

log( ) log

log( ) log log

log( )

x c

y
x

x y c2 1 2 2Tan

Answer: (B)

 6.  Passage: The general solution of the differential 

equation

dy
dx

Py Q

where P and Q are functions of x alone is given by

y e Q e dx c
Pdx Pdx

Answer the following questions.

(i)  Solution of the differential equation 

x
dy
dx

y x ex( )1 2
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is

(A) ye x
x

cx log
2

2

(B) ye x
x

cx log
2

2

(C) y e x
x

cex x2 2
2

2
log

(D) ye x
x

cx2
2

2
log

(ii)  Solution of the equation x(1  x2)dy  (y  yx2 

 x2)dx is

(A) y  xtan x  c (B) y  xTan 1 x  c

(C) y  xTan 1 x  cx (D) xy x
c
x

Tan 1

(iii)  General solution of the differential equation

( ) ( )x
dy
dx

ny e xx n1 1 1

is

(A) y e x cx n( )1

(B) y x e cn x( )1

(C) y c e xx n( )( )1

(D) y c e xx n( ) ( )1

Solution

(i) We have

x
dy
dx

y x ex( )1 2

dy
dx

y
x e
x

x( )1 2

 (Linear)

The integrating factor is

I F  . . e e
dx x1

The solution is

ye
x e
x

e dx cx
x

x( )1 2

1

2

2

2

x
x

dx c

x
x

clog

Answer: (A)

(ii) We have

x x dy y yx x dx( ) ( )1 2 2 2

dy
dx

y x x

x x

( )

( )

1

1

2 2

2

dy
dx

y
x

x

x1 2
 (Linear)

The integrating factor is

I F. . loge e
x

x
dx x

1
1

The solution is

y
x

x

x x
dx c x c

y x x cx

1

1

1
2

1

1

Tan

Tan

Answer: (C)

(iii) We have

( ) ( )

( ) ( )

x
dy
dx

ny e x

dy
dx

n
x

y e x

x n

x n

1 1

1
1

1

Linear

The integrating factor is

I F. .
( )

log( )e e
x

n
x

dx n x
n

1 1 1

1

The solution is

y
x

e x

x
dx e c

y e c x

n

x n

n
x

x n

1

1

1

1

1

( )

( )

( )

( )( )

Answer: (C)

Integer Answer Type Questions

1. The value of xe dxx

0

1

 is _______.

Solution: We have

xe dx e xx x

0

1

0

1
1( )

0 0 1

1

0e ( )

Answer: 1

2. 3 3

0

2

sin

/

x dx  equals _______.
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Solution: We have

sin sin sin//
3

0

2

0

2 3 3
4

xdx x x dx

1

4
3

1

3
3

1

4
3 0 1

1

3
0 1

0

2

0

2
cos cos

( ) ( )

/ /x x

1

4
3

1

3

8

12

2

3

Therefore

3 23

0

2

sin

/

xdx

Answer: 2

Try it out If we use Walli’s formula, then

sin
( )

( )

/

3

0

2

3(

2

3
xdxdd

3. Tan 1

2

0

1
2 1

1

x

x x
dx  is equal to ______.

Solution: We have

Tan Tan

T

1

2

0

1

1

0

1
2 1

1

1

1 1

x

x x
dx

x x
x x

dx
( )

aan Tan

Tan Tan

1 1

0

1

0

1

1

0

1

1

0

1

1

1 1

xdx x dx

xdx x dx

( )

( )

TTan Tan1 1

0

1

0

1

0

xdx xdx

Answer: 0

4.  The area bounded by the curves y  loge (x  e), y  e x

and the x-axis is _______.

Solution: The two given curves intersect in (0, 1) (see 

Fig. 5.58). So

log ( )e x e xas  

and y e xx 0 as  

Now y  loge (x  e) meets x-axis in (1  e, 0). Therefore 

the required area (shaded part) is

log ( ) log ( )e
x

e

e e

e

x

x e dx e dx x x e

x
x e

dx e

01

0

1

0

1

0

0

1

0

1

0

1 1
e

x e
dx e

x e x

e
x

x

e

( lim )

log( e

e e

e e

e) ( )

[ ( )] [ ]

1

0
0 1

0 1 1 0 1

1 1

2

O(1−e, 0)

(0, 1)

y = loge (x + e)

y = e−x

x

y

FIGURE 5.58 Integer answer type question 4.

Answer: 2

5.  If A is the area bounded between the curves y  xex, y 

 xe x and the line x  1, then the integer part of A is 

______.

O

(1, e)

1 x

y
y = xe x

y = xe −x

1,( (1
e

FIGURE 5.59 Integer answer type question 5.

Solution: The two curves meet at (0, 0) and are 

intersected by the line x  1 in (1, e) and (1, 1/e), 

respectively. Hence the required area is

( )

( ) ( )

xe xe dx xe dx xe dx

e x x e

x x x x

x x

0

1

0

1

0

1

0

1
1

0

1

0

1

e dxx



 Worked-Out Problems 583

[ ( )]0 1

1
1

0
1

1

0

1

0

1
xe e

e e

x x

1
2

1

2

e

e

Therefore, A  2/e, which implies that the integer part of 

A is zero.

Answer: 0

6.  If [x] denotes the greatest integer not exceeding x, 

then

x x dx2

1

3

[ ]

Solution: Let

I x x dx

I x dx

I x dx

2

2

1

3

1

1

3

2

1

3

[ ]

[ ]

Now

I x dx x dx

x x x

1

1

2

2

3

1

2 2

1

2 2

2

3

2 2

2
1

2

1

2
2

( ) ( )

xx
2

3

2 2 1
1

2
4 1

1

2
9 4 6 4

6
3

2

5

2
2

17

2

7

2
5

( ) ( ) ( ) ( )

I x dx

dx dx dx dx

2

1

3

1

0

0

1

1

2

2

3

1 0 1 2

0 1 0 2 1

[ ]

( )

( ) ( )) ( )2 3 2

1 1 2 2

Therefore

I  I
1
  I

2
  5  2  7

Answer: 7

7. Let f x
x x

x x
( )

2 0 1

1 2

for

for

If K f x dx( ) ,

0

2

 then [K  1] (where [t] denotes the inte-

ger part of t) is ______.

Solution: We have

f x dx x dx xdx

x x

( )

(

/

0

2

2

0

1

1

2

3

0

1 3 2

1

21

3

2

3

1

3

2

3
2 2 11

4 2 1

3

)

Therefore

K

K

1
4 2 2

3

1 2[ ]

Answer: 2

8.  If I x xdxcos cos

/

/

3

2

2

, then the value of 3I is 

_____.

Solution: We have

I x xdx

x x x x

cos cos

cos cos ( cos

/

/

/

3

2

2

3

0

2

2 ∵  cos  is an3   even function)

in

2

2 0
2

0

2

0

2

cos sin

cos sin ,

/

/

x x dx

x x ∵ ,sin

(cos )

[ ]

/ /

x

x

0

2
2

3

4

3
0 1

4

3

3 2

0

2

This implies 3I  4.

Answer: 4
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9. If [t] denotes the integer part of t, then

Sin 1

0

1

xdx

Solution: We have

Sin Sin

Sin

1

0

1

1

0

1

2
0

1

1 2

0

1

1

1 1

xdx x x
x

x
dx

x

22
0 1

2
1

( )

Therefore

Sin 1

0

1

0xdx

Answer: 0

10.  If K x x dx5 14

1

1

5 ,  then the integral part of K 

is ______.

Solution: We have

K x x dx

x

5 1

2

3
1

2

3
2 2 0

4 2

3

4

1

1

5

5 3 2

1

1
( ) /

Therefore

[ ]K
4 2

3
1

Answer: 1

11.  Let f(x)  Min {x2  1, x  1} for 0  x  2. If A is the 

area bounded by y  f(x), the x-axis in the interval  

[0, 2], then the integral part of A is ______.

Solution: The line y  x  1 and the curve y  x2  1 

cut each other in the points (0, 1) and (1, 2) (see Fig. 

5.60). Now

0  x  1  x2  1  x  1

and for x  1, x  1  x2  1. Therefore

f x
x x

x x
( )

2 1 0 1

1 1 2

for

for

So

A  Required area (shaded portion)

 

( ) ( )x dx x dx

x x x x

2

0

1

1

2

3

0

1

0

1 2

1

2

1

2

1 1

1

3

1

2

11

3
1

1

2
4 1 2 1

23

6

( ) ( )

x

y

1 2O

(1, 2)

FIGURE 5.60 Integer answer type question 11.

Answer: 3

12.  The cut off from the parabola 4y  3x2 by the straight 

line 2y  3x  12 is ______.

Solution: The line intersects the parabola 4y  3x2 in 

the points (–2, 3) and (4, 12) (see Fig. 5.61). Therefore

Required area
3 12

2

3

4

3

4
6

2

2

4

2

2

4

2

4

x
x dx

x x
11

4

3

4
16 4 6 4 2

1

4
64 8

3

2

4
x

( ) ( ) ( )

0 4 x

y

−2

(4, 12)

FIGURE 5.61 Integer answer type question 12.
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9 36 18

27

Answer: 27

13.  The area bounded by the curves y x x y, 2 3  

in the first quadrant is ______.

(IIT-JEE 2003)

Solution:

The line and the curve intersect at (9, 3) in the first quad-

rant (see Fig. 5.62). Therefore

Required area x dx
0

9

 –  Area of the triangle with ver-

tices (3, 0), (9, 0) and (9, 3)

 

2

3

1

2
6 3

2

3
3 9

9

3 2

0

9

3

x /

( )

O 3 9

(9, 3)

x

y

x = 2y + 3

y x=

FIGURE 5.62 Integer answer type question 13.

Answer: 9

14.  The area bounded by the curve 3y2  x2 (3  x2) is 

______.

Solution: We know that

(i) The curve is symmetric about both axes.

(ii) It passes through origin.

(iii) It meets x-axis in ( , ),3 0  (0, 0) and ( , )3 0 .

(iv) 3 3x

Therefore shape of the curve is as shown in Fig. 5.63. 

Therefore

Required area 4
3

3

4

3

1

2
2 3

2

0

3

2

0

3

x
x dx

x x dx( )

2

3

2

3
3

4

3 3
0 3 3

4

2 3 2

0

3
( )

( )

/x

O
x

y

3 3

FIGURE 5.63 Integer answer type question 14.

Answer: 4

15.  If A is the area bounded by the curves y  x loge x,  

y  2x  2x2, then 12A is _____.

Solution: We have

y x x x2 2 2
1

4

1

2

2
2

Then

x
y

y
1

2

1

4 2

1

2

1

2

2

which is a downward parabola with vertex at (1/2, 1/2) 

meeting x-axis in (0, 0) and (1, 0). The curve y  x loge x 

meets the x-axis in (1, 0). Further

lim log
x

ex x

and lim log
x

x x
0

0

Now the required area is (see Fig. 5.64)

A x x dx x xdx x xe e( ) log ( log )2 2 0 1 02

0

1

0

1

∵

x

y

(1, 0)O

1
2( (, 1

2

y = x logex

x logex = 0
x→0+
lim

FIGURE 5.64 Integer answer type question 15.
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x x
x

x
x

e
2

0

1 3

0

1 2

0

1 2

0

1
2

3 2 4
log

 

1
2

3
0 0

1

4

1

3

1

4

7

12

( )

Therefore 12 A  7.

Answer: 7

16. The value of 

(sin ) [cos cot log(sin ) ]cos

/

sinx x x x dxx x

0

2

is _____. (IIT-JEE 2006)

Solution: Let f x x xx( ) (sin ) , /cos 0 2  so that

f x x x x x xx( ) (sin ) [cos cot sin log sin ]cos  (check it)

Therefore

f x dx f x( ) ( )

/

/

0

2

0

2
1 0 10 1

Answer: 1

17. The value of (5050) 

( )

( )

1

1

50 100

0

1

50 101

0

1

x dx

x dx

 is ______.

Solution: Let

I

x dx

x dx

( )

( )

( )

5050

1

1

50 100

0

1

50 101

0

1

Let

I x dx

I x dx

1
50 100

0

1

2
50 101

0

1

1

1

( )

( )

Therefore

 

I x x dx2
50 50 100

0

1

1 1( )( )

I x x dx

I x x x dx

I
x x

1
50 50 100

0

1

1
50 100

0

1

49

1

5

1

1

1

( )

( ) ( )

( 00 101

0

1 50 101

0

1

1

101 50

1

101 50

0

) ( )x
dx

I
11

5050
2I

Hence

5051

5050
2 1I I

So

I
I

I
5050

50511

2

Answer: 5051

18. Let

y x
x

d
x

( )
cos cos

sin
/

1 2

162

2

then

dy
dx

K
x

where the value of K is ______.

Solution: By Leibnitz Rule,

dy
dx

x d x
x

x
x

x

sin
cos

sin
cos

cos

sin
/

1 1
2

2

16

2
2

2

Therefore

dy
dx x

0 1
1

1
2 2( )

So K  2.

Answer: 2

19.  Let f x t dt
x

( ) .2 2

1

 Then, the number of real 

roots of the equation x f x2 0( )  is ______.

(IIT-JEE 2002)
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Solution: We have

f x x( ) 2 2  (By Leibnitz Rule)

Now

x f x2 0( )

x x

x x

x x

4 2

4 2

2 2

2

2 0

2 1 0( )( )

 x 1  are the real values of x

Therefore the number of real roots of the equation 

x2  f (x)  0 is 2.

Answer: 2

20.  Let [x] denote the largest integer not exceeding x
and {x}  x – [x]. Then the value of

e

e e
dx

x

x x

cos( { })

cos( { }) cos( { })

0

2012

is ______.

Solution: Let

f x
e

e e

x

x x( )
cos( { })

cos( { }) cos( { })

Since the period of {x} is 1, we have that the period of f(x) 

is also 1. Therefore

f x dx f x dx( ) ( ) ( )2012

0

1

0

2012

(See P
4
) (5.54)

Now, let

I f x dx

e

e e
dx

e

x x

x x x x

( )

cos( ( [ ])

cos ( [ ]) cos( [ ])

0

1

0

1

ccos

cos cos

cos ( )

cos ( ) cos ( )

x

x x

x

x x

e e
dx

e

e e

0

1

1

1 1

00

1

0

1

dx

e

e e
dx

x

x x

cos

cos cos

Therefore

2 1

0

1

0

1

I
e e

e e
dx dx

x x

x x

cos cos

cos cos

So

I
1

2

From Eq. (5.54), we get

f x dx( )

0

2012

2012
1

2
1006

Answer: 1006

21.  If f is differentiable on [0, 1], f (0)  0 and f (1)  1, 

then the minimum value of [ ( )]f x dx2

0

1

 is equal to 

______.

Solution: We have

[ ( ) ]

[ ( ) ]

[{ ( )} ( ) ]

[

f x

f x dx

f x f x dx

1 0

0 1

2 1

2

2

0

1

2

0

1

ff x dx f x dx dx

f x dx f f

( )] ( )

[ ( )] [ ( ) ( )]

2

0

1

0

1

0

1

2

0

1

2 1

2 1 0 1

2 1 0 12

0

1

[ ( )] ( )f x dx

Therefore

[ ( )]f x dx2

0

1

1

Hence the minimum value of [ ( )]f x dx2

0

1

 is 1 and the 

minimum value will be attained when f(x) = x x [0, 1] 

Answer: 1
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1. Evaluate sin cosx x dx
0

.

Hint: Draw the graphs of both sin x and cos x in [0,  ].

2.  f is a real-valued function defined for all x  1 such 

that

f (1)  1 and f x
x f x

( )
[ ( )]

1
2 2

Show that lim ( )
x

f x  exists and is less than 1   /4. 

Hint: Observe that f is strictly increasing on [1, ) 

and 
dx

x f x

dx

x

t t

2 2

1

2

1
1[ ( )]

3. Let f be differentiable function such that

f x f x f x dx( ) ( ) ( )

0

2

and f
e

( )0
4

3

2

Determine f(x).

4. Prove that

sin sin sin sin( )
sin

sin
x x x K x

Kx
x

3 5 2 1
2

where K is a positive integer and hence show that

sin

sin

/ 2

0

2

1
1

3

1

5

1

2 1

Kx
x

dx
K

5.  Evaluate e dxx x
n

2 2

0

2

[ ]

/

 where [x] is the integral part 

of x and n is a positive integer.

6. Evaluate 1 2

0

100

cos xdx .

7. Evaluate 
sin( / )

/

/
1
2

1

2
x

x
dx .

8. Evaluate 
xdx

x x1 5 1
0

3

.

9.  Show that 
dx

a x b x
a b

2 2 2 2

0

4

0 0
cos sin

( , )

/

 is 

equal to 
1 1

ab
b
a

Tan .

10. Show that 
log( )

log .
1

1 8
2

2

0

1
x

x
dx

Hint: Put x  tan .

11. Evaluate 
( )

( )

x

x
dx

2

3 2

23

23
3

29

.

12. Show that 
sin

sin
,

2
0

0

Kx
x

dx if K is an integer.

13. Prove that f x f x dx(sin ) (sin ) .

/

2

0

2

0

14. Show that xf x dx f x dx(sin ) (sin ) .
2

00

15. Evaluate x xdx8 9

8

8

sin .

/

/

16. Compute sin .

/

xdx
0

42

Hint: Put t x.

17. If f (x) is continuous on [a, b], then show that

xf x dx b f b a f a f a f b
a

b

( ) [ ( ) ( )] [ ( ) ( )]

18.  Let f be an odd function in the interval [–T/2, T/2] 

where T is a period of f. Prove that f t dt
a

x

( )  is also a 

periodic function with the same period.

Hint: 
F x f t dt

F x T F x f t dt f t dt

a

x

x

T

T

x T

( ) ( )

( ) ( ) ( ) ( )

/

/

2

2
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19.  If n is a positive integer and CK denotes the Binomial 

coefficient nCK, then show that

C
C C C C

n
n

n

n
n

0
1 2 3

3 5 7

1

2 1

2 4 6 2

1 3 5 2 1
� �

�
( ) ( )

( )

Hint: Compute ( )1 2

0

1

x dxn  using Binomial expan-

sion and also using the substitution x  sin .

20.  On the interval [–1, 1] find the greatest and least val-

ues of the function

F x
t

t t
dt

x

( )
2 1

2 22

0

Hint: F is greatest at x  1 and least at x  –1/2.

21. Solve the equation 
dx

ex

x

e
1 6

2

.

log

22. Show that 
dx

x x x
e

2
0

2

5 1

7 2 7

9
log .

23. Show that Tan 1

1

16

1
16

3
2 3x dx .

24. Show that 
dx

x3 2

2

5

1

5
0

2

1

cos
.

/

Tan

25.  If f is an odd function, then show that f t dt
a

x

( )  is an 

even function. Will f t dt
a

x

( )  be odd, if f is even?

Hint: For the latter part, consider f (x)  cos x and  

a  0, so that the conclusion is not true. If a  0, the 

conclusion is true.

26. Show that
dx

x x
e3

1

2
1

2

8

5
log .

27. Show that
x

x
dx

9

5 3

0

2

1

2

45

5

( )
.

28. Prove that

dx

x

x

n x

n
n

dx

xn n n( ) ( )( ) ( ) ( )1 2 1 1

2 3

2 1 12 2 1 2 1

and hence compute 
dx

x( )1 2 4

0

1

.

29. Show that
dx

x x( )
.

/

2 1 1

1

22 2
0

1 3

1Tan

30. Show that 1
3

2
2 32

0

2

e dxx
e

elog

log ( ).

31. Evaluate 
cos

sin
/

/ 3

3

2

4
x

x
dx .

32. Compute log ( )e

e

x dx1

0

1

.

33. Show that (log ) .e

e

x dx e3

1

6 2

34. Show that x x dx elog( ) log1 2
1

2

2

0

1

.

35. Evaluate (cos ) cos/

/

2 3 2

0

4

x xdx .

Hint: Put 2 sin sinx .

36.  If 
x

x x
dx

n

n n
a

b

( )
,

16
6  then prove that a  2,  

b  14 and n is a natural number.

37. Show that 
Sin 1

0

1

2
2

x
x

dx elog .

38. Evaluate
log ( )

.e x

x
dx

1

1 2

0

1

39.  Let F(t) 
x

x x
dx

t

( )( )
.

1 1 2

0

 Show that 

 lim ( ) .
t

F t
4

40. Show that 
x x
x x

dx
tan

sec tan
( ).

2
2

0

41. Evaluate 
sin log(cot )

cos

8

2
0

2
x x

x
dx .

42. Evaluate 
x x

x
dx

Sin 1

2
1

1

1
.
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43. Show that 
3 4 2 20

4
3 8

5 3 2

2

2

2
x x x x

x
dx .

44. Prove that 
dx

x1 2 24

0

.

45. The value of ( )1 12 2

1

1

x x x x dx is ____.

46.  Show that F x t t dte

x

( ) log ( )1 2

0

 is an even 

function.

Hint: Observe that log( )t t1 2  is an odd func-

tion.

47. Show that x x dxsin .

/

1

3 2

2

3 1

48.  If f x xx( ) ,2 1 1 then show that

f x dx
e

( ) 5
9

2
2

2

4log

49. Show that

x

a x b x
dx

a b

a b( cos sin )2 2 2 2 2

0

2 2 2

3 34

where a  0, b  0.

50. Evaluate 
e e

e
dx

x x

x

e
1

3
0

5log

.

51. If S
cos

( )
,

x

x
dx

2 2

0

 then show that

cos sin

( )

/
x x

x
S

1

1

4

2

2
1 2

0

2

=

Hint: Take I
cos sin

( )

sin
.

/ /
x x

x
dx

x
x

x
1

1

2

2

1
2

0

2

0

2

 Use 

integration by parts.

52. If F x t dt
x

x

( ) sin( ) ,

/

2

1

 then find F  (1).

53. Evaluate lim
n

r

n

n
r

n r

1

2 2
1

2

.

54. Show that

lim log
n

e
n

n

n

n

n

n n
1

1

2

2

3

3

1

4

1

2
2

2 2 2 2 2 2
�

55. Show that lim
!

/

n n

nn

n e

1
1

.

56. Show that

 lim
n

n n

n

n

n n

n

n
1

1
1

2
1

2

2
2

2

4
2

2

2

2 2 2

� 4

e
.

Hint: Assume that the limit is l and take logarithm.

57. Show that

lim log .
n

e
n n

r

r n n
1

1

4

8

1 1

3
2

3 3

2

3 3
�

58. Show that

lim
( ) ( )n n

n

n

n

n n
1

1 2

1

8

3

8

2

3

2

3
.

59. Show that lim log .
n n n n

1

1

1

2

1

2
2

60. Show that lim .
n

r

n

n r

1

22 2
0

1

61.  Prove that the area common to the parabolas y  2x2 

and y  x2  4 is 32/3.

62.  Show that the area included between the parabolas 

y2  4a(x  a) and y2  4b(x  b) is 
8

3

3 2ab a b

b a

( )
.

/

63.  Compute the area bounded by the curves y  x  1 

and (y  1)2  4(x  1). 

64.  Find the area enclosed by the curves 3x2  5y  32 

and y  x  2 .

65.  Compute the area of the figure bounded by the pa-

rabola (y  2)2  x  1, the tangent to it at the point 

with ordinate 3, and the x-axis.

66.  Find the area of the figure which lies in the first 

quadrant inside the circle x2  y2  3a2 and bounded 

by the parabolas x2  2ay and y2  2ax(a  0).

67.  Compute the area given by x  y  6, x2  y2  6y and 

y2  8x. 

68.  A curve y  f (x) passes through the point P(1, 

1). The normal to the curve at P is a(y  1)  x   

1  0. If the slope of the tangent at any point on the 

curve is proportional to the ordinate of the point,  
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determine the equations of the curve. Also obtain 

the area bounded by the y-axis, the curve and the 

normal to the curve at P.

(IIT-JEE 1996)

69.  Find the area of the region bounded by the curve C:

y  tan x, the tangent drawn to C at x   /4 and the 

x-axis.

70.  Compute the area enclosed between the parabolas 

x  y2, 3y2  4(x  1).

71.  Find the area of the figure bounded by the curve 

x y 1  and the line x  y  1.

72.  Compute the area of the figure enclosed by the curve 

y2  x2 (1  x2).

73.  Compute the area of the loop of the curve y2  x2

(1  x).

74.  Find the area of the figure contained between the 

parabola x2  4y and the curve y
x

8

42
.

75.  Compute the area of the figure bounded by the 

curve y xelog , the y-axis and the straight lines 

y aelog  and y belog .

76.  Solve (y2  3x2)dy 2xy dx  0, given y  1 when x  0.

77.  Solve y
dy
dx

x
dy
dx

y
2

2 0,  given y 5  when

x  0.

78.  Find the curve such that the length of the polar ra-

dius of any point M equals the distance between the 

point of intersection of the tangent at the point M,
the y-axis, and the origin.

79. Solve 
dy
dx x y

1

2 2
.

80. Solve ( ) ( )3 3 22 2 2y xy x dx x xy dy .

81. Solve 
dy
dx

x
y

y
x

.

82. Solve ( ) ( )2 6 02y dx y x dy .

83. Solve 
dy
dx

e

x x

y

2

1
.

84. Solve 
dy
dx

y x x2 tan sin .

85. Solve 
dy
dx

y x
x x

y
tan

sin cos2

2
.

86. Solve 
dy
dx

x

x
y x y

1 2
.

87. Solve xy
dy
dx

y e x3 2

.

88.  Solve x y x
dy
dx

y x2 3 4 cos ,  given that y   when

x   .

89. Solve ( )1 2 12 2x
dy
dx

xy x x .

90.  The gradient of a curve which passes through the 

point (4, 0) is defined by the equation

dy
dx

y
x

x
x x

5

2 3
0

( )( )

Find the equation of the curve and also the value of 

y when x  5.

91. Solve 
dy
dx

y x e xx( )cos (cot ).sin1 2

92.  Find the equation of the curve through the origin 

which satisfies the differential equation

dy
dx

x y( )2

93. Solve 
dy
dx

xy
x

x
y2 1

.

94. Solve 
x y

y

dy
dx

x
y2

1
cos .

Hint: Put y  vx.

95. Solve 
dy
dx

x y xtan( ) .1

96. Solve 
dy
dx

y y

x x

2

2

1

1
0.

97. Solve x y
dy
dx

x y2 1( )sec .

98.  Form the differential equation representing of all 

parabolas having latus rectum 4a and whose axes 

are parallel to x-axis.

99.  Form the differential equation representing all cir-

cles in the xy-plane with fixed radius r.

100. Solve x y x y xy
dy
dx

2 2 2 2 1 0( ) .
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1.  4 2 1( )

3. f x e
ex( )

2 1

3

5. 
n

e
2

1( )

6. 200 2

7. 1

8. 14/15

11. 8
3 3

2

15. 0

16. 2

21. x e2 2log

28. 
11

48

5

64

31. –0.083

32. 1

35. 
3

16 2

38. 
8

2loge

41. 0

42. 2

45. 0

50. 4 – 

52. 
3

2
1sin

53. 5 1

63. 64 3/

64. 33/2

65. 9

66. a2 12

3

3

2

1

3
Sin

67. 
27 2

12

68. Curve: . Area = 1y e
a

e
a

a x
a

( )1 1

2

69. 
1

2
2

1

2
log

70. 8/3

71. 1/3

72. 4/3

73. 8/15

74. 
2

3
3 2( )

75. b – a

76. y y x3 2 2

77. y x2 5 2 5

78. x cy c2 22  or x2 = 2cy

79. x ce y yy2 21

2

1

2

1

4

80. ( )x y cx e
x

x y2 3

81. y x cx2 log

82. y x cy2 32

83. 2 1 2 2xe cxy

84. y x c xcos cos2

85. y x c
x3 3

6

2
cos

cos

86. y
x

c x
2

2 1 41

3
1( ) /

87. e y x cx2 2 2( )

88. y x x3 31 3( sin )

89. y x c x1 12 2( )

90. y x
x
x

yelog , log
2

6 3
5

7

12

91. ( ) cotsiny e x x cx1

92. loge
x y
x y

x
1

1
2

ANSWERS
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93. loge
xy

xy
x c

1

94. loge y
x
y

x csin

95. sin( ) /y x cex2 2

96. Tan Tan1 12 1

3

2 1

3

x y
c

 97. y y y x
x

cesin cos log
1

 98. 2 0
2

2

3

a
d y

dx

dy
dx

 99. r
d y

dx

dy
dx

2
2

2

2 2 3

1

100. 1 1
1

2

1 1

1 1

2 2
2

2
x y

x

x
celog

 Answers





A

Absolute maximum, 55, 243

Absolute minimum, 55, 243

Acceleration, 230

angular, 230

Addition (+)

associative property of, 4

closure property of, 4

commutative property of, 4

existence of additive identity for, 4

existence of additive inverse for, 4

Addition theorem, 458

Additive identity, 4

Additive inverse, 4

Angle of intersection of curves, 225

Angular acceleration, 230

Angular velocity, 230

Antiderivative, 350, 460

Archimedes’ principle, 7

Areas, 475–478

Associative law for composition of 

function, 16

Associative property of addition (+), 4

Average change, 229

B

Bernoulli’s equation, 490

Bijection, 17–18

differentiability theorem, 152

Binomial differential, 402–403

Bounded below, 6

Bounded intervals, 10

Bounded set, 6

Bounded subset, 54

C

Carathéodory theorem, 150

Cartesian product, 14

Cauchy sequence, 62

Cauchy’s theorems

first theorem on limits, 65

general principle of convergence, 

59, 62

for series, 71

mean value theorem, 248–249

root test, 73

second theorem on limits, 67

Chain rule, 149–150

Closed interval, 10

Closure property of addition (+), 4

Codomain, 14

Commutative property of addition (+), 4

Comparison test, 72

for sequences, 66

Complement, 3

Completeness property of R, 7

Composite function, 15, 52

Composite theorem, 468

Concave function, 246

Concavity, 246

Congruence function, 20

Constant function, 15

Constant of integration, 351

Continuity

of composite function, 52

function, 45

at a point, 45

properties of continuous function, 

54–55, 69

of sum, product and quotient of 

continuous functions, 50–52

Convergence

Cauchy’s general principle of, 62

comparison test for, 63

of a monotonic sequence, 63

subsequence of a convergent 

sequence, 63

Convex function, 246

Convexity, 246

Cosine hyperbolic, 158

Critical point, 240–241

Curve (s)

angle of intersection of, 225

normal to, 225

tangent to a, 224

D

D’Alembert’s test, 73

Darboux theorem, 243

Decreasing sequence, 62

Decreasing sequences, 62–63

Definite integral, 454–455

geometrical interpretation of, 

456–460

as a limit of a sum, 473–474

of a non-negative function, 456

properties of, 461–462

Degree of differential equation, 481

De Morgan’s laws, 3–4

Density property of Q, 9, 68

Derivative, 146

differentiable function for a local 

extremum with first, 240

geometric meaning to, 224–225

left, 146

right, 146

second, 169

signs of, when passing critical point, 

240

test for convexity, 246

theorem, 148

third, 169

use in velocity problems, 229

Derived function, 146

Differential equations, 480–481

degree, 481

general solution of, 481

homogenous, 485

linear, 487

order, 481

particular solution of, 481

solution of, 481

Differentiation

of implicit function, 167

logarithmic, 166

parametric, 167

by substitution, 150

substitution method of, 165

Direct integration using standard 

integrals, 353–360

Discontinuity, 45

Discontinuous function, 45, 458

Disjoint sets, 2

Diverge, 64

Divergence

of a sequence, 64

of series, comparison test for, 72

Domain, 14

E

Empty set, 2

Equal functions, 14

Equation of the normal, 227

Equation of the tangent, 227

Euclid’s algorithm, 20

Euler’s substitutions, 403–404

Even functions, 18

Even integer, 9

Even part of function, 19

Extended form of linear equation, 490

Extremum value, 244

F

Finite limit, 59

Finite set, 19

Index
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First derivative test, 239

Fixed point, 57

Fractional part, 8

Function (s), 14

classes of integrable, 396–405

composite, 15–16

congruence, 19

constant, 15, 147

decreasing or monotonically 

decreasing, 153

equal, 13

even, 18

fundamental classes of integrable, 

396–405

graph of, 9

graph of a, 21

greatest and least values of, 244

homogenous, 484

identity, 16

increasing or monotonically 

increasing, 153

integration of trigonometric, 404

limit of, 26–27

non-empty subset, 13

odd, 18

one-one, 16

onto, 17

periodic, 18–19

polynomial, 233

real-valued, 14–15, 26, 36

restriction of, 17

step, 19

symbol of, 14

Fundamental classes of integrable 

functions, 396–405

Fundamental theorem of integral 

calculus, 459

second form, 461

G

Geometric interpretation

of the derivative, 224–225

Lagrange’s mean value theorem, 

234–235

Rolle’s theorem, 232–233

Graph of a function, 21

construction of, 23–26

Greastest value of a function, 244

Greatest element, 244

Greatest lower bound, 6

H

Half closed interval, 10

Half open interval, 10

Homogeneous differential equation, 485

Homogeneous function, 484

I

Identity function, 16

Image, 14

Implicit function, 168

Implicit function, differentiation of, 167

Increasing sequence, 62

Increasing sequences, 62–63

Indefinite integral, 351, 461

Indefinite integration, 349

Indeterminate form, 248

Indexed family of sets, 2

Inductive set, 5

Inequality theorems, 40–45

Infimum, 7

Infinite limits, 58

Infinite series, 69–70

Integral part, 7

Integrand, 351, 454

Integrating factor (I. F.), 487

Integration

of linear fractions, 402

by parts, 352, 383–386, 468

rule of selection, 384

by substitution, 360–361

of trigonometric functions, 404

Interior point, 26

Intermediate value theorem, 56–57

for the derivative, 243

Intersection, 2

Intervals, 9–10

bounded, 10

closed, 10

half closed, 10

half open, 10

length of, 10

open, 10

unbounded, 10

Inverse of a function, 17

bijective, 16–17

Irrational number, 9

L

Lagrange’s mean value theorem, 

233–234

geometric interpretation of, 234–235

Least element, 244

Least upper bound, 6

Least value of a function, 244

Left continuous at a point, 45

Left derivative, 146

Left limit, 27

Left -neighbourhood, 26

Leibnitz rule, 469–470

Length

of interval, 10

of normal, 226

of sub-normal, 226

of sub-tangent, 226

of tangent, 226

L’Hospital’s rule, 248–251

Limit

Cauchy’s first theorem on, 65

finite, 59

of a funtion, 26

infinite, 58

left, 27

right, 26

of a squence, 60

of a sum, 473–474

theorems, 30–37

Linear equation

Bernoulli’s equation, 490

differential, 487

extended form of, 490

of first degree, 487

Local extremum value, 238

Local maximum value, 238

Local minimum value, 238

Logarithmic differentiation, 166

Lower bound, 6

M

Maxima, 237

Mean value theorem, 231

Cauchy’s, 248–249

for integrals, 459

Lagrange’s, 234

Method of substitution, 352

Minima, 237

Monotonic decreasing, 63

Monotonic function, 458

integrability of, 458

theorem relating to, 236–237

Monotonic increasing, 62

Monotonic sequence, 62–63

subsequence of, 64

Monotonic subsequence, 68

Multiplication (·)

associativity property of, 4

closure property of, 4

commutative property of, 4

distributive law, 4

existence of multiplicative identity, 4

existence of multiplicative inverse, 4

N

Neighbourhood, 10, 26, 146

concept of strictly increasing 

(decreasing), 237

infinity at, 58

Newton–Leibnitz theorem, 459

Non-empty subset as function, 13, 18

Normal, 224–225
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parametric form of, 227

Normal, length of, 226

Normal to the curve, 225

nth term of the sequence, 60

Null set, 2

O

Odd functions, 18

Odd part of function, 19

One-one function, 16

Onto, 17

Open interval, 10

Order of differential equation, 481

Ordinary differential equation, 480

P

Parametric differentiation, 167

Parametric form of the tangent, 227

Periodic functions, 18–19

Period of a function, 19

Point of extremum, 240

Point of inflection, 246–247

Point of local extremum, 238

Point of local maximum, 238

Point of local minimum, 238

Power set, 3

Preimage, 14

Primitive, 350

of f on an interval I, 351

Product of sequences, 61

Product Rule, 148

Product theorem, 468

Proper subset, 2

Q

Quotient of sequences, 61

Quotient Rule, 148

R

Range, 14

Rate measure, 229

Rate of change, 229

Rational number, 9

Ratio test for sequences, 66–67

Real number system, 4

absolute value, 11

modulus vlaues, 11

symmetric set and, 18

Reciprocal of a function, 151

Reduction, 405

Restriction of a function, 17

Riemann integrability criterion, 458

Riemann integrable, 454

Riemann intermediate sum, 454

Riemann upper sum of f over [a, b], 455

Right continuous at a point, 45

Right derivative, 146

Right limit, 26

Right -neighbourhood, 26

Rolle’s theorem, 231–232, 249

geometric interpretation of, 232–233

for polynomial functions, 233

Root test, Cauchy’s, 73

S

Sandwich theorem, 36–37

Second derivative test, 241

Sequences, 59–60

Cauchy, 62

divergence of, 64

divergence of a, 64

limit of, 60

monotonic decreasing, 63

monotonic increasing, 62

of non-negative real numbers, 66

of non-zero real numbers, 67

nth term of, 60

of partial sums, 70

of positive terms, 67

product of, 61

quotient of, 61

of rational numbers, 68

ratio test for, 66–67

strictly decreasing, 62

strictly increasing, 62

sum of, 61

unbounded, 61

Series, 13, 59–60

Cauchy’s general principle of 

convergence, 71

comparison test for the convergence 

or divergence of, 72–73

infinite, 69–70

of non-negative terms, 72

of positive terms, 72

Set difference, 3

Sets, 2–3

Sine hyperbolic, 158

Ssqueezing theorem, 36–37

Standard integrals, 351

direct integration using, 353–360

Step function, 20

Strictly decreasing, 63

locally, 237

Strictly increasing, 62

locally, 237

Sub-normal, length of, 226

Subsequence, 63

Subset, 2

Substitution, differentiation by, 150

Substitution method, 165

Substitution theorem, 461

Sub-tangent, length of, 226

Successive derivatives of a function, 169

Sum of sequences, 61

Supremum property, 7

Symmetric set, 18

T

Tangent (s)

to a curve, 224

equation of, 227

length of, 226

parametric form of, 227

Theorem (s)

addition, 458

Carathéodory, 150

Cauchy’s first theorem on limits, 65

Cauchy’s mean value, 248

Cauchy’s second theorem on limits, 

67

composite, 468

Darboux theorem, 243

definite integral, 454–460

fundamental theorem of integral 

calculus, 459

indefinite integral, 461

inequalities, 40–45

intermediate value, 56

Lagrange’s mean value, 233–234

limit, 30–37

mean value, 231

monotonic nature of a function, 

236–237

Newton–Leibnitz, 459

for polynomial functions, 233

product, 468

Rolle’s, 231–232

sandwich, 36–37

ssqueezing, 36–37

substitution, 461

transforming, 23–24

Transforming theorem, 23–24

construction of y = k f (x) from  
y = f (x), 25

transformation of x-coordinate, 25

transformation of y-coordinate, 24

Trigonometric functions, integration of, 

404

U

Unbounded above, 7

Unbounded below, 7
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Unbounded intervals, 10

Unbounded set, 7

Union, 2

Uniqueness of the limit, 30, 60

Unique part of function, 19

Universal set, 3

V

Value, 14

Variables separable/separation of 

variables, 483

Velocity, 230

Velocity of a particle, 230

angular, 230

W

Wallis formula, 472

Well ordering principle, 7

X

X-coordinate transformation, 25

XY-plane, 21

Y

Y-coordinate transformation, 24
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